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PURE SUBGROUPS

Ladislav Bican, Praha
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Abstract. Let λ be an infinite cardinal. Set λ0 = λ, define λi+1 = 2
λi for every

i = 0, 1, . . ., take µ as the first cardinal with λi < µ, i = 0, 1, . . . and put κ = (µℵ0)+.
If F is a torsion-free group of cardinality at least κ and K is its subgroup such that F/K is
torsion and |F/K| � λ, then K contains a non-zero subgroup pure in F . This generalizes
the result from a previous paper dealing with F/K p-primary.
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By the word “module” we mean a unital left R-module over an associative ring R

with an identity element. Dualizing the notion of the injective envelope of a module

[4] H. Bass [1] investigated the projective cover of a module and characterized the
class of rings R over which every module has a projective cover. By a projective

cover of a module M we mean an epimorphism ϕ : F → M with F projective and
such that the kernel K of ϕ is superfluous in F in the sense that K +L = F implies

L = F whenever L is a submodule of F . Recently, the general theory of covers
has been studied intensively. If G is an abstract class of modules (i.e.G is closed
under isomorphic copies) then a homomorphism ϕ : G → M with G ∈ G is called
a G-precover of the module M if for each homomorphism f : F → M with F ∈ G
there is g : F → G such that ϕg = f . A G-precover of M is said to be a G-cover if
every endomorphism f of G with ϕf = ϕ is an automorphism of G. It is well-known

(see e.g. [8]) that an epimorphism ϕ : F → M , F projective, is a projective cover of
the module M if and only if it is a P-cover of M , where P denotes the class of all
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projective modules. Denoting by F the class of all flat modules, Enochs’ conjecture
[5] whether every module over any associative ring has an F -cover remains still open.
In the general theory of precovers several types of purities have been used. In

some cases (see e.g. [8], [7]) the existence of pure submodules in the kernels of some

homomorphisms plays an important role. Using the general theory of covers, in
[3] the main result of this note appears as a corollary. However, the direct proof

presented here is of some interest because the existence of non-zero pure submodules
of “large” flat modules contained in submodules with “small” factors is sufficient

for the existence of flat covers (see [3]). The purity here is meant in the sense of
P.M.Cohn.

All groups are additively written abelian groups. If P is any set of primes then
the P -purity of a subgroup S of a group F means its p-purity for each prime p ∈ P .

Other notation and terminology are essentially the same as in [6].
We start with three preliminary statements, the first extending the result of [2].

Lemma 1. Let λ be an infinite cardinal. If F is a torsion-free group of cardinality
greater than 2λ and K is its subgroup such that the factor-group F/K is p-primary

for some prime p and |F/K| � λ, then K contains a subgroup S pure in F such that

|F/S| � 2λ.

�����. By [2; Theorem 1] K contains a non-zero subgroup pure in F . Since
pure subgroups are closed under unions of ascending chains, there is a maximal

subgroup S of K pure in F . If |F/S| > 2λ then F/S/K/S ∼= F/K is p-primary and
so K/S contains a non-zero subgroup T/S pure in F/S. Thus T ⊆ K is pure in F ,

and so the proper inclusion S ⊂ T contradicts the maximality of S. �

Lemma 2. If K is a subgroup of a torsion-free group F , then for any prime

p the subgroup F (p) consisting of all elements x ∈ F such that pkx ∈ K for some

non-negative integer k is p-pure in F .

�����. Obvious. �

Lemma 3. Let λ be an infinite cardinal and let P ⊆ Π be any subset of the set
Π of all primes. Further, let F be a torsion-free group of cardinality greater than

2λ and K its subgroup such that K is P -pure in F and |F/K| � λ. Then for each

prime p ∈ Π\P there is a subgroup S of K such that S is P -pure in F , P = P ∪{p},
and |F/S| � 2λ.

�����. If (F/K)p = 0, then it clearly suffices to take S = K. In the opposite

case we set F (p) = {x ∈ F | pkx ∈ K for a non-negative integer k} and we obviously
have 2λ < |K| � |F (p)| � |F |, F (p)/K is p-primary and |F (p)/K| � λ. By Lemma 1,
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K contains a subgroup S pure in F (p) such that |F (p)/S| � 2λ. The transitivity
of p-purity and Lemma 2 now yield that S is p-pure in F . Morever, S is pure in
F (p), hence in K and consequently it is P -pure in F by the hypothesis and the
transitivity of P -purity. Finally, F/S is an extension of F (p)/S by F/F (p), where

|F (p)/S| � 2λ, |F/F (p)| � |F/K| � λ < 2λ, which yields |F/S| � 2λ. �

Let λ be an infinite cardinal. Set λ0 = λ, define λi+1 = 2λi for every i = 0, 1, . . .,

take µ as the first cardinal with λi < µ, i = 0, 1, . . ., and put κ = (µℵ0)+. Now we
are ready to prove our main result.

Theorem. Let λ be an infinite cardinal. If F is a torsion-free group of cardinality
at least κ and K is its subgroup such that the factor-group F/K is a torsion group

of cardinality at most λ, then K contains a non-zero subgroup pure in F .

�����. Let Π = {p1, p2, . . .} be any list of elements of the set Π of all primes
and for every i = 1, 2, . . . let Pi = {p1, p2, . . . , pi}. By Lemma 3 there is a subgroup
S1 of K P1-pure in F such that |F/S1| � 2λ0 = λ1. Continuing by induction let

us suppose that the subgroups S1, S2, . . . , Sk of K have been already constructed in
such a way that

Si+1 � Si, i = 1, . . . , k − 1,
Si is Pi-pure in F, i = 1, 2, . . . k,

|F/Si| � λi, i = 1, 2, . . . , k.

An application of Lemma 3 yields the existence of Sk+1 ⊆ Sk such that Sk+1 is

Pk+1-pure in F and |F/Sk+1 | � 2λk = λk+1. Setting S =
∞⋂

i=1
Si and assuming that

the equation pl
jx = s, s ∈ S, pj ∈ Π is solvable in F we see that s ∈ Sk for all

k � j. However, Sk is pj-pure in F , which means that x ∈
∞⋂

k=j

Sk =
∞⋂

i=1
Si = S,

showing the purity of S in F . It remains now to show that S in non-zero. However,

there is a natural embedding ϕ : F/S →
∞∏

i=1
F/Si given by the formula ϕ(x + S) =

(x + S1, x + S2, . . .). Now the inequalities |F/Si| � λi < µ yield |F/S| � µℵ0 < κ,

hence |S| = |F | � κ and the proof is complete. �

Corollary 1. Under the same hypotheses as in Theorem, K contains a subgroup
S pure in F such that |F/S| � µℵ0 .

�����. It runs along the same lines as that of Lemma 1. �
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Corollary 2. If F is a torsion-free group of cardinality at least κ and K is a

subgroup of F such that |F/K| � λ then K contains a non-zero subgroup S pure in

F .

�����. Let L/K be the torsion part of F/K. Since |L| � |K| = |F | � κ

and |L/K| � |F/K| � λ, K contains a non-zero subgroup S pure in L by Theorem.

Hence S is pure in F , L being so by its choice. �
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