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ESSENTIAL NORMS OF THE NEUMANN OPERATOR

OF THE ARITHMETICAL MEAN

Josef Král, Dagmar Medková, Praha

(Received October 6, 1999)

Abstract. Let K ⊂ �
m (m � 2) be a compact set; assume that each ball centered on the

boundary B of K meets K in a set of positive Lebesgue measure. Let C(1)0 be the class of all
continuously differentiable real-valued functions with compact support in �m and denote

by σm the area of the unit sphere in �m . With each ϕ ∈ C(1)0 we associate the function

WKϕ(z) =
1

σm

∫

�m\K

gradϕ(x) · z − x

|z − x|m dx

of the variable z ∈ K (which is continuous in K and harmonic in K \ B). WKϕ depends
only on the restriction ϕ|B of ϕ to the boundary B of K. This gives rise to a linear operator

WK acting from the space C(1)(B) = {ϕ|B ;ϕ ∈ C(1)0 } to the space C(B) of all continuous
functions on B. The operator TK sending each f ∈ C(1)(B) to TKf = 2WKf − f ∈ C(B)
is called the Neumann operator of the arithmetical mean; it plays a significant role in
connection with boundary value problems for harmonic functions. If p is a norm on C(B) ⊃
C(1)(B) inducing the topology of uniform convergence and G is the space of all compact
linear operators acting on C(B), then the associated p-essential norm of TK is given by

ωpTK = inf
Q∈G

sup
{
p[(TK − Q)f ]; f ∈ C(1)(B), p(f) � 1

}
.

In the present paper estimates (from above and from below) of ωpTK are obtained resulting
in precise evaluation of ωpTK in geometric terms connected only with K.

Keywords: double layer potential, Neumann’s operator of the arithmetical mean, essen-
tial norm
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Notation and introductory comments

In what follows �m will be the Euclidean space of dimensionm � 2. The Euclidean
norm of a vector x = (x1, . . . , xm) ∈ �

m will be denoted by |x|. If M ⊂ �
m , then

the symbols M , M◦ and ∂M will denote the closure, the interior and the boundary
of M , respectively. Br(z) : = {x ∈ �m ; |x− z| < r} is the open ball of radius r > 0
centered at z ∈ �

m . The symbol λk will denote the outer k-dimensional Hausdorff
measure with the usual normalization (so that λm coincides with the outer Lebesgue
measure in �m ). We put

σm : = λm−1(∂B1(0)) =
2�m/2

Γ(m/2)
,

where Γ is the Euler gamma function. For fixed z ∈ �m the symbol hz will denote the
fundamental harmonic function with a pole at z, whose values at any x ∈ �m \ {z}
are given by

hz(x) : =





1
2�
ln

1
|x− z| if m = 2,

1
(m− 2)σm

|x− z|2−m if m > 2;

we put hz(z) = +∞. Let C(1)0 be the space of all continuously differentiable compactly
supported real-valued functions on �m . We fix a compact set K ⊂ �

m and put
G = �m \K, B = ∂K. With any ϕ ∈ C(1)0 we associate the function WKϕ ≡Wϕ on
K defined by

Wϕ(z) =
∫

G

gradϕ(x) · gradhz(x) dλm(x), z ∈ K.

It is not difficult to verify that Wϕ is continuous in K and harmonic in K◦; besides,
Wϕ depends only on the restriction ϕ|B of ϕ ∈ C(1)0 to B (cf. §2 in [9]). Denote by

C(1)(B) : = {ϕ|B; ϕ ∈ C(1)0 }

the vectorspace (over the reals) of all restrictions to B of functions in C(1)0 and let
C(K) be the vectorspace of all finite continuous real-valued functions in K; then
W gives rise to a linear operator acting from C(1)(B) to C(K). In connection with
boundary value problems it is natural to inquire about conditions on K guaranteeing
the continuity of the operator W with respect to the topologies of uniform conver-
gence in C(1)(B) and in C(K) (compare [3], [15], [8], [9]). For simplicity, we will
always assume that K is massive in the sense that

(1) λm(Br(z) ∩K) > 0 for each z ∈ K, r > 0,
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which does not cause any lack of generality (cf. the observation on p. 27 in [9]).
Geometric conditions, which enable us to extend W to a bounded linear operator
from C(B) ⊃ C(1)(B) to C(K) (equipped with the sup-norm), can be conveniently
described in terms of the so-called essential boundary ∂eK ≡ Be defined by

Be : =
{
x ∈ �m ; lim sup

r↘0
λm(Br(x) ∩K)r−m > 0, lim sup

r↘0
λm(Br(x) ∩G)r−m > 0

}

(cf. [4]). For any z ∈ �m and θ ∈ ∂B1(0) consider the half-line

Hz(θ) : = {z + tθ; t > 0}

and denote by n(z, θ) (0 � n(z, θ) � +∞) the total number of points in

Hz(θ) ∩Be.

It appears that, for fixed z ∈ �m , the function

θ �→ n(z, θ)

is λm−1-measurable on ∂B1(0) so that we may introduce the integral

v(z) : =
1
σm

∫

∂B1(0)

n(z, θ) dλm−1(θ)

(compare §2 in [9], Lemma 3 in [11] and [4]). With this notation

(2) sup
z∈B

v(z) < +∞

is a necessary and sufficient condition guaranteeing that for any uniformly convergent
(on B) sequence ϕn ∈ C(1)(B), the correspondig sequence Wϕn ∈ C(K) is uniformly
convergent on K (which is equivalent to continuous extendability of W , defined so
far only on C(1)(B), to a bounded linear operator acting from C(B) ⊃ C(1)(B) to
C(K), where C(B) and C(K) are equipped with the usual maximum norm). In what
follows we always assume (2), which implies that

sup
z∈�m

v(z) < +∞

(cf. Theorem 2.16 in [9]) and guarantees the existence of a well-defined density

dK(z) : = lim
r↘0

λm(Br(z) ∩K)
λm(Br(z))

671



for any z ∈ �
m (cf. Lemma 2.1 in [9]). For any f ∈ C(B) the corresponding

Wf ∈ C(K) is harmonic in K◦ and admits an integral representation reminding one
of the classical double layer potential with momentum density f . For this purpose
let us recall that a unit vector n ∈ ∂B1(0) is termed the exterior normal of K at
y ∈ �m in the sense of Federer provided

(3)
lim
r↘0

r−mλm({x ∈ Br(y) ∩K; (x− y) · n > 0}) = 0,

lim
r↘0

r−mλm({x ∈ Br(y) ∩G; (x− y) · n < 0}) = 0.

For any fixed y ∈ �m there exists at most one vector n ∈ ∂B1(0) with the property
(3) and it will be denoted by nK(y) ≡ n provided it is available; if there is no such
n ∈ ∂B1(0) with (3), then we put nK(y) = 0 (∈ �

m ). The vector-valued function
y �→ nK(y) is Borel measurable and

B̂ ≡ ∂̂K : = {y ∈ �m ; |nK(y)| > 0}

is a Borel set which is termed the reduced boundary of K (cf. [6]). Clearly,

B̂ ⊂ {y ∈ �m ; dK(y) = 1
2} ⊂ Be

and under our assumption (2) we have

λm−1(Be) < +∞

and
λm−1(Be \ B̂) = 0

(cf. Section 4.5 in [5], 5.6 in [17] and 2.12 in [9]). If f ∈ C(B), then Wf can be
represented by

Wf(z) =





dG(z)f(z) +
∫

B̂

f(y)nK(y) · gradhz(y) dλm−1(y) for z ∈ B

∫

B̂

f(y)nK(y) · gradhz(y) dλm−1(y) for z ∈ K◦

where, of course, dG(z) = 1 − dK(z) is the density of G = �
m \ K at z (cf. [9],

Proposition 2.8 and Lemmas 2.9, 2.15).
For α ∈ � we denote by Wα the operator on C(B) sending f ∈ C(B) to Wαf ∈

C(B) attaining the valueWαf(y) : =Wf(y)−αf(y) at any y ∈ B. Given a boundary
condition g ∈ C(B) then an attempt to solve the corresponding Dirichlet problem for
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K◦ (at least in the case B ⊂ K◦) in the form of a Wf with an unknown f ∈ C(B)
leads to the equation

(4)
(
αI +Wα)f = g,

where I denotes the identity operator on C(B).
The space C′(B) dual to C(B) can be identified with the space of all finite signed

Borel measures with support contained in B. For any ν ∈ C′(B) the potential

(5) Uν(y) =
∫

B

hy(x) dν(x), y ∈ G

represents a harmonic function in G whose weak normal derivative can be properly
interpreted (cf. §1 in [9], [15]). Given a µ ∈ C′(B) then an attempt to solve the
corresponding Neumann problem forG (with the Neumann boundary condition given
by µ) in the form of a potential (5) with an unknown ν ∈ C′(B) leads to the equation

(6) (αI +Wα)′ν = µ

which is dual to (4).
Let us agree to denote by G the space of all compact linear operators acting on

C(B). If p is a norm on C(B) and T is a bounded linear operator acting on C(B)
then its norm p(T ) is defined in the usual way and the p-essential norm ωpT is given
by

ωpT : = inf{p(T −Q); Q ∈ G}.

In connection with the applicability of the Fredholm-Radon theory to the pair of dual
equations (4), (6) it is important to have estimates of the essential spectral radius
of the operatorWα. According to the theorem of Gohberg and Markus (cf. [7]), this
radius coincides with

inf
p
ωpW

α,

where p ranges over all equivalent norms on C(B) inducing the topology of uniform
convergence in C(B). Let us recall that simple examples are known showing that for
the usual maximum norm p1, where p1(f) = sup{|f(y)|; y ∈ B}, f ∈ C(B), it may
occur that

ωp1W
α > |α| for all α 	= 0,

while
ωpW

1
2 < 1

2

for a suitable norm p on C(B) topologically equivalent to p1 (cf. [13], [1]; note that
2W

1
2 is the so-called Neumann operator of the arithmetical mean as mentioned on
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p. 72 in [9]). Accordingly, it is useful to investigate estimates of ωpWα for general
norms p topologically equivalent to p1, which is the subject of the present paper.
Given such a norm p on C(B) inducing the topology of uniform convergence in C(B)
we put

(7) p(y) = sup{g(y); g ∈ C(B), p(g) � 1}

for y ∈ B. The function
p : y �→ p(y)

defined by (7) is lower-semicontinuous on B.
Given a bounded non-negative lower-semicontinuous function ψ on B we put for

z ∈ �m , r > 0 and θ ∈ ∂B1(0)

(8) nψr (z, θ) =
∑

ξ

ψ(ξ), ξ ∈ Hz(θ) ∩Be ∩Br(z),

the sum on the right-hand side of (8) counting, with the weight ψ(ξ), all points ξ in
Be ∩ {z + �θ; 0 < � < r} (0 � nψr (z, θ) � +∞). We shall see that, for fixed z ∈ �m
and r > 0, the function θ �→ nψr (z, θ) is λm−1-measurable on ∂B1(0), which justifies
the definition

(9) vψr (z) =
1
σm

∫

∂B1(0)

nψr (z, θ) dλm−1(θ), z ∈ �m , 0 < r � ∞.

(Observe that this quantity reduces to v(z) in the case r = ∞ and ψ ≡ 1.) We are
going to establish upper and lower estimates of ωpWα with help of the functions

y �→ vpr (y), y ∈ B.

In particular, for suitable weighted norms p on C(B) these estimates permit to prove
the equality

ωpW
α = |12 − α|+ inf

r>0
sup
y∈B

vpr (y)
p(y)

,

extending Theorem 4.1 in [9].

1. Lemma. Let p be a norm on C(B) inducing the topology of uniform conver-
gence and define the function p : B → � by (7). Then p is lower-semicontinuous on
B and there are constants 0 < kp � Kp <∞ such that

(10) kp � p � Kp

on B.
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�����. The definition (7) shows that p is a (pointwise) supremum of a class of
continuous functions on B; hence p is lower-semicontinuous in B. Since the identity
operator acting from C(B) normed by p to C(B) normed by the maximum norm
p1 is bounded, there is a Kp ∈ (0,∞) such that p � Kp on B. Since also the
identity operator acting inversely from (C(B), p1) into (C(B), p) is bounded, there is
a c ∈ (0,+∞) such that the implication

(g ∈ C(B), |g| � 1) =⇒ p
(g
c

)
� 1

is valid. This together with the definition of p shows that

p(y) � 1
c

for any y ∈ B, so that (10) holds with kp = 1
c . �

�� ���	�
. As a consequence of our assumption (1) we have

λm−1(Br(y) ∩ B̂) > 0, ∀y ∈ B, ∀r > 0.

This follows from the relative isoperimetric inequality concerning sets of locally finite
perimeter (cf. Section 4.5 in [5] and p. 50 in [9]).

3. Lemma. If ψ is a non-negative λm−1-measurable function defined λm−1-a.e. on
B̂ we denote by

ψ̂(y) : = λm−1- ess lim inf
x→y,x∈B̂

ψ(x)

the λm−1-essential lower limit of ψ at y ∈ B which is defined as the least upper
bound of all γ ∈ � for which there is an r > 0 such that

(11) λm−1({x ∈ Br(y) ∩ B̂; ψ(x) < γ}) = 0.

Then the function ψ̂ : y �→ ψ̂(y) is lower-semicontinuous on B and

λm−1({y ∈ B̂; ψ(y) < ψ̂(y)}) = 0.

�����. For the sake of completeness we include the following argument occur-
ring in [12] in connection with Lemma 8. Consider an arbitrary y ∈ B and c < ψ̂(y).
Then there are γ ∈ (c, ψ̂(y)] and r > 0 such that (11) holds. If z ∈ B ∩Br/2(y) then
Br/2(z) ⊂ Br(y) and, consequently,

λm−1({x ∈ Br/2(z) ∩ B̂; γ(x) < γ}) = 0,
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which shows that ψ̂(z) � γ > c. We have thus shown that, given c < ψ̂(y),
the inequality c < ψ̂(z) holds for all z ∈ B sufficiently close to y and the lower-
semicontinuity of ψ̂ at y is established. Admitting

λm−1({y ∈ B̂; ψ(y) < ψ̂(y)}) > 0

we get, by Lusin’s theorem, that there is a compact set C ⊂ {y ∈ B̂;ψ(y) < ψ̂(y)}
with λm−1(C) > 0 such that the restriction ψ|C is continuous. There is a z ∈ C such
that

(12) λm−1(B�(z) ∩ C) > 0, ∀� > 0.

Since ψ(z) < ψ̂(z), there are γ ∈ (ψ(z), ψ̂(z)] and r > 0 such that

(13) λm−1({y ∈ Br(z) ∩ B̂; ψ(y) < γ}) = 0.

Continuity of ψ|C guarantees the validity of the implication

y ∈ B�(z) ∩ C =⇒ ψ(y) < γ

for sufficiently small � ∈ (0, r) which, in view of the inclusion B�(z)∩C ⊂ Br(z)∩ B̂,
together with (12) contradicts (13). This completes the proof. �

4. Lemma. If ψ � 0 is a lower-semicontinuous function on B, then ψ̂ (defined as
in Lemma 3) satisfies ψ̂ � ψ on B; moreover, ψ̂ is the greatest lower-semicontinuous
majorant of ψ on B coinciding with ψ almost everywhere (λm−1) on B̂.

�����. Let ψ̃ be a lower-semicontinuous majorant of ψ coinciding with ψ
almost everywhere (λm−1) on B̂. We are going to verify that ψ̂ � ψ̃ on B. Admit
that there is a y ∈ B with ψ̂(y) < ψ̃(y) and fix a c ∈ � such that

(14) ψ̂(y) < c < ψ̃(y).

Since ψ̃ is lower-semicontinuous, we have

z ∈ Br(y) ∩B =⇒ ψ̃(z) > c

for sufficiently small r > 0, whence

λm−1({z ∈ Br(y) ∩ B̂; ψ(z) � c}) = 0,

because ψ = ψ̃ almost everywhere (λm−1) on B̂. We conclude that ψ̂(y) � c, which
contradicts (14). Letting ψ̃ = ψ we get from Lemma 3 that ψ̂ = ψ almost everywhere
(λm−1) on B̂ and the proof is complete. �
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5. Lemma. Let C+(B) denote the class of all non-negative functions in C(B) and
let C↑+(B) denote the class of all non-negative lower-semicontinuous functions on B.
Let f ∈ C+(B), ψ ∈ C↑+(B) and put ϕ = f + ψ. Then ϕ̂ = f + ψ̂. In particular,
f̂ = f for each f ∈ C+(B).

�����. Observe that f + ψ̂ is a lower-semicontinuous majorant of ϕ on B such
that f + ψ̂ = ϕ holds λm−1-a.e. in B̂. By Lemma 4 we get ϕ̂ � f + ψ̂. We see that
ϕ̂− f ∈ C↑+(B) is a majorant of ψ on B coinciding with ψ almost everywhere (λm−1)
on B̂. Using Lemma 4 again we arrive at the inequality ϕ̂−f � ψ̂, so that ϕ̂ = f+ ψ̂.
Taking ψ ≡ 0 we get f̂ = f , ∀f ∈ C+(B). �

6. Lemma. Let p be a norm on C(B) inducing the topology of uniform conver-
gence in C(B) such that the implication

(15) |f | � |g| =⇒ p(f) � p(g)

holds for any f, g ∈ C(B). Then we have

(16) p(h) = sup{p(f); f ∈ C(B), |f | � h}

whenever h ∈ C+(B), and (16) can be used to define p(h) for any h ∈ C↑+(B).
Having extended p from C+(B) to C↑+(B) in this way we get for any α ∈ [0,+∞) and
ψj ∈ C↑+(B) (j = 0, 1, 2)

(17) p(αψ0) = αp(ψ0),

(18) p(ψ1 + ψ2) � p(ψ1) + p(ψ2).

�����. The implication (15)⇒ (16) is evident and if (15) is used to define p(h)
for any h ∈ C↑+(B) then (17) obviously holds for α ∈ [0,+∞) and ψ0 ∈ C↑+(B). It is
easy to verify (18) assuming first that ψ1, ψ2 ∈ C↑+(B) satisfy

(19) ψ1 + ψ2 > 0 on B.

We then have

p(ψ1 + ψ2) = sup{p(f); f ∈ C(B), |f(y)| < ψ1(y) + ψ2(y), ∀y ∈ B}.

Choose non-decreasing sequences {gnj }∞n=1 in C+(B) such that gnj ↗ ψj as n→∞
(j = 1, 2). Fix f ∈ C(B) such that |f | < ψ1 + ψ2. If the compact sets
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Kn = {x ∈ B; |f(x)| � gn1 (x) + g
n
2 (x)} are nonempty then there is an x ∈ ⋂

Kn

and therefore ψ1(x) + ψ2(x) � |f(x)|, which is a contradiction. So, we have

|f | < gn1 + g
n
2

for all sufficiently large n ∈ N . Defining for such n

fj = f
gnj

gn1 + g
n
2
(j = 1, 2)

we get

|fj| � |f |
gnj

gn1 + g
n
2
< gnj (j = 1, 2), f1 + f2 = f,

whence
p(f) � p(f1) + p(f2) � p(ψ1) + p(ψ2).

Since f ∈ C(B) with |f | < ψ1 + ψ2 has been chosen arbitrarily, we get (18). It
remains to observe that the additional assumption (19) can be omitted. Denote by
1B ∈ C(B) the constant function attaining the value 1 at any point in B. For any
ψ ∈ C↑+(B) and ε > 0 we then have

p(ψ) � p(ψ + ε1B) � p(ψ) + εp(1B),

so that
p(ψ + ε1B)→ p(ψ) as ε ↓ 0.

Consequently, for any ψj ∈ C↑+(B) (j = 1, 2) we get

p(ψ1 + ψ2) � p(ψ1) + p(ψ2 + ε1B)→ p(ψ1) + p(ψ2) as ε ↓ 0

and (18) follows. �

7. Lemma. Let ψ � 0 be a bounded lower-semicontinuous function on B and
define for fixed z ∈ �m and r ∈ (0,∞] the function nψr (z, θ) of the variable θ ∈ ∂B1(0)
by (8). This function is λm−1-integrable in ∂B1(0) and

∫

∂B1(0)

nψr (z, θ) dλm−1(θ) =
∫

B∩Br(z)

ψ(x)|nK(x) · gradhz(x)| dλm−1(x).

The function vψr : z �→ vψr (z) defined by (9) is bounded and lower-semicontinuous on
�
m .

�����. This is a consequence of Lemma 3 in [12]. �
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8. Lemma. If

(x, y) �→ gy(x)

is a continuous (real-valued) function on B ×B then, for each f ∈ C(B),

W (fgy)(y) : = f(y)gy(y)dG(y) +
∫

B

f(x)gy(x)n
K(x) · gradhy(x) dλm−1(x)

represents a continuous function of the variable y ∈ B.

�����. As mentioned above, our assumption (2) guarantees that the operator
W sending each f ∈ C(B) to

(20) Wf : y �→ f(y)dG(y) +
∫

B

f(x)nK(x) · gradhy(x) dλm−1(x), y ∈ B

is continuous on C(B) with respect to the topology of the uniform convergence
(cf. Proposition 2.8 and Lemmas 2.9, 2.15 in [9]). Let now {yn}∞n=1 be an arbi-
trary convergent sequence of points in B, lim

n→∞
yn = y0. Then, for each f ∈ C(B),

the sequence of functions {fgyn}∞n=1 converges uniformly on B to fgy0 ∈ C(B) and
{W (fgyn)}∞n=1 converges uniformly on B to W (fgy0) as n→∞, whence

lim
n→∞

W (fgyn)(yn) =W (fgy0)(y0)

and the continuity of y �→W (fgy)(y) is established. �

9. Lemma. Let ψ � 0 be a bounded lower-semicontinuous function on B and let

(x, y) �→ gy(x)

be a continuous function on B ×B such that 0 � gy(x) � 1. Then

Fψg (y) : = ψ(y)gy(y)
∣∣∣dG(y)−

1
2

∣∣∣+
∫

B

ψ(x)gy(x)|nK(x) · gradhy(x)| dλm−1(x)

is a lower-semicontinuous function of the variable y on B.

�����. It follows from Lemma 8 that

Hf
g (y) : =

(
W − 1

2I
)
(fgy)(y) = f(y)gy(y)[dG(y)− 1

2 ]

+
∫

B

f(x)gy(x)nK(x) · gradhy(x) dλm−1(x)
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is a continuous function of the variable y on B for each f ∈ C(B). It is therefore
sufficient to verify that Fψg is the (pointwise) supremum of the class

F : = {Hf
g ; f ∈ C(B), |f | � ψ} ⊂ C(B).

Clearly, any function in F is majorized by Fψg . Fix now an arbitrary ξ ∈ B and
ε > 0. Since

sup

{∫

B

f(x)gξ(x)nK(x) · gradhξ(x) dλm−1(x); f ∈ C(B), |f | � ψ, spt f ⊂ B \ {ξ}
}

=
∫

B

ψ(x)gξ(x)|nK(x) · gradhξ(x)| dλm−1(x)

there is an f0 ∈ C(B) such that |f0| � ψ, f0 = 0 on B�(ξ) ∩ B for sufficiently small
� > 0 and

(21)

∫

B

f0(x)gξ(x)nK(x) · gradhξ(x) dλm−1(x)

>

∫

B

ψ(x)gξ(x)|nK(x) · gradhξ(x)| dλm−1(x) − ε.

Since ∫

B

ψ(x)gξ(x)|nK(x) · gradhξ(x)| dλm−1(x) � vψ∞(ξ) <∞,

we can assume that � > 0 has been chosen small enough to have

(22)
∫

B∩B�(ξ)

ψ(x)gξ(x)|nK(x) · gradhξ(x)| dλm−1(x) < ε.

Consider first the case when

ψ(ξ)gξ(ξ)|dG(ξ)− 1
2 | > 0.

Clearly, we can assume that 0 < ε < ψ(ξ). Choose f1 ∈ C(B) with spt f1 ⊂ B�(ξ)∩B
such that |f1| � ψ and

|f1(ξ)| > ψ(ξ)− ε, sign f1(ξ) = sign[dG(ξ)− 1
2 ].
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Letting f = f0 + f1 we have |f | � ψ,

Hf
g (ξ) = f1(ξ)gξ(ξ)[dG(ξ)− 1

2 ] +
∫

B�(ξ)∩B

f1(x)gξ(x)nK(x) · gradhξ(x) dλm−1(x)

+
∫

B\B�(ξ)

f0(x)gξ(x)nK(x) · gradhξ(x) dλm−1(x)

� ψ(ξ)gξ(ξ)|dG(ξ)− 1
2 | − ε

−
∫

B∩B�(ξ)

ψgξ|nK · gradhξ| dλm−1 +
∫

B

ψgξ|nK · gradhξ| dλm−1 − ε

> ψ(ξ)gξ(ξ)|dG(ξ)− 1
2 |+

∫

B

ψgξ|nK · gradhξ| dλm−1 − 3ε

by (21), (22). The inequality

Hf
g (ξ) > Fψg (ξ)− 3ε

with arbitrarily small ε > 0 shows that

(23) Fψg (ξ) = sup{h(ξ); h ∈ F}.

If
ψ(ξ)gξ(ξ)|dG(ξ)− 1

2 | = 0,

then (21) yields
Hf0
g (ξ) > Fψg (ξ)− ε

and (23) holds again. Since ξ ∈ B was arbitrary, the proof is complete. �

10. Corollary. Let ψ � 0 be a bounded lower-semicontinuous fuction on B,
r ∈ (0,∞] and define

V ψr (y) : = ψ(y)|dG(y)− 1
2 |+ vψr (y), y ∈ B.

Then
V ψr : y �→ V ψr (y)

is lower-semicontinuous on B.

�����. Let hn � 0 be a nondecreasing sequence of continuous functions on
[0,∞) such that

lim
n→∞

hn(t) =

{
1 for t ∈ [0, r),
0 elsewhere on [0,∞)
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and put
gnx (y) = h

n(|x − y|), x, y ∈ B.

Then

Fψgn(y)↗ ψ(y)|dG(y)− 1
2 |+

∫

B∩Br(y)

ψ(x)|nK(x) · gradhy(x)| dλm−1(x) = V ψr (y)

as n → ∞. Since the functions Fψgn are all lower-semicontinuous on B, the same
holds of V ψr . �

11. Definition. Let p be a norm on C(B) with the property (15), inducing the
topology of uniform convergence; extend p to C↑+(B) by (16) and for any h ∈ C↑+(B)
put

p̂(h) : = p(ĥ), h ∈ C↑+(B),

where ĥ is defined by Lemma 3.

Combining this definition with Lemmas 5 and 6 we arrive at

��� ���	�
. If ϕ = f + ψ, where f ∈ C+(B) and ψ ∈ C↑+(B), then
p̂(ϕ) � p(f) + p̂(ψ). In particular, p̂(f) = p(f) whenever f ∈ C+(B).

13. Theorem. Let p be a norm on C(B) with (15) inducing the topology of
uniform convergence, define p : y �→ p(y) by (7) and for r ∈ (0,∞) put

vpr : y �→ vpr (y), y ∈ B,
V pr : y �→ p(y)| 12 − dG(y)|+ vpr (y), y ∈ B.

Then for each α ∈ �

(24) ωp(W
α) � |α− 1

2 |+ infr>0
p̂(vpr ) = |α− 1

2 |+ infr>0
p̂(V pr ).

�����. Fix r > 0 and construct a function gr on �m satisfying the Lipschitz
condition

x1, x2 ∈ �m =⇒ |gr(x1)− gr(x2)| � 1
r |x1 − x2|

and such that

0 � gr � 1, gr(Br(0)) = {1}, gr(�m \B2r(0)) = {0}.

Put
gy(x) = gr(x− y), x, y ∈ �m
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and define an operator V on C(B) sending each f ∈ C(B) to V f given by

V f(y) =
∫

B

f(x)[1− gy(x)]nK(x) · gradhy(x) dλm−1(x), y ∈ B.

Elementary reasoning (described in detail in the proof of Theorem 4.1 in [9], pp. 104–
111) shows that V is a compact linear operator acting in C(B). We are going to
estimate p(Wα − V ). Let f ∈ C(B), p(f) � 1. Consequently, |f | � p on B. By
Proposition 2.8 and Lemmas 2.9 and 2.15 in [9] we have

(Wα−V )f(y) = f(y)
[
dG(y)−α

]
+

∫

B

f(x)gy(x)nK(x)·gradhy(x) dλm−1(x), y ∈ B.

Hence

|(Wα − V )f(y)| � |(12 − α)f(y)|+ p(y)|dG(y)− 1
2 |

+
∫

B

p(x)gr(x− y)|nK(x) · gradhy(x)| dλm−1(x)

= |(12 − α)f(y)|+ F pg (y),

where F pg is the lower-semicontinuous function on B defined in Lemma 9. Since
p(f) � 1 implies p(|f |) � 1, in view of Remark 12 we get

p[(Wα − V )f ] � | 12 − α|p(|f |) + p̂(F pg ) � |12 − α|+ p̂(F pg ).

Observe that F pg � V p2r, where V
p
2r is a lower-semicontinuous function on B coinciding

with vp2r on B̂, so that p̂(V
p
2r) = p̂(v

p
2r). Since r > 0 was arbitrary, we arrive at

p(Wα − V ) � |12 − α|+ p̂(V p2r),
ωp(Wα) � |12 − α|+ inf

r>0
p̂(V p2r) = | 12 − α|+ inf

r>0
p̂(vp2r)

and (24) is established. �

14. Corollary. Let q > 0 be a bounded lower-semicontinuous function on B such
that

(25) q(y) � λm−1- ess lim inf
x∈B̂,x→y

q(x), ∀y ∈ B.

For f ∈ C(B) define

(26) pq(f) : = sup
y∈B

|f(y)|
q(y)

.

683



Then pq is a norm on C(B) inducing the topology of uniform convergence and for
each α ∈ � we have

ωpqW
α � |α− 1

2 |+ inf
r>0
sup
y∈B̂

vqr(y)
q(y)

.

�����. Let pq correspond to pq in the sense of Lemma 1. It is easy to see from
(26) that pq = q on B. In view of Theorem 13 it suffices to verify

(27) p̂q(vqr) = sup
x∈B̂

vqr(x)
q(x)

for any r > 0. Recalling Definition 11 we get

p̂q(vqr) = sup{pq(f); f ∈ C(B), |f | � v̂qr} = sup
y∈B

v̂qr(y)
q(y)

� sup
x∈B̂

vqr(x)
q(x)

.

In order to obtain the desired inequality

(28) sup
y∈B

v̂qr(y)
q(y)

� sup
x∈B̂

vqr(x)
q(x)

,

consider an arbitrary y ∈ B with v̂qr(y) > 0 and choose ε ∈ (0, v̂qr(y)). There is a
� > 0 such that

vqr(x) � v̂qr(y)− ε for λm−1-a.e. x ∈ B�(y) ∩ B̂.

Our assumption (25) guarantees that

λm−1({x ∈ B�(y) ∩ B̂; q(y) + ε > q(x)}) > 0

(for otherwise we would have λm−1- ess lim inf
x∈B̂,x→y

q(x) � q(y) + ε > q(y)). As

λm−1(B�(y) ∩ B̂) > 0 (cf. Remark 2), there are x ∈ B�(y) ∩ B̂ for which we
have, simultaneously,

vqr(x) � v̂qr(y)− ε, q(x) < q(y) + ε,

so that
v̂qr(y)− ε

q(y) + ε
� vqr(x)

q(x)
� sup

x∈B̂

vqr(x)
q(x)

.

Making ε ↓ 0 we get (28), which completes the proof. �
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��� ���	�
. Since q is lower-semicontinuous, we have

λm−1- ess lim inf
x∈B̂,x→y

q(x) � lim inf
x∈B̂,x→y

q(x) � q(y),

which combined with (25) yields

q(y) = λm−1- ess lim inf
x∈B̂,x→y

q(x) = lim inf
x∈B̂,x→y

q(x), y ∈ B.

16. Lemma. Let p be a norm defining the topology of uniform convergence in
C(B) and define p by (7). Suppose that q � 0 is a bounded lower-semicontinuous
function on B such that for each µ ∈ C′(B),

(29) sup

{∫

B

f dµ; f ∈ C(B), p(f) � 1
}

�
∫

B

q d|µ|,

where |µ| is the indefinite total variation of µ. Then

(30) ωpW
α � inf

r>0
sup
y∈B

[
|12 − α|q̂(y) + vq̂r(y)

]
/ p̂(y) for α ∈ �.

If

(31) p(y) = lim inf
x∈B̂\{y},x→y

p(x) for each y ∈ B̂,

then

(32) ωpW
α � inf

r>0
sup
y∈B̂

[
| 12 − α|q(y) + vqr(y)

]
/ p(y).

�����. Fix an ε > 0 and denote by 〈f, ν〉 (≡
∫
B
f dν) the pairing be-

tween f ∈ C(B) and ν ∈ C′(B). As explained in [9], pp. 107–108, there are
ϕ1, . . . , ϕn ∈ C(B) and ν1, . . . , νn ∈ C′(B) such that

D : =

{
y ∈ B;

n∑

k=1

|νk|(y) > 0
}

is finite and the finite-dimensional operator V sending f ∈ C(B) to

V f : =
n∑

k=1

〈f, νk〉ϕk
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satisfies
p(Wα − V ) � ωpW

α + ε.

For any y ∈ B denote by δy ∈ C′(B) the Dirac measure concentrated at y and by
λy ∈ C′(B) the representing measure of the functional

f �→Wf(y) =
∫

B

f(x) dλy(x).

According to (20)

(33) dλy(x) = dG(y) dδy(x) + nK(x) · gradhy(x) dλm−1(x).

Observing that
p(g) � sup

y∈B
|g(y)|/p(y), ∀g ∈ C(B),

we get

p(Wα − V ) = sup
p(f)�1,f∈C(B)

p((Wα − V )f)(34)

� sup
p(f)�1

sup
y∈B\D

1
p(y)

∣∣∣∣
∫

B

f d

(
λy − αδy −

n∑

k=1

ϕk(y)νk

)∣∣∣∣.

Now we decompose each νk into a continuous part ν1k (not charging singletons) and
a finite combination of the Dirac measures; we thus have νk = ν1k + ν

2
k and

ν1k(M) = νk(M \D), ν2k(M) = νk(M ∩D)

for each Borel set M . By virtue of (34) we obtain

ωp(Wα) + ε � sup
y∈B\D

1
p(y)

sup
p(f)�1

∣∣∣∣
∫

B

f d

(
λy − αδy −

n∑

k=1

ϕk(y)νk

)∣∣∣∣

� sup
y∈B\D

1
p(y)

∫

B

q d

∣∣∣∣λy − αδy −
n∑

k=1

ϕk(y)νk

∣∣∣∣

= sup
y∈B\D

1
p(y)

[ ∫

B

q d

∣∣∣∣λy − αδy −
n∑

k=1

ϕk(y)ν1k

∣∣∣∣+
∫

B

q d

∣∣∣∣
n∑

k=1

ϕk(y)ν2k

∣∣∣∣
]

� sup
y∈B\D

1
p(y)

∫

B

q d

∣∣∣∣λy − αδy −
n∑

k=1

ϕk(y)ν1k

∣∣∣∣

� sup
y∈B\D

1
p(y)

[ ∫

B∩Br(y)
q d|λy − αδy|

−
n∑

k=1

max
x∈B

|ϕk(x)| sup
z∈B

q(z)|ν1k|(B ∩Br(y))
]
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for any r > 0. Since |ν1k| does not charge singletons, we have

lim
r↓0

|ν1k |(Br(y) ∩B) = 0 uniformly with respect to y ∈ B.

We can thus choose an r0 > 0 small enough to ensure the validity of the implication

0 < r < r0 =⇒
n∑

k=1

max |ϕk|(B) sup q(B)|ν1k |(Br(y) ∩B) < ε, ∀y ∈ B.

Hence we get

ωp(Wα) + 2ε � sup
y∈B\D

1
p(y)

∫

B∩Br(y)

q d
∣∣λy − αδy

∣∣ � sup
y∈B̂\D

1
p(y)

[
q(y)| 12 − α|+ vqr(y)

]

for any r ∈ (0, r0) by Lemma 3 in [12]. Recall that

H : = {x ∈ B; q̂(x) 	= q(x)} ∪D

has vanishing λm−1-measure. By Remark 2 we get for each x ∈ B a sequence
xn ∈ B̂ \H such that

xn → x and p(xn)→ p̂(x) as n→∞.

Noting that the functions vq̂r = vqr (cf. Remark 4 in [12]) and q̂ are lower-semicon-
tinuous, we obtain

1

p̂(x)

[
q̂(x)| 12 − α|+ vq̂r(x)

]
� lim inf

n→∞
1

p(xn)

[
q(xn)| 12 − α|+ vqr(xn)

]
� ωpW

α + 2ε.

We have thus shown

ωpW
α + 2ε � sup

x∈B

1

p̂(x)

[
q̂(x)| 12 − α|+ vq̂r(x)

]

for any r ∈ (0, r0), which proves (30), because ε > 0 was arbitrary. Assuming (31)
and noting that D is finite we get for any x ∈ B̂ a sequence xn ∈ B̂ \D such that

xn → x and p(xn)→ p(x) as n→∞.

Hence

1
p(x)

[
q(x)| 12 − α|+ vqr(x)

]
� lim inf

n→∞
1

p(xn)

[
q(xn)| 12 − α|+ vqr(xn)

]
� ωpW

α + 2ε,

so that
sup
x∈B̂

1
p(x)

[
q(x)| 12 − α|+ vqr(x)

]
� ωpW

α + 2ε

and (32) follows. �

687



17. Lemma. Let µ be a finite signed Borel measure with support in B. Let
q > 0 be a bounded lower-semicontinuous function on B and define the norm pq on
C(B) by (26). Then

sup

{∫

B

f dµ; f ∈ C(B), pq(f) � 1
}
=

∫

B

q d|µ|.

�����. If f ∈ C(B), then pq(f) � 1 means that |f | � q on B, so that

∫

B

f dµ �
∫

B

q d|µ| and sup
{∫

B

f dµ; f ∈ C(B), pq(f) � 1
}

�
∫

B

q d|µ|.

In order to prove the converse inequality we fix an arbitrary ε > 0 and consider a
nondecreasing sequence fn ∈ C+(B) such that fn ↗ q as n→∞. Since

lim
n→∞

∫

B

fn d|µ| =
∫

B

q d|µ|

we can fix n ∈ N large enough to have

(35)
∫

B

fn d|µ| >
∫

B

q d|µ| − ε.

Consider the Hahn decomposition (cf. [14])

B = B+ ∪B−

corresponding to the signed measure µ formed by disjoint Borel sets B+, B− such
that

µ(B+ ∩M) = |µ|(B+ ∩M), µ(B− ∩M) = −|µ|(B− ∩M)

for each Borel set M . Choose compact sets Q+ ⊂ B+ and Q− ⊂ B− such that

(36)
∫

S

q d|µ| < ε,

where S = (B+ \Q+) ∪ (B− \Q−). Construct a ϕ ∈ C(B) satisfying the conditions

ϕ(Q+) = {1}, ϕ(Q−) = {−1}, |ϕ| � 1

and put f = ϕfn, so that

f ∈ C(B), pq(f) � 1.
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We then have

∫

B

f dµ =
∫

Q+

fn d|µ|+
∫

Q−

fn d|µ|+
∫

S

ϕfn dµ =
∫

B

fn d|µ|−
∫

S

fn d|µ|+
∫

S

ϕfn dµ.

Noting that ∣∣∣∣
∫

S

fn d|µ|
∣∣∣∣ �

∫

S

q d|µ|

and ∣∣∣∣
∫

S

ϕfn dµ

∣∣∣∣ �
∫

S

q dµ

we conclude from (36), (35) that

∫

B

f dµ >
∫

B

q d|µ| − 3ε.

Since ε > 0 was arbitrary, we arrive at

sup

{∫

B

f dµ; f ∈ C(B), pq(f) � 1
}

�
∫

B

q d|µ|,

which completes the proof. �

18. Theorem. Let q > 0 be a bounded lower-semicontinuous function on B
satisfying (25) and define the norm pq on C(B) by (26). Then pq induces the topology
of uniform convergence in C(B) and, for each α ∈ �,

ωpqW
α = |α− 1

2 |+ inf
r>0
sup
y∈B̂

vqr(y)
q(y)

.

�����. This follows from Corollary 14 and Lemma 16 combined with (27)
together with Lemma 17. �

�� ���	�
. Theorem 18 shows that, for the norm pq defined on C(B) by
(26), the optimal choice of the parameter α in the equation (4) is α = 1

2 (compare
also 4.2 in [9]), which leads to the Neumann operator T = 2W 1/2. Simple examples
of domains “built of bricks” in �3 demonstrate that ωp1T > 1 may occur for the
maximum norm p1 while, as shown in [1], [13], for such domains an elementary
construction of another norm p topologically equivalent to p1 such that ωpT < 1 is
always possible.
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