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REMARKS ON STATISTICAL AND I-CONVERGENCE OF SERIES
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Abstract. In this paper we investigate the relationship between the statistical (or gen-
erally I-convergence) of a series and the usual convergence of its subseries. We also give a
counterexample which shows that Theorem 1 of the paper by B.C. Tripathy “On statisti-
cally convergent series”, Punjab.Univ. J.Math. 32 (1999), 1–8, is not correct.
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1. Introduction

The concept of the statistical convergence was introduced in [5], [12] and has been

developed in several directions in [2], [3], [4], [7], [8], [10], [13] and by many other
authors. We will deal mainly with the generalization of the statistical convergence

introduced in the [8].

Let A ⊆ � . Put A(n) := card({1, 2, . . . , n} ∩A). Then the numbers

d(A) := lim inf
n→∞

A(n)
n

, d(A) := lim sup
n→∞

A(n)
n

are called respectively the lower and upper asymptotic density of the set A. If

d(A) = d(A) =: d(A) then A is said to have the asymptotic density d(A).
Similarly one can define the logarithmic density δ(A) of a set A if we take

1
ln n

n∑

k=1

χA(k)
k

(n = 2, 3, . . .)

instead of A(n)/n, χA being the characteristic function of A (cf. [6, XIX]).
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A sequence x = (xn)∞n=1 of real numbers is said to be statistically convergent to

L ∈ � if for every ε > 0 we have d(Aε) = 0, where Aε := {n ; |xn − L| > ε}. In this
case we write stat-lim xn = L.
A class I ⊆ 2 � is said to be an ideal on � if I is additive (A, B ∈ I =⇒ A∪B ∈ I)

and hereditary (A ⊆ B ∈ I =⇒ A ∈ I). An ideal I is proper if I 6= 2 � . It is
admissible provided it is proper and I ⊇ If , If being the ideal of all finite subsets

of � .
A sequence x = (xn)∞n=1 is said to be I-convergent to L (we will also say that x

I-converges to L) if for each ε > 0 we have Aε ∈ I . In this case we write I-lim xn = L.
Obviously the I-convergence coincides with the usual convergence if I = If and

with the statistical convergence if I = Id = {A ⊆ � ; d(A) = 0}. The I-convergence
can be regarded as a generalization of the statistical convergence.

Further particular cases of the I-convergence can be obtained by choosing

I = Iδ := {A ⊆ � ; δ(A) = 0} or I = Ic :=
{

A ⊆ � ;
∑

a∈A

a−1 < +∞
}

.

Obviously Iδ and Ic are admissible ideals on � .
If A ∈ Ic then d(A) = 0 (cf. [9], [11, p. 100]), hence Ic ⊆ Id and so

Ic- lim xn = L =⇒ Id- lim xn = L.

Note that Id-lim xn = stat-lim xn.
In what follows we will use also the concept of the uniform density of a set (cf. [1]).

Let A ⊆ � , let t, s be integers, t > 0, s > 1. Denote by A(t+1, t+ s) the cardinality
of the set A ∩ [t + 1, t + s]. Put

αs = lim inf
t→∞

A(t + 1, t + s), αs = lim sup
t→∞

A(t + 1, t + s).

Then αs 6 αs and there exist

u(A) = lim
s→∞

αs

s
, u(A) = lim

s→∞
αs

s
.

If u(A) = u(A) =: u(A) then the common value u(A) is called the uniform density
of the set A. Obviously

(1) u(A) 6 d(A) 6 d(A) 6 u(A).

The uniform density of sets yields the Iu-convergence, where Iu := {A ⊆ � ;
u(A) = 0}.
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An infinite series
∞∑

n=1
an is said to be I-convergent to s ∈ � provided the sequence

(sn)∞n=1 of its partial sums I-converges to s, where sn = a1 + . . . + an (n = 1, 2, . . .)
(cf. [4], [13]).

We recall the concept of the dual filter of an ideal. If I ⊆ 2 � is a proper ideal on
� then the class

F (I) := {B ⊆ � ; � \B ∈ I}

is called the dual filter of the ideal I .

2. Main results

Theorem 1 of the paper [13], p. 4 claims that “If a series
∞∑

k=1

ak is statistically

convergent then there exists a set M ⊆ � , M = {m1 < m2 < . . .} with d(M) =

1 such that the series
∞∑

k=1

amk
is convergent in the usual sense.” Our following

considerations show that this result is not correct. Nevertheless, it motivated us to

introduce the following definition.

Definition 1. An admissible ideal I ⊆ 2 � is said to have the property (T) if
the following assertion holds: If

∞∑
k=1

ak is an arbitrary I-convergent series then there

exists a set M ⊆ � , M = {m1 < m2 < . . .} belonging to the filter F (I) (i.e.,

M = � \A for an A ∈ I) and
∞∑

k=1

amk
converges in the usual sense.

Let us remark that the ideal If has the property (T) (for the set M we can take

M = � ). On the other hand, we will show in what follows that no other ideal among
the ideals mentioned in this paper has the property (T). We begin to prove this fact

with the ideal Ic =
{

A ⊆ � ;
∑

a∈A

a−1 < +∞
}
.

Theorem 1. The ideal Ic does not have the property (T).

�������! 
. Put

(ak)∞k=1 =
( 1

22
,

1
22

,
(
− 1− 1

2

)
, 1,

1
32

,
1
32

,
1
32

,
(
− 1− 1

3

)
, 1, . . . ,

1
n2

,
1
n2

, . . . ,
1
n2︸ ︷︷ ︸

n terms

,
(
− 1− 1

n

)
, 1, . . .

)
.
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Denote by (sn)∞n=1 the sequence of the partial sums of the series
∞∑

k=1

ak. Then we

have

(sn)∞n=1 =
( 1

22
,
1
2
, −1︸︷︷︸
l2-term

, 0,
1
32

,
2
32

,
1
3
, −1︸︷︷︸
l3-term

, 0, . . . ,

1
n2

,
2
n2

, . . . ,
1
n

, −1︸︷︷︸
ln-term

, 0, . . .
)
.

We prove that this sequence (sn)∞n=1 is Ic-convergent to zero.
Recall that if I is an admissible ideal then a sequence x = (xn) is said to be

I∗-convergent to L provided there is a set M = {m1 < m2 < . . .} ∈ F (I) such that
lim

k→∞
xmk

= L. It is well-known that if x = (xn) is I∗-convergent to L then it is also

I-convergent to L (cf. [8]).

Hence to prove that
∞∑

k=1

ak is I-convergent to 0 it suffices to show that (sn)∞n=1 is

I∗-convergent to 0.
If we omit from the sequence (sn)∞n=1 the terms with indices ln (n = 2, 3, . . .) then

we obviously obtain a sequence which is convergent (in the usual sense) to 0 and
hence it is I∗c convergent to 0 and so also Ic-convergent to 0). Hence if we show that
∞∑

n=2
l−1
n < +∞ then it will be proved that the series

∞∑
k=1

ak is Ic-convergent to 0.

We are going to prove that

(2)
∞∑

n=2

l−1
n < +∞.

We have

l2 = 3,

l3 = l2 + 5,

l4 = l3 + 6,

...

ln = ln−1 + (n + 2).

By summing these equalities we get

ln = 1 + 2 + 3 + 4 + 5 + . . . + (n + 2)− 1− 2− 4 =
(n + 2)(n + 3)

2
− 7

=
1
2
(n2 + 5n− 8).

This immediately implies (2).
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Hence the series
∞∑

k=1

ak is Ic-convergent. However, we will show that there is no

set M = {m1 < m2 < . . .} ∈ F (Ic) such that
∞∑

k=1

amk
converges in the usual sense.

We proceed indirectly. Write

∞∑

v=1

av =
1
22

+
1
22

+
(
− 1− 1

2

)
+ 1 +

1
32

+
1
32

+
1
32

+
(
− 1− 1

3

)
+ 1 + . . . .

Suppose that there is a set M ∈ F (Ic), M = {m1 < m2 < . . .}, such that the
series

∞∑
k=1

amk
converges in the usual sense.

The convergence of
∞∑

k=1

amk
implies that this series contains only a finite number

of terms of the form 1, −1−1/n (n > 2). Hence there is a v0 ∈ � such that for every
v > v0 we have av 6= 1, av 6= −1− 1/n (n > 2).
However, then the series

∑
v0<v∈M

av converges in the usual sense and none of its

terms equals 1 or −1− 1/n (n > 2).
Obviously the set M ∩ (v0, +∞) belongs again to F (Ic) and the series

(3)
∑

v0<v∈M

av

is a subseries of a series of the form

(4)
1

m2
+ . . . +

1
m2︸ ︷︷ ︸

m-terms

+
1

(m + 1)2
+ . . . +

1
(m + 1)2︸ ︷︷ ︸

(m + 1)-terms

+ . . . .

A term 1/(m + k)2 occurs in (3) exactly when it occurs in
∞∑

v=1
av with an index v

belonging to M , v > v0.
Put H = M ∩ (v0, +∞). Then H ∈ F (Ic). Hence H = � \ A,

∑
a∈A

a−1 < +∞.
Then d(A) = 0, d(H) = 1 (cf. [9], [11, p. 100]).
So we obtain a contradiction if we prove the following statement:

If d(H) > 0 then the subseries of (4) corresponding(w)

to the subscripts from H diverges.

We prove (w). By the assumption of (w) there exists a δ > 0 such that for infinitely
many k’s (say for k ∈ V , V is an infinite set) we have

(5)
H(k)

k
> δ > 0,

H(k) = card({1, 2, . . . , k} ∩H).
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The divergence of the subseries
∑

v∈H

av of the series (4) will be established by

showing that it fails to satisfy the Cauchy condition of convergence. This condition
says:

For every ε > 0 there is an nε ∈ � such that for each n > nε we have

∑

nε<v6n,v∈H

av < ε.

Hence it suffices to prove that there is an ε0 > 0 such that for every n0 ∈ � there
exists an n > n0 with

∑
n0<v6n,v∈H

av > ε0. We show that one can take ε0 = 1
6δ.

Let n0 be an arbitrary positive integer. Then an0 occurs in a block (say in the
l-th block consisting of terms of the form 1/l2). Choose k ∈ V ,

k = m + (m + 1) + . . . + (m + r + 1) = m(r + 2) +
(r + 1)(r + 2)

2
.

By the definition of the set V there are infinitely many such v’s that the corre-
sponding k’s belong to V .

We will estimate the sum ∑

n0<v6k,v∈H

av

from below. We get

∑

n0<v6k,v∈H

av > H(k)−H(n0)
(m + r + 1)2

=
H(k)

(m + r + 1)2
− H(n0)

(m + r + 1)2
.

The first summand on the right hand side is by (5) greater than

δ
[
m(r + 2) +

(r + 1)(r + 2)
2

]
.

Choosing r sufficiently large the second summand can be made less than δ/6. Hence
for r chosen in such a way we get

∑

n0<v6k,v∈H

av > δ
m(r + 2) + 1

2 (r + 1)(r + 2)
(m + r + 1)2

− δ

6
.

The first term on the right hand side converges for r → ∞ to δ/2. Hence by a
new suitably enlarged r we get

∑

n0<v6k,v∈H

av > δ

3
− δ

6
=

δ

6
.

�
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Minor modifications of the proof of Theorem 1 enable us to show that none of the

ideals Id, Iδ , Iu has the property (T).

Theorem 2. The ideal Id does not have the property (T).

Corollary. The statement in Theorem 1 of [13] does not hold.

�������! "�! $#&%(')�!��')*,+
. Let

∞∑
k=1

ak have the same meaning as in Theorem 1.

This series is Ic-convergent to 0. Since Ic ⊆ Id, it is also Id-convergent (statistically

convergent) to 0. Further, if M ⊆ � and d(M) = 1 (i.e.M ∈ F (Id)) then by
statement (w) (see the proof of Theorem 1) we see that

∑
v∈M

av diverges. Theorem 2

follows. �

Theorem 3. The ideal Iδ does not have the property (T).
�������! 

. Modify the proof of Theorem 1. Note that (cf. [6] p. 241)

(6) d(A) 6 δ(A) 6 δ̄(A) 6 d(A).

The series
∞∑

k=1

ak constructed in the proof of Theorem 1 is Id-convergent to 0 since

it is Ic-convergent to 0 and Ic ⊆ Id. But then it is also Iδ-convergent to 0 by (6).
Further, if M ⊆ � , δ(M) = 1 (i.e.M ∈ F (Iδ)) then by (6) we get d(M) = 1

and applying the statement (w) (see the proof of Theorem 1) we see that
∑

v∈M

av

diverges. �

Theorem 4. The ideal Iu of the sets of uniform density zero does not have

property (T).
�������! 

. We show that the set

A = {l2 < l3 < . . .}

in the proof of Theorem 1 has the uniform density zero. Let s be fixed, s ∈ � . A
simple calculation shows that

ln+1 − ln =
1
2
[((n + 1)2 + 5(n + 1)− 8)− (n2 + 5n− 8)] = n + 3 →∞(n →∞).

Therefore there is an t0(s) such that each interval [t + 1, t + s](t > t0) contains at
most one element from the set A. So we get

αs = lim sup
t→∞

A(t + 1, t + s) 6 1, u(A) = lim
s→∞

αs

s
= 0, u(A) = 0.
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If M ∈ F (Iu), i.e. if M = � \K, u(K) = 0, then by (1) we have d(K) = 0 and so
M ∈ F (Id). But then by the proof of Theorem 1 (see (w)) we see that the series∑
v∈M

av diverges. �

The results we have just obtained about the property (T) suggest to formulate the
following
- �/.10�'3254 6 ��'

. The ideal If is the only admissible ideal having the property (T).
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