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ESSENTIAL NORMS OF THE NEUMANN OPERATOR
OF THE ARITHMETICAL MEAN

JOSEF KRAL, DAGMAR MEDKOVA, Praha

(Received October 6, 1999)

Abstract. Let K C R™ (m > 2) be a compact set; assume that each ball centered on the
boundary B of K meets K in a set of positive Lebesgue measure. Let C((]l) be the class of all
continuously differentiable real-valued functions with compact support in R”™ and denote

by om the area of the unit sphere in R™. With each ¢ € C((]l) we associate the function

1 z—x
Wie(z) = . / grad o(z) dz

R 77L\K

e —am

of the variable z € K (which is continuous in K and harmonic in K \ B). Wk depends
only on the restriction ¢|p of ¢ to the boundary B of K. This gives rise to a linear operator

Wi acting from the space CV(B) = {g|p;¢ € C((]l)} to the space C(B) of all continuous

functions on B. The operator 7 sending each f € C(l)(B) to T f =2Wk f — f € C(B)
is called the Neumann operator of the arithmetical mean; it plays a significant role in
connection with boundary value problems for harmonic functions. If p is a norm on C(B) D

C (1)(3) inducing the topology of uniform convergence and G is the space of all compact
linear operators acting on C(B), then the associated p-essential norm of 7y is given by

wpTic = il sup{pl(Tic = Q)f1; f € (B), p(f) <1}

In the present paper estimates (from above and from below) of wp T are obtained resulting
in precise evaluation of wp 7Tk in geometric terms connected only with K.

Keywords: double layer potential, Neumann’s operator of the arithmetical mean, essen-
tial norm

MSC 2000: 31B10, 45P05, 47A30
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NOTATION AND INTRODUCTORY COMMENTS

In what follows R™ will be the Euclidean space of dimension m > 2. The Euclidean
norm of a vector = (z1,...,%,) € R™ will be denoted by |z|. If M C R™, then
the symbols M, M° and dM will denote the closure, the interior and the boundary
of M, respectively. B,(z): = {x € R™;|z — z| < r} is the open ball of radius r > 0
centered at z € R™. The symbol Ay will denote the outer k-dimensional Hausdorff
measure with the usual normalization (so that A, coincides with the outer Lebesgue
measure in R™). We put

2nm/2

Om: — )\m_l(aBl(O)) = W’

where I is the Euler gamma function. For fixed z € R™ the symbol &, will denote the
fundamental harmonic function with a pole at z, whose values at any € R™ \ {z}
are given by

1 1 .
o n‘ | if m=2,
T |lx—=z

h.(z): = 1
-2 ifm > 2;
(m —2)om,

we put h,(z) = +o0o. Let C(()l) be the space of all continuously differentiable compactly
supported real-valued functions on R™. We fix a compact set K C R™ and put
G=R"\ K, B=0K. With any ¢ € C(()l) we associate the function W = Wy on
K defined by

We(z) = /Ggrad p(z) - grad h,(z) d\,(z), 2z € K.

It is not difficult to verify that Wy is continuous in K and harmonic in K°; besides,
W depends only on the restriction ¢|p of ¢ € C((]l) to B (cf. §2 in [9]). Denote by

CV(B): = {ylz; ¢ €CM}

the vectorspace (over the reals) of all restrictions to B of functions in Cél) and let
C(K) be the vectorspace of all finite continuous real-valued functions in K; then
W gives rise to a linear operator acting from C™V)(B) to C(K). In connection with
boundary value problems it is natural to inquire about conditions on K guaranteeing
the continuity of the operator W with respect to the topologies of uniform conver-
gence in CV(B) and in C(K) (compare [3], [15], [8], [9]). For simplicity, we will
always assume that K is massive in the sense that

(1) Am(Br(z)NK) >0 foreach ze€ K, r>0,
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which does not cause any lack of generality (cf.the observation on p.27 in [9]).
Geometric conditions, which enable us to extend W to a bounded linear operator
from C(B) D C(B) to C(K) (equipped with the sup-norm), can be conveniently
described in terms of the so-called essential boundary d. K = B, defined by

B.: = {x € R™; limsup Ap, (B (z) N K)r™™ > 0,limsup Ay, (Br(z) N G)r™™ > 0}
r\,0 7\,0

(cf.[4]). For any z € R™ and 6 € 9B1(0) consider the half-line
H.(0): ={z+16; t >0}
and denote by n(z,6) (0 < n(z,0) < 4+o00) the total number of points in
H,()N Be.
It appears that, for fixed z € R™, the function
0 — n(z,0)

is Ap—1-measurable on 9B1(0) so that we may introduce the integral

o(z): = / n(z,0) D1 (6)

Om
0B1(0)

(compare §2 in [9], Lemma 3 in [11] and [4]). With this notation

(2) sup v(z) < +o0
zEB
is a necessary and sufficient condition guaranteeing that for any uniformly convergent
(on B) sequence ¢, € CV(B), the correspondig sequence W,, € C(K) is uniformly
convergent on K (which is equivalent to continuous extendability of W, defined so
far only on C(Y(B), to a bounded linear operator acting from C(B) > CY(B) to
C(K), where C(B) and C(K) are equipped with the usual maximum norm). In what
follows we always assume (2), which implies that

sup v(z) < o0
z€R™

(cf. Theorem 2.16 in [9]) and guarantees the existence of a well-defined density

i Am(Br(2) N K)
drc(2): *Th{% A (Br(2))
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for any z € R™ (cf.Lemma 2.1 in [9]). For any f € C(B) the corresponding
W f € C(K) is harmonic in K° and admits an integral representation reminding one
of the classical double layer potential with momentum density f. For this purpose
let us recall that a unit vector n € 9B;(0) is termed the exterior normal of K at
y € R™ in the sense of Federer provided

1{%74*”1%({:6 €B(y)NK; (x—y)-n>0}) =0,

lim " An({z € Br(y) NG; (x—y)-n<0})=0.

(3)

For any fixed y € R™ there exists at most one vector n € 9B;1(0) with the property
(3) and it will be denoted by n® (y) = n provided it is available; if there is no such
n € 0B1(0) with (3), then we put nf(y) = 0 (€ R™). The vector-valued function
y +— n(y) is Borel measurable and

B=0K: ={yeR"; [n"(y)| > 0}
is a Borel set which is termed the reduced boundary of K (cf. [6]). Clearly,
Bc{yeR™; dx(y) = i} C B.
and under our assumption (2) we have
Am—1(Be) < 400

and
Am-1(Be \ B) =0

(cf. Section 4.5 in [5], 5.6 in [17] and 2.12 in [9]). If f € C(B), then W[ can be
represented by

da(2)f() + / F)n" () - gradha(y) dhm 1(y) for z € B

W) =
/f(y)nK(y) -gradh.(y) dAm—1(y) for z € K°
B

where, of course, dg(z) = 1 — dk(z) is the density of G = R™ \ K at z (cf.[9],
Proposition 2.8 and Lemmas 2.9, 2.15).

For a € R we denote by W the operator on C(B) sending f € C(B) to W*f €
C(B) attaining the value W f(y): = W f(y)—af(y) at any y € B. Given a boundary
condition g € C(B) then an attempt to solve the corresponding Dirichlet problem for
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K° (at least in the case B C K°) in the form of a W f with an unknown f € C(B)
leads to the equation

(4) (I +W)f =y,

where I denotes the identity operator on C(B).
The space C'(B) dual to C(B) can be identified with the space of all finite signed
Borel measures with support contained in B. For any v € C’'(B) the potential

(5) Un(y) = /B hy(2) dv(z), y € G

represents a harmonic function in G whose weak normal derivative can be properly
interpreted (cf.§1 in [9], [15]). Given a p € C'(B) then an attempt to solve the
corresponding Neumann problem for G (with the Neumann boundary condition given
by 1) in the form of a potential (5) with an unknown v € C’(B) leads to the equation

(6) (aI + WYy =p

which is dual to (4).

Let us agree to denote by G the space of all compact linear operators acting on
C(B). If p is a norm on C(B) and T is a bounded linear operator acting on C(B)
then its norm p(T) is defined in the usual way and the p-essential norm w,T is given
by

wpyT': = inf{p(T - Q); Q € G}.

In connection with the applicability of the Fredholm-Radon theory to the pair of dual
equations (4), (6) it is important to have estimates of the essential spectral radius
of the operator We. According to the theorem of Gohberg and Markus (cf. [7]), this
radius coincides with

iI;f wp W%,

where p ranges over all equivalent norms on C(B) inducing the topology of uniform
convergence in C(B). Let us recall that simple examples are known showing that for
the usual maximum norm p;, where p1(f) = sup{|f(y)|;v € B}, f € C(B), it may
occur that

wp, W > |a| forall a #0,

while
1
wpWz < 1

for a suitable norm p on C(B) topologically equivalent to p; (cf.[13], [1]; note that
2W2 is the so-called Neumann operator of the arithmetical mean as mentioned on
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p-72 in [9]). Accordingly, it is useful to investigate estimates of w,W* for general
norms p topologically equivalent to p;, which is the subject of the present paper.
Given such a norm p on C(B) inducing the topology of uniform convergence in C(B)
we put

(7) p(y) = sup{g(y); g € C(B), p(g) <1}

for y € B. The function
p:y— DY)
defined by (7) is lower-semicontinuous on B.

Given a bounded non-negative lower-semicontinuous function ¥ on B we put for
z€R™, r>0and 6 € 9dB;(0)

(®) nf(2,0) = > ¥(€), &€ H.(0) N BN By(2),
13

the sum on the right-hand side of (8) counting, with the weight (&), all points £ in
BeN{z+00;0 < o<1} (0 < n¥(z,0) < +00). We shall see that, for fixed z € R™
and 7 > 0, the function 6 — n¥(z, ) is \,,_i-measurable on dB;(0), which justifies
the definition

1
) o (2) = = / n?(2,0) dn_1(6), z€R™, 0<r < oo,

Om
9B1(0)

(Observe that this quantity reduces to v(z) in the case r = oo and ¢ = 1.) We are
going to establish upper and lower estimates of w, W with help of the functions

y—vE(y), yeEB.

In particular, for suitable weighted norms p on C(B) these estimates permit to prove
the equality

D
wpW* = |1 — a| + inf sup v_r(y)’
r>0yeB P(y)

extending Theorem 4.1 in [9].

1. Lemma. Let p be a norm on C(B) inducing the topology of uniform conver-
gence and define the function p: B — R by (7). Then P is lower-semicontinuous on
B and there are constants 0 < k, < K, < oo such that

(10) by <P <K,
on B.
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Proof. The definition (7) shows that D is a (pointwise) supremum of a class of
continuous functions on B; hence p is lower-semicontinuous in B. Since the identity
operator acting from C(B) normed by p to C(B) normed by the maximum norm
p1 is bounded, there is a K, € (0,00) such that p < K, on B. Since also the
identity operator acting inversely from (C(B), p1) into (C(B),p) is bounded, there is
a ¢ € (0,400) such that the implication

9

(gec®). ol <= 0p(?) <1

is valid. This together with the definition of p shows that

ply) >

ol

for any y € B, so that (10) holds with k, = % O

2. Remark. As a consequence of our assumption (1) we have
Am—1(Br(y)NB) >0, Vye B, Vr>0.

This follows from the relative isoperimetric inequality concerning sets of locally finite
perimeter (cf. Section 4.5 in [5] and p. 50 in [9]).

3. Lemma. If is a non-negative A, _1-measurable function defined A, _1-a.e. on
B we denote by

~

P(y): = Am—1-essliminf ¢ (x)

r—y,xEB

the \,,_1-essential lower limit of ) at y € B which is defined as the least upper
bound of all v € R for which there is an r > 0 such that

(1) An1({z € Bo(y) N B; () < 7}) = 0.

Then the function ¥: y — QZ(y) is lower-semicontinuous on B and
Am-1({y € B: (y) <d()}) =0.

Proof. For the sake of completeness we include the following argument occur-
ring in [12] in connection with Lemma 8. Consider an arbitrary y € B and ¢ < @(y)
Then there are v € (c, @Z(y)] and r > 0 such that (11) holds. If z € BN B, /3(y) then
B,.2(2) C Br(y) and, consequently,

)\mfl({x € Br/?(z) n gv ")/(.’ﬂ) < 7}) = 0’
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which shows that @(z) > v > c¢. We have thus shown that, given ¢ < QZ(y),
the inequality ¢ < 1(z) holds for all z € B sufficiently close to y and the lower-
semicontinuity of ¢ at y is established. Admitting

Am—1({y € B; ¥(y) <¥(y)}) >0

we get, by Lusin’s theorem, that there is a compact set C' C {y € B; P(y) < @(y)}
with A\p,—1(C) > 0 such that the restriction ¢|¢ is continuous. There is a z € C such
that

(12) Am—1(Bo(z)NC) >0, VYo >0.

~

Since 1h(z) < (), there are y € (1(2),%(2)] and r > 0 such that

(13) Am—1({y € Br(2) N B; ¥(y) <~}) = 0.

Continuity of 1| guarantees the validity of the implication
Y€ Bo(2)NC = 9(y) <~v

for sufficiently small g € (0,r) which, in view of the inclusion B,(z)NC C B,(2) NB,
together with (12) contradicts (13). This completes the proof. O

4. Lemma. Ify > 0 is a lower-semicontinuous function on B, then @Z (defined as
in Lemma 3) satisfies 1) > 1 on B; moreover, 1) is the greatest lower-semicontinuous
magjorant of 1 on B coinciding with ¢ almost everywhere (A,,—1) on B.

Proof. Let 1/) be a lower-semicontinuous majorant of w coinciding with
almost everywhere (\,,—1) on B. We are going to verify that w w on B. Admit
that there is a y € B with ¢(y) < ¥(y) and fix a ¢ € R such that

~

(14) Dy) < c < P(y).

Since @Z is lower-semicontinuous, we have
z€B.(y)NB = 9(z) > ¢

for sufficiently small » > 0, whence

Am-1({z € Bo(y) N B; ¢(2) < ¢}) =0,

because 1) = ¢ almost everywhere (A,,_1) on B. We conclude that w( ) = ¢, which
contradicts (14). Letting 1) = 1) we get from Lemma 3 that w 1) almost everywhere
(Am—1) on B and the proof is complete. O
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5. Lemma. Let C;(B) denote the class of all non-negative functions in C(B) and
let CL(B) denote the class of all non-negative lower-semicontinuous functions on B.
Let f € C4+(B), ¢ € CJ_(B) and put ¢ = f + . Then ¢ = f + @Z In particular,
f = f for each f € C+(B).

Proof. Observe that f+ {b\ is a lower-semicontinuous majorant of ¢ on B such
that f + 1Z = ¢ holds \,,_1-a.e.in B. By Lemma 4 we get ¢ > f + ’(Z)\ We see that
p—f¢€ CL(B) is a majorant of ¢ on B coinciding with 1) almost everywhere (A1)
on B. Using Lemma 4 again we arrive at the inequality g— f < @Z, so that g = f +@Z.
Taking ¢ = 0 we get f = f, Vf e Cy(B). O

6. Lemma. Let p be a norm on C(B) inducing the topology of uniform conver-
gence in C(B) such that the implication

(15) fl<lgl = p(f)<pl9)
holds for any f,g € C(B). Then we have
(16) p(h) = sup{p(f); f€C(B), |[fI<h}

whenever h € C4(B), and (16) can be used to define p(h) for any h € CL(B).
Having extended p from C.(B) to CJ_ (B) in this way we get for any o € [0, +00) and
¥; €CL(B) (1=0,1,2)

(17) p(atbo) = ap(tho),

(18) (Y1 + ¥2) < p(Y1) + p(2).

Proof. The implication (15) = (16) is evident and if (15) is used to define p(h)
for any h € CL(B) then (17) obviously holds for « € [0, +00) and ¥ € CL(B). It is
easy to verify (18) assuming first that 11,19 € CI_ (B) satisfy

(19) Y1+ Y2 >0 on B.
We then have

p(¥1 +¢2) = sup{p(f); f € C(B),[f ()| <¥r(y) +¢a(y), Vy € B}.

Choose non-decreasing sequences {gj'}7°; in C(B) such that g7 " 1; as n — oo
(j = 1,2). Fix f € C(B) such that |f| < 91 + 2. If the compact sets
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K, ={x € B;|f(x)| 2 g} (x) + g§(x)} are nonempty then there is an =z € (K,
+

and therefore 11 (x) + ¥a(z) < |f(x)], which is a contradiction. So, we have

[fl <91 +95
for all sufficiently large n € N. Defining for such n

95

L ( )
we get
95
i| < <g; ‘:1a2a + =/
£l mgf—i—gg g7 (U ), fitfa=f
whence

p(f) < p(f1) +p(f2) < p(¥1) + p(¥2).

Since f € C(B) with |f| < 1 4 %2 has been chosen arbitrarily, we get (18). It
remains to observe that the additional assumption (19) can be omitted. Denote by
1p € C(B) the constant function attaining the value 1 at any point in B. For any
(VNS CI_(B) and € > 0 we then have

p(¥) < p(+€lp) < p(v) +ep(1p),

so that
p(+elp) = p(¥) asel0.

Consequently, for any v, € CL(B) (j =1,2) we get
(1 +v2) < p(v1) + p(v2 +elp) — p(¥1) +p(2) ase |0

and (18) follows. O

7. Lemma. Let v > 0 be a bounded lower-semicontinuous function on B and
define for fixed z € R™ and r € (0, oc] the function n¥(z, §) of the variable§ € 0B (0)
by (8). This function is A, —1-integrable in 0B;(0) and

/ n¥(z,0) d\m_1(0) = / () |nf (z) - grad b (x)| d A1 (2).
B4 (0) BNB;(z)

The function v¥: z +— v¥(z) defined by (9) is bounded and lower-semicontinuous on
R™.

Proof. Thisis a consequence of Lemma 3 in [12]. O
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8. Lemma. If
(z,9) — gy(@)

is a continuous (real-valued) function on B x B then, for each f € C(B),

W(fgy)(w): = f(W)gy(y)da(y) + /B F(@)gy(2)n” (z) - grad hy(z) A1 (x)

represents a continuous function of the variable y € B.

Proof. As mentioned above, our assumption (2) guarantees that the operator
W sending each f € C(B) to

(20) Wif:y— fly /f ) - grad hy(z) dAm—1(z), y€B

is continuous on C(B) with respect to the topology of the uniform convergence
(cf. Proposition 2.8 and Lemmas 2.9, 2.15 in [9]). Let now {y,}32,; be an arbi-
trary convergent sequence of points in B, lim Yn = Yo. Then, for each f € C(B),

the sequence of functions {fgy, }n2; converges unlformly on B to fgy, € C(B) and
{W(fgy,)}nr, converges uniforrnly on B to W(fgy,) as n — oo, whence

Jim W(fgy,)(yn) = W(f9y0)(%0)
and the continuity of y — W(fg,)(y) is established. O
9. Lemma. Let v > 0 be a bounded lower-semicontinuous function on B and let

(z,y) = gy(z)

be a continuous function on B x B such that 0 < g,(z) < 1. Then

FY ) = b0, 0)|de) = 5] + [ 0@, @In® (@) - grad iy (@] A1 (0)

is a lower-semicontinuous function of the variable y on B.

Proof. It follows from Lemma 8 that

HJ(y): = (W )(fgy)( ) = f()gy(v)lde(y) — 3]
/f x)gy(z (w) -grad hy(x) dApm—1(x)
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is a continuous function of the variable y on B for each f € C(B). It is therefore
sufficient to verify that F, gw is the (pointwise) supremum of the class

Fo={H]; feC(B), |fl <} CC(B).

Clearly, any function in F is majorized by F ;/’ . Fix now an arbitrary £ € B and
€ > 0. Since

sup { [ 1@t @) - gradhete) i 1@ S € CB), 171 < v st f € B {5}}
B

- /B (@) ge (@)™ (2) - grad he(z)] dAps (2)

there is an fo € C(B) such that |fo| < ¢, fo = 0 on B,(£) N B for sufficiently small
o >0 and

/ Fol@)ge (@)X (z) - grad he(x) dAm_1 ()
(21) B
> /Bz/)(x)gf(x)\nK(x) - grad he (z)] dApm—1(z) —e.

Since

/B ()ge (1) (2) - grad he ()] dAm 1 (2) < 0% (€) < oo,

we can assume that p > 0 has been chosen small enough to have

(22) / w(x)gg(w)\nK(x) -grad he (z)| dAm—1(z) <e.
BNB,(€)

Consider first the case when

¥(€)ge(§)lda (€) — 51 > 0.

Clearly, we can assume that 0 < ¢ < 9(&). Choose f1 € C(B) with spt f1 C B,(§)NB
such that |fi| < ¢ and

[F1(O > ¥(&) —e, sign f1(§) = sign[da(€) — 3.
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Letting f = fo + f1 we have |f| < 9,

HJ () = f1(€)ge(9)lda (&) — 5] + / Fi(2)ge(z)n™ (2) - grad he(a) dAm-1(2)

Bo(§)nB

4 / Fo(@)ge (@) (z) - grad he(z) dAm 1 (2)
B\B,(§)
> () ge(€)|da(€) — L] — ¢

- / wgg\nK -grad he| dAm—1 +/ wgg\nK -grad he| dA\pm—1 — €
BAB,(©) o

> (&) ge(§)|da(€) — ;| +/BQ/Jg£\nK -grad he| dApm—1 — 3¢

by (21), (22). The inequality

with arbitrarily small € > 0 shows that
(23) F)(€) = sup{h(§); h e F}.

If
$(€)ge(E)lda(€) — 51 =0,
then (21) yields
HP(€) > FJ(€) —«¢

and (23) holds again. Since £ € B was arbitrary, the proof is complete. O

10. Corollary. Let v > 0 be a bounded lower-semicontinuous fuction on B,
r € (0,00] and define

Viy): =v(y)ldaly) — 3 +vl(y), yeB.

Then
VYiy = VEiy)
is lower-semicontinuous on B.
Proof. ©Let h™ > 0 be a nondecreasing sequence of continuous functions on

[0, 00) such that

1 fortel0,r),
lim A" (t) =

0 elsewhere on [0, 00)
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and put
grw) =h"(lz —y)), zyeB.
Then

Fy(y) / v()lda(y) — 5| + / Y(@)n" (2) - grad hy(x)] dAm-1(z) = V¥ (3)
BNB,(y)

as n — o0o. Since the functions F ;ﬂ are all lower-semicontinuous on B, the same
holds of V,%. O

11. Definition. Let p be a norm on C(B) with the property (15), inducing the
topology of uniform convergence; extend p to CI_ (B) by (16) and for any h € Cl (B)
put

B(h): =p(h), heCL(B),

where 7 is defined by Lemma 3.

Combining this definition with Lemmas 5 and 6 we arrive at

12. Remark. If ¢ = f+ 4, where f € C4(B) and ¢ € CL(B), then
p(¢) < p(f) + p(¥). In particular, p(f) = p(f) whenever f € C;(B).

13. Theorem. Let p be a norm on C(B) with (15) inducing the topology of
uniform convergence, define p: y +— p(y) by (7) and for r € (0, 00) put

'ng y’_”)g(y)?
VP y =25 —da(y)+08(y), yeB.

Then for each o € R

(24) wp(W*) <o — 5]+ inf ploy) = | — 5[ + inf p(V)7)

Proof. Fix r > 0 and construct a function g" on R™ satisfying the Lipschitz

condition

o' 2? € R™ = |g"(2") — g7 (a%)| < Hz" — 27|

r

and such that
0<g" <1, g"(B(0)) = {1}, g"(R™ \ B2(0)) = {0}.

Put
gy(r) =g"(x —y), =z,yecR"
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and define an operator V' on C(B) sending each f € C(B) to V f given by
VIG) = [ f@L - g,@n" (@) - gradh, (@) dhns @),y B
B

Elementary reasoning (described in detail in the proof of Theorem 4.1 in [9], pp. 104—
111) shows that V is a compact linear operator acting in C(B). We are going to
estimate p(W® — V). Let f € C(B), p(f) < 1. Consequently, |f| < p on B. By
Proposition 2.8 and Lemmas 2.9 and 2.15 in [9] we have

(We—V) () = £(9)[de(y)—a] + /B F(2)gy (@)n” (z) grad by (z) dAp_s (2), 3 € B.
Hence
(W = V) F@)] <1 — o) F @) + Pl () — 3]
+ / P(2)g" (x — y)In (z) - grad by (z)| dAm_1(2)
B .
— (5~ ) f ()] + FP ().

where Fg’ is the lower-semicontinuous function on B defined in Lemma 9. Since
p(f) < 1 implies p(|f]) < 1, in view of Remark 12 we get

pl(W* =V)f1 < |5 —alp(|f]) + P(F}) < |5 — af + D(FY).

Observe that F? < V., where V. is a lower-semicontinuous function on B coinciding

with v5 on B, so that p(VL) = p(vh.). Since r > 0 was arbitrary, we arrive at

p(W® =V) <15 —al +5(VE),
e 1 _ s (VP — |1 fof (P
wp(W?) < g —al + mf p(V3,) = |3 — o + inf plvz,)
and (24) is established. O

14. Corollary. Let ¢ > 0 be a bounded lower-semicontinuous function on B such
that

(25) q(y) = Apm—1-essliminf ¢(z), Vye€ B.
rEB,x—y

For f € C(B) define
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Then p, is a norm on C(B) inducing the topology of uniform convergence and for
each a € R we have

q
wp, W < | — %\ + inf sup vr(y).
>0, cp q(y)

Proof. Let p, correspond to p, in the sense of Lemma 1. It is easy to see from
(26) that p, = ¢ on B. In view of Theorem 13 it suffices to verify

(27) Pq(v}) = sup —

for any r > 0. Recalling Definition 11 we get

Bal) = suplpa(f); 1 € CB), 7] 07} = sup o > sup <0

In order to obtain the desired inequality

04 q
(28) Sup U’l‘(y) g Sup U’l‘(x)

veB Ay)  Lep a(@)’

consider an arbitrary y € B with 0%(y) > 0 and choose € € (0,2%(y)). There is a
o > 0 such that

vi(xz) 20l (y) —e for Ay—1-a.e. z € Bo(y) N B.
Our assumption (25) guarantees that
Am-1({z € By(y) N B; q(y) +¢ > q(z)}) >0

(for otherwise we would have A,_i-essliminfq(z) > q(y) + ¢ > q(y)). As
rEB,x—y

Am-1(B,(y) N B) > 0 (cf.Remark 2), there are z € B,(y) N B for which we
have, simultaneously,

so that .
_ q q
W) e _ o) o)
qy) +e ~ qlx) 5 a@)
Making € | 0 we get (28), which completes the proof. O
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15. Remark. Since ¢ is lower-semicontinuous, we have

Am—1-essliminf ¢(z) > liminf ¢(x) > q(y),
r€EB,x—y r€EB,x—y

which combined with (25) yields

q(y) = Am—1-essliminf g(z) = liminf ¢(z), ye€ B.
rEB,x—y r€EB,x—y

16. Lemma. Let p be a norm defining the topology of uniform convergence in
C(B) and define p by (7). Suppose that ¢ > 0 is a bounded lower-semicontinuous
function on B such that for each p € C'(B),

(29) Sup{/deu; fec(B), p(f) < 1} >/Bqd\u|,

where |u| is the indefinite total variation of u. Then

(30) wp,W* = inf sup [|3 — o|q(y) + vf(y)]/ P(y) for a € R.
r>0 yeB
If
(31) py) = liminf p(x) for eachy € B,
zeB\{y},z—y
then
(32) wpW® = inf sup [|5 — alg(y) + v (y)]/ B(y).

r>0 yeB

Proof. Fix an ¢ > 0 and denote by (f,v) (= fodV) the pairing be-
tween f €C(B) and v € C'(B). As explained in [9], pp.107-108, there are
©1,---,pn €C(B) and vy, ...,v, € C'(B) such that

D: = {y € B; g:lwcl(y) > 0}

is finite and the finite-dimensional operator V' sending f € C(B) to

n

V= Z<f7 Vk)@k

k=1
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satisfies
p(W* =V) < wp, W + €.

For any y € B denote by ¢, € C'(B) the Dirac measure concentrated at y and by
Ay € C'(B) the representing measure of the functional

Fre Wi = [ e
According to (20)
(33) d\, () = dg(y) Ao, (x) + n'(2) - grad by (z) d\p—1 ().
Observing that

p(g) > sup lg(y)|/p(y), Vg€ C(B),

we get

(34)  pW*=V)=  sup  p((W*=V)f)
(N1 feC(B)

> sup sup - ]/fd( aayzsmy)uk)‘.
k=1

p(f)S1yeB\D ply

Now we decompose each vy, into a continuous part v} (not charging singletons) and
a finite combination of the Dirac measures; we thus have v, = u,i + 1/,3 and

VA(M) = vi(M \ D), 12(M) = (M 1 D)

for each Borel set M. By virtue of (34) we obtain

/ fd(Ay ~ab, - ;wk@)%) ‘

n

Ay = ady = > o)

k=1

wp(W*)+e> sup — sup
yeB\D p(y) p(f)<1

1
sup / qd
yeB\D p( )

WV

1 / - )
= sup ——| [ qd|A on(y /qd sok(y)Vl
yGB\Dp(y)|: B Z B ; g

1
> sup _—/qu —ad, — wr(y)v
yeB\D py) JB Y Y ; ( ) F

ol
sup —— qgd|h, — ad
yeB\D P(y){ BNB,(y) Y y‘

- 3 malou )] supa(e) 1 1 B ()
k=1 2€B

WV
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for any r > 0. Since ‘I/]H does not charge singletons, we have

lifr& [vi|(B,(y) N B) =0 uniformly with respect to y € B.
T
We can thus choose an 79 > 0 small enough to ensure the validity of the implication

0<r<ro=>Y max|p|(B)supq(B)|vi|(B.(y) N B) <&, ¥y € B.
k=1

Hence we get

1 1
W) +2e> s oo [ qdly—ad) > swp =gk - al + )]

yEB\D p(y) BAB.(4) yeB\D ﬁ(y)

for any r € (0,79) by Lemma 3 in [12]. Recall that
H: = {z€B; qz) £ a(x)} UD

has vanishing \,,_i-measure. By Remark 2 we get for each z € B a sequence
xn € B\ H such that

~

zn, — ¢ and P(x,) — plr) as n — oo.

Noting that the functions vq = v (cf. Remark 4 in [12]) and § are lower-semicon-
tinuous, we obtain

L o)t - al +vi(z imin
%[q(l‘)b |+ vi( )] < lnﬂoofﬁ(xn)

[q(zn)|5 — o] + vi(zn)] < wpW + 2e.

We have thus shown

1 N ~
wpW® + 2¢ > sup =— [q(2)|5 — o + vi(z)]
r€B P .18)

for any r € (0,7¢), which proves (30), because ¢ > 0 was arbitrary. Assuming (31)
and noting that D is finite we get for any « € B a sequence xz,, € B\ D such that

Zn — x and p(x,) — p(z) as n — oo.

Hence
1 1 q imi 1
1_ <1 f 1_ a S wpW + 2¢,
p(x) la@)l3 = al + ()] oo D(2n) [9(zn)l5 = o] + vi(zn)] < wpW* +2¢
so that 1
sup — [q(@)|: — a| + vi(z)] < W, W + 2¢
o5 D(x) [ 2 ] P
and (32) follows. O
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17. Lemma. Let u be a finite signed Borel measure with support in B. Let
g > 0 be a bounded lower-semicontinuous function on B and define the norm p, on
C(B) by (26). Then

sup{/deu; f€C(B), pa(f) < 1} z/Bqd\ul-

Proof. If f € C(B), then py(f) < 1 means that |f| < ¢ on B, so that

/deu</3qd\u| and sup{/deu; f€C(B), p(f) < 1} </Bqd\u|-

In order to prove the converse inequality we fix an arbitrary € > 0 and consider a
nondecreasing sequence f, € C4(B) such that f, /' ¢ as n — oco. Since

i [ gl = [ adl

we can fix n € N large enough to have

(35) /B fudlul > /B gdl| —e.

Consider the Hahn decomposition (cf. [14])
B=DB,UB_
corresponding to the signed measure p formed by disjoint Borel sets B4, B_ such

that
u(By 0V M) = |ul(By N M), p(B— 0\ M) = —|u|(B— 0 M)

for each Borel set M. Choose compact sets Q4 C By and Q— C B_ such that
(36) [ adiul <=,
s
where S = (B4 \ Q+) U (B_ \ Q-). Construct a ¢ € C(B) satisfying the conditions

e(Qy) = {1}, p(Q-) ={-1}, |¢l <1

and put f = ¢f,, so that
fec(B), p(f) <1.
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We then have

/chmz/Q+ fndlu+/Q_ fudlil+ [ taan= [ godu= [ galuls [ o d

Noting that
‘/fndm] </qd|m
S S

’/wh@4</qw
S S

we conclude from (36), (35) that

/f@>/qmwﬂa
B B

Since € > 0 was arbitrary, we arrive at

and

sup{/deu; fecs), pq<f)<1} >/Bqdm|,

which completes the proof. O

18. Theorem. Let q > 0 be a bounded lower-semicontinuous function on B
satisfying (25) and define the norm p, on C(B) by (26). Then p, induces the topology
of uniform convergence in C(B) and, for each « € R,

q
wp, W = | — 1| + inf sup 'Ur(y).
q r>0ye§ q(y)

Proof. This follows from Corollary 14 and Lemma 16 combined with (27)
together with Lemma 17. O

19. Remark. Theorem 18 shows that, for the norm p, defined on C(B) by
(26), the optimal choice of the parameter « in the equation (4) is a = % (compare
also 4.2 in [9]), which leads to the Neumann operator 7 = 2IW'/2. Simple examples
of domains “built of bricks” in R® demonstrate that w, 7 > 1 may occur for the
maximum norm p; while, as shown in [1], [13], for such domains an elementary
construction of another norm p topologically equivalent to p; such that w,7 < 1 is

always possible.
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