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WHERE ARE TYPICAL C1 FUNCTIONS ONE-TO-ONE?

Zoltán Buczolich, András Máthé, Budapest

(Received September 27, 2005)

Dedicated to Prof. J.Kurzweil on the occasion of his 80th birthday

Abstract. Suppose F ⊂ [0, 1] is closed. Is it true that the typical (in the sense of Baire
category) function in C1[0, 1] is one-to-one on F ? If dimBF < 1/2 we show that the answer
to this question is yes, though we construct an F with dimB F = 1/2 for which the answer
is no. If Cα is the middle-α Cantor set we prove that the answer is yes if and only if
dim(Cα) 6 1/2. There are F ’s with Hausdorff dimension one for which the answer is still
yes. Some other related results are also presented.
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1. Introduction

For the annual Miklós Schweitzer Competition organized by the János Bolyai
Mathematical Society in 2004 the first listed author, having some generalizations in

his mind as well, proposed the following problem:

Is it true that if the perfect set F ⊂ [0, 1] is of zero Lebesgue measure then those
functions in C1[0, 1] which are one-to-one on F form a dense subset of C1[0, 1]?
The answer to this question is negative. The winner of this Schweitzer Competi-

tion, the second listed author of this paper, found a particularly transparent solution
to this problem and also suggested some generalizations. So the authors of this paper

teamed up and wrote this paper.

Research supported by the Hungarian National Foundation for Scientific Research
T049727.
Supported by the Hungarian Scientific Research Fund grant no. T049786.
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We do not interrupt this introduction with definitions and notation which can be

found in Section 2 together with some further references.
If one considers the space C[0, 1] of the continuous functions equipped with the

supremum norm, instead of the space C1[0, 1] then the answer to the above problem
is yes. In fact, much more is true. From Lemma 9 and the proof of Corollary 8 of
[1] it follows that if F ⊂ [0, 1] is of first category then there exists a residual set
S ⊂ C[0, 1] such that for all f ∈ S the sets fn(F ), n = 0, 1, . . ., are pairwise disjoint
and f is one-to-one on each set fn(F ), n = 0, 1, . . ., (where fn denotes the nth iterate

of f). This implies that for any nowhere dense perfect set F ⊂ [0, 1] if F denotes the
set of those functions in C[0, 1] which are one-to-one on F then F is dense in C[0, 1].
In the space C1[0, 1] the answer depends on F . In Theorem 5 we show that if

the lower box dimension of F is less than 1/2 then the typical C1[0, 1] function is
one-to-one on F . In Theorem 12 we construct a closed F ⊂ [0, 1] of box dimension
1/2 such that the set of those f ∈ C1[0, 1] for which f |F is one-to-one is not dense
in C1[0, 1]. This shows that the value 1/2 in Theorem 5 cannot be improved. The
first natural idea to construct a closed set F for Theorem 12 would be by using a

middle-α Cantor set, Cα or, more generally, by using a self similar set with the Open
Set Condition. For these sets the Hausdorff and box dimension coincide and it is

interesting that if the dimension of such sets equals 1/2 then the typical C1[0, 1]
function is still one-to-one on them, see Theorems 7 and 10. In Theorem 10 we also

show that for the Cantor sets Cα the typical C1[0, 1] function is one-to-one on Cα if
and only if dim(Cα) 6 1/2.

Hausdorff dimension seems to be less appropriate since in Theorem 11 we construct
a closed set F of Hausdorff dimension one such that the typical C1[0, 1] function is
one-to-one on F. Moreover, by Theorem 6 if the Hausdorff dimension of F ×F is less
than one then we can guarantee that a typical C1[0, 1] function is one-to-one on F.

Several of the results in this paper depend on property P , introduced in Section 2,
which roughly says that the image of F × F is nowhere dense under projections in

some “dense set of directions”. In Theorem 2 we show that if the closed set F ⊂ [0, 1]
has property P then the typical C1[0, 1] function is one-to-one on F.

2. Notation and preliminary results

Recall that the usual metrics %0, and %1 on C[0, 1], and on C1[0, 1], respectively,
are given by

%0(f, g) = max
x∈[0,1]

|f(x)− g(x)| for f, g ∈ C[0, 1],

and
%1(f, g) = %0(f, g) + %0(f ′, g′) for f, g ∈ C1[0, 1].
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It is well known that the metric spaces (C[0, 1], %0) and (C1[0, 1], %1) are complete
and hence Baire’s category theorem holds in these spaces. We say that a typical
C[0, 1], or C1[0, 1] function has a certain property if the set of those functions which
do not have this property is of first category in C[0, 1], or in C1[0, 1]. (Certain authors
prefer using the term generic instead of typical.)

Let F ⊂ �
be bounded. By Nδ(F ) denote the minimum number of closed intervals

of length δ that cover F . Then the lower and upper box dimensions of F are defined

as

dimBF = lim inf
δ↘0

log Nδ(F )
− log δ

and dimBF = lim sup
δ↘0

log Nδ(F )
− log δ

,

respectively. If dimBF = dimBF then we call this number the box dimension of F

and we denote it by dimB F . By equivalent definitions 3.1 on p. 41 of [4], instead of
Nδ(F ) several other expressions can be used in the definition of box dimension, for
example, the number of those [kδ, (k + 1)δ], k ∈ � grid intervals which intersect F .

Suppose ϕ(0) = 0, ϕ(x) > 0 for x > 0, moreover ϕ is monotone increasing and
continuous from the right.

For A ⊂ �
we denote by |A| the diameter of A. For δ > 0 set

Hϕ
(δ)(A) = inf

{ ∑

j

ϕ(|Aj |) : A ⊂
⋃

j

Aj , |Aj | < δ

}
,

and

Hϕ(A) = lim
δ↘0

Hϕ
(δ)(A) = sup

δ>0
Hϕ

(δ)(A).

Then, (see Theorem 27 in [6], p. 50), Hϕ is a regular Borel measure and each set

of finite Hϕ measure contains an Fσ set of the same measure.

If ϕ(x) = xs then we obtain the s-dimensional Hausdorff measure which will be
denoted by Hs. Set

ϕ1−(x) =





0, if x = 0;

−x log x, if 0 < x < 1/e;

x, if 1/e 6 x.

For ease of notation the measure Hϕ1− will be denoted by H1− . Since dimH(A),
the Hausdorff dimension of A equals inf{s : Hs(A) = 0} one can easily see that if
0 < H1−(A) < ∞ then dimH(A) = 1 and H1(A) = λ(A) = 0, where λ denotes the

Lebesgue measure.

Let F be a closed set in [0, 1]. Consider the Cartesian product F × F , and its
projections in various directions. Let us denote by πβ/α the projection onto the line
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with tangent vector (α, β) of unit length, that is, α2 + β2 = 1 and πβ/α(x, y) =
αx + βy. Note that β/α is the slope of the line with tangent vector (α, β).
We say that property P holds for the closed set F ⊂ [0, 1] if there exists a dense

subset H of
�
for which πh(F × F ) ⊂ �

is nowhere dense for every h ∈ H . That

is, the image of F × F is nowhere dense under projections in some “dense set of
directions”.

For the definition of iterated function systems and self-similar sets satisfying the
Open Set Condition (OSC) we refer to Section 9 of [4]. We could not find an explicit

reference to the next lemma so we outline its proof.

Lemma 1. Let F ⊂ �
be a self-similar set which satisfies OSC and which is

of Hausdorff dimension s. Then the 2s-dimensional Hausdorff measure of F × F is

finite.
�������	�

. Recall from Theorem 9.3 of [4] p. 118 that dimH F = dimB F = s where
m∑

i=1

rs
i = 1 and F =

m⋃
i=1

Si(F ), with similarities Si of contraction ratio ri < 1. By

Corollary 7.4 of [4], dimH(F × F ) = 2 dimH(F ). Given δ > 0, as in the proof of
Theorem 9.3 of [4], choose and fix a finite set Q of finite sequences i = (i1, . . . , ik)
such that for every infinite sequence (i1, . . .) there is exactly one value of k with
i ∈ Q and

(1) (min
i

ri)δ 6 ri1 . . . rik
< δ.

Considering the sets Fi = Fi1,...,ik

def=Si1◦. . .◦Sik
(F ) we obtain a covering {Fi : i ∈ Q}

of F such that (see the last paragraph of the proof of Theorem 9.3 in [4])

∑

i∈Q

|Fi|s = |F |s
∑

i∈Q

(ri1 . . . rik
)s = |F |s.

Moreover, from
∑
i∈Q

(ri1 . . . rik
)s = 1 it also follows that Q contains at most

(min
i

ri)−sδ−s = N∗(δ) many sequences.

Now, F × F is covered by the sets Fi × Fj , (i, j) ∈ Q × Q of diameter less than√
2δ|F |. Therefore,

H2s
(
√

2δ|F |)(F × F ) < (N∗(δ))2(
√

2δ|F |)2s = (min
i

ri)−2s2s|F |2s.

This implies that H2s(F × F ) < ∞. �
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3. Main results

Theorem 2. Let F ⊂ [0, 1] be a closed set. If property P holds for F then the

typical C1[0, 1] function is one-to-one on F .

To prove Theorem 2 we need Claim 3 and Lemma 4.

�������

3. Let F be a closed subset of [0, 1] for which property P holds. Let N

be a positive integer and m′
i, c

′
i be given real numbers (i = 1, . . . , N). For any ε > 0

there exist real numbers mi 6= 0, ci for which |mi−m′
i| < ε, |ci− c′i| < ε and the sets

miF + ci are pairwise disjoint.
�������	�

. We will prove the following slightly stronger statement, denoted by SN :
Suppose we are given real numbers mi 6= 0, ci (i = 1, . . . , N), ε > 0, m′ and c′.

There exist real numbers m 6= 0 and c such that |m −m′| < ε, |c − c′| < ε and for

each i = 1, . . . , N the sets miF + ci are disjoint from mF + c. From this, Claim 3

follows by induction, taking m′ = m′
N+1 and c′ = c′N+1 and supposing that we have

already found suitable mi and ci for i = 1, . . . , N , by SN we can find suitable mN+1

and cN+1.
Statements SN are also proved by induction on N . We start with S1. We need to

choose m and c such that

(m1F + c1) ∩ (mF + c) = ∅.

Equivalently,

(
F +

c1

m1

)
∩

(
m

m1
F +

c

m1

)
= ∅, F ∩

( m

m1
F +

c− c1

m1

)
= ∅,

0 6∈ F −
( m

m1
F +

c− c1

m1

)
,

c− c1

m1
6∈ F +

(
− m

m1

)
F.

By property P we have a dense subsetH of � , for which for every h ∈ H , πh(F×F )
is nowhere dense. If α 6= 0 and β are such that β/α = h and α2 + β2 = 1, then

(2) πh(F × F ) = αF + βF = α(F + hF ).

Hence, for any h ∈ H the set F +hF is nowhere dense. SinceH is dense we can choose
m 6= 0 with |m−m′| < ε such that −m/m1 ∈ H . Thus F + (−m/m1)F is nowhere
dense and we can choose c with |c− c′| < ε such that (c− c1)/m1 6∈ F +(−m/m1)F .
This proves statement S1.

Suppose N > 1. By our induction hypothesis, SN−1 applied to the index set
i = 2, . . . , N , we can choose real numbers m′′ and c′′ such that |m′′ − m′| < ε/2,
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|c′′−c′| < ε/2 and for each i = 2, . . . , N the sets miF +ci are disjoint fromm′′F +c′′.

Since F is a compact set, m′′F +c′′ and miF +ci are also compact sets, so they have
a positive distance for each i = 2, . . . , N . Hence, for a sufficiently small δ > 0, for
any real numbers m ∈ (m′′− δ, m′′+ δ), c ∈ (c′′− δ, c′′+ δ) for each i = 2, . . . , N the

sets mF + c and miF + ci are still disjoint. Now we use statement S1 with m′′ and
c′′ instead of m′ and c′ and with min(ε/2, δ) instead of ε. We obtain m 6= 0 and c for

which |m−m′′| < min(ε/2, δ), |c− c′′| < min(ε/2, δ) and (mF + c)∩ (m1F + c1) = ∅.
By the choice of δ, (mF +c)∩ (miF +ci) = ∅ also holds for every i = 2, . . . , N . Since

|m′′ −m′| < ε/2 and |m−m′′| < min(ε/2, δ) 6 ε/2, we also have |m−m′| < ε. The
same way we obtain |c− c′| < ε. This proves statement SN . �

Lemma 4. Suppose we have disjoint closed intervals Ii = [xi, yi], i = 1, . . . , N ,

in [0, 1] and a function f ∈ C1[0, 1]. For every ε > 0 there exists γ > 0 such that if
the functions hi ∈ C1[0, 1] satisfy

|hi(xi)− f(xi)| 6 γ, |hi(yi)− f(yi)| 6 γ, max
x∈Ii

|hi(x)− f(x)| < ε,

and max
x∈Ii

|h′i(x) − f ′(x)| < ε (i = 1, . . . , N),

then there exists a function g ∈ C1[0, 1] for which g|Ii = hi|Ii (i = 1, . . . , N), and

max
x∈[0,1]

|g(x)− f(x)| < ε, and max
x∈[0,1]

|g′(x)− f ′(x)| < ε,

which implies %1(g, f) < 2ε.
�������	�

. The proof is straightforward and left to the reader. We only remark
that γ is needed to handle the cases when xi is too close to yi−1 to avoid that

(hi(xi)− hi−1(yi−1))/(xi − yi−1) differs too much from f ′(xi). �
�������	���	���������	��� ���

. By property P , the set F cannot contain any interval
so it is nowhere dense and closed. Consider those functions in C1[0, 1] which are one-
to-one on F . We have to prove that these functions form a residual set in C1[0, 1].
First we will prove that this set is Gδ . Then we will prove that it is dense. This will
prove the theorem.

Let

Gn = {f ∈ C1[0, 1] : ∀x, y ∈ F, |x − y| > 1/n =⇒ f(x) 6= f(y)}.

We claim that Gn is an open set in C1[0, 1]. LetM = {(x, y) ∈ � 2 : x, y ∈ F, |x−y| >
1/n}. The setM is clearly compact. Suppose that f ∈ Gn. Let us define f0 : M → �

as f0((x, y)) = f(x)− f(y). Then f0 is continuous and nowhere zero on the compact
set M . Hence, there exists an ε > 0 for which f0(M) ∩ (−ε, ε) = ∅. Take a function
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g ∈ C1[0, 1] for which max
x∈[0,1]

|f(x) − g(x)| = %0(f, g) 6 %1(f, g) < ε/2. Then the

function g0 : M → �
, g0((x, y)) = g(x) − g(y) is nowhere zero, therefore g ∈ Gn.

This proves that Gn is open. Put G =
∞⋂

n=1
Gn. It is clear that G is a Gδ set and if

f ∈ G then it is one-to-one on F .

Now we prove that G is dense. Take any f ∈ C1[0, 1]. Let ε > 0 be given. We
will show that there exists a function g ∈ C1[0, 1] which is one-to-one on F and

%1(f, g) < 6ε.
Since f ′ ∈ C[0, 1] there exists 0 < δ < 1 such that for any x, y ∈ [0, 1] if |x−y| 6 δ

then |f ′(x) − f ′(y)| < ε.
Let us cover the nowhere dense closed set F by disjoint intervals Ii = [xi, yi],

i = 1, . . . , N with yi − xi < δ for i = 1, . . . , N , and yi−1 < xi for i = 2, . . . , N.

Now choose real numbers m′
i, c

′
i such that f(xi) = m′

ixi + c′i and f(yi) = m′
iyi + c′i

hold (i = 1, . . . , N), that is, y = gi(x)def=m′
ix + c′i is the line passing through the

points (xi, f(xi)) and (yi, f(yi)). Thus, f(xi) = gi(xi) and f(yi) = gi(yi). By the
Mean Value Theorem there exists zi ∈ Ii for which m′

i = f ′(zi). Since the length of
Ii is at most δ we have

(3) max
x∈Ii

|f ′(x) −m′
i| = max

x∈Ii

|f ′(x) − g′i(x)| = max
x∈Ii

|f ′(x) − f ′(zi)| < ε.

Let γ > 0 be the constant we obtain from Lemma 4 applied with 3ε, for the

function f and intervals Ii. We can suppose that γ < ε.
By applying Claim 3 we obtain real numbers mi 6= 0, ci for which |mi−m′

i| < γ/2,
|ci − c′i| < γ/2 and the sets miF + ci are pairwise disjoint (i = 1, . . . , N). Let
hi : [0, 1] → �

be the function x 7→ mix + ci. Then

|hi(xi)− f(xi)| 6 |hi(xi)− gi(xi)|+ |gi(xi)− f(xi)| = |(mi−m′
i)xi + ci− c′i|+0 6 γ,

and similarly we obtain |hi(yi)− f(yi)| 6 γ. On the other hand by using (3)

max
x∈Ii

|h′i(x)− f ′(x)| 6 |mi −m′
i|+ max

x∈Ii

|m′
i − f ′(x)| < 2ε,

and

max
x∈Ii

|hi(x)− f(x)| 6 |hi(xi)− f(xi)|+ max
x∈Ii

∣∣∣∣
∫ x

xi

h′i(t)− f ′(t)dt

∣∣∣∣ 6 γ + δ · 2ε < 3ε.

Thus we can apply Lemma 4 for the functions f and hi with intervals Ii. By the
choice of γ we obtain a function g ∈ C1[0, 1] such that g|Ii = hi|Ii (i = 1, . . . , N),

and %1(f, g) < 6ε.

Observe that F ⊂
N⋃

i=1

Ii, g(x) = hi(x) = mix + ci on Ii with mi 6= 0, and the sets

miF + ci are pairwise disjoint. This clearly implies that g is one-to-one on F . �
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Theorem 5. If F ⊂ [0, 1] is closed and dimBF < 1/2 then a typical C1[0, 1]
function is one-to-one on F .

�������	�
. By Theorem 2 it is enough to show that property P holds for F . It is

not too difficult to see that dimB(F×F ) 6 2·dimBF which implies dimB(F×F ) < 1.
Projections cannot increase the lower box dimension, thus dimBπh(F × F ) < 1 for
any h ∈ � . Hence πh(F×F ) for any h cannot contain an interval and, being compact,

it is nowhere dense. Therefore property P holds. �

Theorem 6. Let F be a closed subset of [0, 1]. If the Hausdorff dimension of
F × F is less than one then a typical C1[0, 1] function is one-to-one on F .

�������	�
. An argument similar to the one in the proof Theorem 5 can be used,

the details are left to the reader. �

Theorem 7. Let F ⊂ [0, 1] be a self-similar set with OSC of dimension 6 1/2.
Then a typical C1[0, 1] function is injective on F .

�������	�
. If the dimension of F is smaller than 1/2 then Theorem 5 implies the

statement. Suppose that the dimension is 1/2. Then from the product formulae and
dimB F = dimH F (Corollary 7.4 and Theorem 9.3 of [4]) one can obtain that the

Hausdorff dimension of F×F is exactly one. Lemma 1 shows that its one dimensional
Hausdorff measure is finite, so F × F is clearly an irregular 1-set (for the properties
of irregular 1-sets we refer to Chapters 3 and 6 of [3] and Sections 5.2 and 6.2 of [4]).
We obtain from the projection characterization of 1-sets that almost every projection
of F × F has Lebesgue measure zero, and hence it is nowhere dense. This implies
that property P holds for F . �

Definition 8. Suppose 0 < α < 1 and t = (1 − α)/2. The middle-α Cantor
set, denoted by Cα, is the self-similar set generated by the similarities ϕ1 : x 7→
1
2 (1− α)x = tx and ϕ2 : x 7→ 1 + 1

2 (1− α)(x − 1) = (1− t) + tx. When α = 1/3 we
obtain the usual triadic Cantor set.

Let Φ be the operator on compact subsets of
�
for which Φ(F ) = ϕ1(F )∪ ϕ2(F ).

Put Fn = Φn([0, 1]), (n = 0, 1, . . .), which is a union of 2n intervals of length tn.

Then Cα =
∞⋂

n=0
Fn.

Set h0(x) = x/2.
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t = 1−α
2

α t

t

α

t

f

tn−1

Qn−1

g

Figure 1. f and g

Lemma 9. Suppose that α < 1/2 and g ∈ C1[0, 1] is such that g([0, 1])∩[0, 1] 6= ∅,
and g(Cα) ∩ Cα = ∅. Then, %1(g, h0) > max

x∈[0,1]
|g′(x) − 1/2| > δ for some δ > 0

depending only on α.

�������	�
. Suppose that f ∈ C1[0, 1] is such that the graph of f , {(x, f(x)) : x ∈

[0, 1]}, intersects the square [0, 1] × [0, 1], but does not intersect F1 × F1 (which

consists of four squares each of side length t, see the left side of Figure 1). By the
location of these four squares and the Mean Value Theorem one can easily see that

there exists x ∈ [0, 1] for which either f ′(x) < α (when the graph of f has points on
the two opposite vertical sides of [0, 1]× [0, 1]), or f ′(x) > t/α = (1 − α)/2α > 1/2
(when the graph of f has a point on one of the horizontal sides of [0, 1]× [0, 1], see
the left side of Figure 1), hence max

x∈[0,1]
|f ′(x) − 1/2| > δ for some δ > 0 depending

only on α.

Suppose that g ∈ C1[0, 1] is such that g([0, 1]) ∩ [0, 1] 6= ∅ and g(Cα) ∩ Cα = ∅.
That is, the graph of g does not intersect Cα ×Cα. Since Cα ×Cα =

∞⋂
n=0

(Fn × Fn),

there exists a smallest n ∈ � for which the graph of g intersects Fn−1 × Fn−1 but

does not intersect Fn × Fn. Then there is a subsquare Qn−1 of Fn−1 × Fn−1 of side
length tn−1 which contains points of the graph of g (see the right side of Figure 1).

Since the graph of g does not intersect the four subsquares Qn−1 ∩ (Fn ×Fn) of side
length tn, an argument similar to the one stated above for f shows that there is an

x ∈ [0, 1] for which |g′(x) − 1/2| > δ. �

Theorem 10. A typical C1[0, 1] function is injective on Cα if and only if

dim(Cα) 6 1/2 (that is, 1/2 6 α < 1).
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�������	�
. If α > 1/2 then the dimension of Cα is at most 1/2, so Theorem 7

yields the proof.
Suppose that α < 1/2. Recall that h0(x) = x/2 and set h1(x) = x. Given α, by

Lemma 9 choose δ > 0. For any given functions f0, f1 ∈ C1[0, 1] satisfying

(4) %1(f0, h0) < δ/100 and %1(f1, h1) < δ/100

the function f(x) = f−1
1 (f0(x)) is such that %1(f, h0) < δ and the graph of f

intersects [0, 1] × [0, 1]. Hence by Lemma 9, f(Cα) ∩ Cα 6= ∅ and equivalently
f0(Cα) ∩ f1(Cα) 6= ∅.
Now suppose that g0(x) = x/2 for x ∈ [0, t], g0(x) = x + t − 1 for x ∈ [1 − t, 1]

and otherwise g0 is defined so that g0 ∈ C1[0, 1]. We claim that any g ∈ C1[0, 1]
satisfying

(5) %1(g, g0) < δ/400

is not one-to-one on Cα. Consider f0(x) = g(tx)/t and f1(x) = g(tx + 1 − t)/t for
x ∈ [0, 1]. Then (5) implies that f0 and f1 satisfy (4) and hence f0(Cα)∩f1(Cα) 6= ∅,
that is, there exists x, y ∈ Cα such that g(tx)/t = g(ty +1− t)/t. Since tCα∩ (tCα +
1− t) = ∅ and tCα ∪ (tCα +(1− t)) = Cα, if we let x′ = tx and y′ = ty +(1− t) then
x′, y′ ∈ Cα, x′ 6= y′ and g(x′) = g(y′), showing that g is not one-to-one on Cα. �

Theorem 11. There exists a closed set F ⊂ [0, 1] of Hausdorff dimension one
such that a typical C1[0, 1] function is one-to-one on F .
�������	�

. The main idea of this proof is based on Lemma 1.3 of [2].

Choose a countable dense set T = {ti : i ∈ � +} ⊂ �
.

Let K ⊂ [0, 1] be any compact 1−-set, that is, 0 < H1−(K) < ∞. Define a new
measure H1−

K by H1−
K (H) = H1−(H ∩K). Hence H1−

K is a finite Borel measure.

Fix an index i. Set M = {(x, y) : x + y ∈ tiK} ⊂ � 2 . Clearly, M is a Borel set,

and hence H1−
K × λ measurable. We apply the Fubini theorem to the characteristic

function of M . The vertical sections of M are of the form

{y ∈ � : x + y ∈ tiK} = {y ∈ � : y ∈ tiK − x} = tiK − x.

Since K is a compact 1− set, its Lebesgue measure is zero, hence all the vertical
sections are of Lebesgue measure zero. By the Fubini theorem (H1−

K ×λ)(M) = 0, and
hence λ-almost every horizontal section of M is of H1−

K -measure zero. A horizontal

section of M is {x ∈ �
: x ∈ tiK − y} = tiK − y. From this it follows that for

λ-almost every y we have 0 = H1−
K (tiK − y) = H1−(K ∩ (tiK − y)). Therefore, we
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can choose a countable dense set D ⊂ �
such that H1−(K ∩ (tiK + d)) = 0 for every

d ∈ D.

Let B = K \ ⋃
d∈D

(tiK + d). Then B is a Borel set of the same H1−-measure as K.

We claim that

(6) D ∩ (B − tiB) = ∅.

Suppose that for some d ∈ D we have d ∈ B − tiB, that is, (d + tiB) ∩ B 6=
∅. Since B ⊂ K \ (tiK + d) we have (d + tiB) ∩

(
K \ (tiK + d)

)
6= ∅. Thus

(d + tiK) ∩
(
K \ (tiK + d)

)
6= ∅. But this is impossible.

Let Fi be a compact subset of B for which H1−(Fi) > H1−(B) · (1 − 4−i) =
H1−(K) · (1 − 4−i). By (6), D ∩ (Fi − tiFi) = ∅. Using (2) with h = −ti one can
see that Fi − tiFi is similar to the set π−ti(Fi × Fi), that is, to the image of Fi × Fi

under the projection onto the line with slope −ti passing through the origin. Since
D is dense, the compact set π−ti(Fi × Fi) is nowhere dense.
Now consider the same construction for each index i. We obtain compact sets Fi

with measures H1−(Fi) > H1−(K) · (1− 4−i). Let F =
∞⋂

i=1

Fi. Then 0 < H1−(F ) <

∞, that is, F is a 1−-set and for each index i the set π−ti(F × F ) is nowhere dense.
Since T = {ti : i ∈ � +} is dense in � , property P holds for F . Thus, the typical

C1[0, 1] function is one-to-one on F . �

Theorem 12. There exists a closed F ⊂ [0, 1] such that dimB F = 1/2 and the
set of those f ∈ C1[0, 1] for which f |F is one-to-one is not dense in C1[0, 1].
�������	�

. Set F1,1 = [1/2, 1], l1,1 = 1/2 = λ(F1,1), r1,0 = 1, r1,j = 4−2j+1 for
j = 1, 2, . . ., and l1,j = l1,j−1r

2
1,j−1 = l1,1(r1,1 . . . r1,j−1)2 = 1

2 (4−1 . . . 4−2j+3)2 for
j = 2, 3, . . . .

We also put F2,1 = [0, 1/4], l2,1 = 1/4 = λ(F1,2), r2,0 = 1, r2,j = 4−2j = r1,j/4 for
j = 1, 2, . . ., and l2,j = l2,j−1r

2
2,j−1 = l2,1(r2,1 . . . r2,j−1)2 = 1

4 (4−2 . . . 4−2j+2)2 for
j = 2, 3, . . ..

Direct computation shows that

(7) 2r1,kl1,k = l2,k and 2r2,kl2,k = l1,k+1.

Suppose that j > 1, F1,j and F2,j are defined and they consist of the union of
systems of disjoint closed intervals I1,j and I2,j , respectively. We also suppose that

each interval I belonging to Ii,j , (i = 1, 2) is of length li,j and

(8) #Ii,j = (ri,0 . . . ri,j−1)−1 for i = 1, 2.
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Next we define Fi,j+1 ⊂ Fi,j and Ii,j+1. Suppose that I = [a, b] ∈ Ii,j . Then

b = a+ li,j . For m = 1, . . . , r−1
i,j we consider the intervals Im = [a+(m−1)li,jri,j , a+

(m−1)li,jri,j +li,jr
2
i,j ], that is, we divide I into r−1

i,j many equal subintervals of length
ri,j li,j and select in each piece the “first” closed sub-subinterval of length r2

i,j li,j .

Then λ(Im) = li,j+1 for all m. We will define Fi,j+1 so that Fi,j+1 ∩ I =
r−1

i,j⋃
m=1

Im.

We repeat this procedure in all I ∈ Ii,j . Let Ii,j+1 be the set of the intervals Im

(m = 1, . . . , r−1
i,j ) for all the intervals I ∈ Ii,j and Fi,j+1 =

⋃ Ii,j+1. It is clear that
#Ii,j+1 = r−1

i,j #Ii,j , showing that (8) holds for j + 1.

We set Fi =
∞⋂

j=1

Fi,j , (i = 1, 2).

Suppose f0(x) = x on [0, 1/4] and f0(x) = x − 1
2 on [1/2, 1] and otherwise f0 is

defined so that f0 ∈ C1[0, 1].
Set ε0 = 1/1000 and suppose %1(f, f0) < ε0 for some f ∈ C1[0, 1]. We show that f

is not one-to-one on F = F1∪F2 by finding x ∈ F1 and y ∈ F2 such that f(x) = f(y).
From %1(f, f0) < ε0 it follows that for x ∈ [0, 1/4] ∪ [1/2, 1]

(9) 1− ε0 < f ′(x) < 1 + ε0 and |f(0)|, |f(1/2)| < ε0.

Set I1,1 = F1,1 = [1/2, 1] and I2,1 = F2,1 = [0, 1/4]. Observe that by (7),
λ(I2,1) = l2,1 = 2r1,1l1,1. Recall that during the definition of F1,2 we subdivide

I1,1 into subintervals of length r1,1l1,1 and in each such subinterval we keep the
first sub-subinterval of length r2

1,1l1,1. By (9) and the Mean Value Theorem we can

select an interval I1,2 ∈ I1,2 such that f(I1,2) ⊂ f(I2,1), I1,2 ⊂ I1,1. Now, by (7),
λ(I1,2) = l1,2 = 2r2,1l2,1. During the definition of F2,2 we subdivide I2,1 into subinter-

vals of length r2,1l2,1 and in each such subinterval we keep the first sub-subinterval
of length r2

2,1l2,1. By (9) and the Mean Value Theorem we can select an interval

I2,2 ∈ I2,2 such that f(I2,2) ⊂ f(I1,2), I2,2 ⊂ I2,1.

Repeating the above steps one can select sequences of intervals I1,1, I1,2, . . . and

I2,1, I2,2, . . . such that f(I2,1) ⊃ f(I1,2) ⊃ f(I2,2) ⊃ f(I1,3) ⊃ f(I2,3) ⊃ . . ., I1,1 ⊃
I1,2 ⊃ I1,3 ⊃ . . ., I2,1 ⊃ I2,2 ⊃ I2,3 ⊃ . . ., and Ii,j ∈ Ii,j , (i = 1, 2, j = 1, 2, 3, . . .).

Then for x =
∞⋂

j=1

I1,j ∈ F1 and y =
∞⋂

j=1

I2,j ∈ F2 we have f(x) = f(y).

By Theorem 5, dimBF > 1/2. So we need to show that dimBF 6 1/2.
For a given δ, (0 < δ < l1,1) choose k such that

(10) l1,1(r1,0 . . . r1,k−1)2 > δ > l1,1(r1,0 . . . r1,k−1r1,k)2,

that is, l1,k > δ > l1,k+1. By (7), l2,k+1 < l1,k+1. Since Fi,k+1 consists of
(ri,0 . . . ri,k)−1 many intervals of length li,k+1 < δ, clearly Nδ(Fi,k+1) 6 (ri,0 . . .
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ri,k)−1 (i = 1, 2). Hence from F1 ⊂ F1,k+1, we obtain

log Nδ(F1) 6 log Nδ(F1,k+1) 6 (1 + 3 + . . . + (2k − 1)) log 4,

and from F2 ⊂ F2,k+1 we obtain

log Nδ(F2) 6 log Nδ(F2,k+1) 6 (2 + 4 + . . . + 2k) log 4.

By an elementary calculation

(11) log Nδ(Fi) 6 (k2 + k) log 4, (i = 1, 2).

From (10) we obtain log δ 6 log(l1,1(r1,0 . . . r1,k−1)2) = log l1,1−2(log 4)(1+3+ . . .+
(2k − 3)) = log l1,1 − 2(k2 − 2k + 1) log 4. Using (11)

dimB(Fi) = lim sup
δ↘0

log Nδ(Fi)
− log δ

6 lim sup
k→∞

(k2 + k) log 4
− log l1,1 + 2(k2 − 2k + 1) log 4

=
1
2
.

Therefore the upper box dimension of F = F1 ∪F2 is also at most 1/2, which proves
the theorem. �
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