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ON NUMERICAL SOLUTION OF WEIGHT MINIMIZATION 

OF ELASTIC BODIES WEAKLY SUPPORTING TENSION 

PETR KOČANDRLE, PETR RYBNÍČEK, Plzeň 

(Received March 31, 1993) 

Summary. Shape optimization of a two-dimensional elastic body is considered, provided 
the material is weakly supporting tension. The problem generalizes that of a masonry dam 
subjected to its weight and to the hydrostatic pressure. A part of the boundary has to be 
found so as to minimize a given cost functional. The numerical realization using a penalty 
method and finite element technique is presented. Some typical results are shown. 

Keywords: shape optimization, weight minimization, penalty method, masonry-like ma
terials, finite elements 
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INTRODUCTION 

The problems of weight minimization of elastic bodies weakly supporting tension 
have been studied by Hlavacek and Kfizek [1], [2]. 

This paper presents the numerical realization of two different weight minimization 
problems (problems 1 and 2). The first was proposed in [1], where also the con
vergence of both the theoretical and the approximate solution was proved. On the 
basis of the analysis of the first problem, the second shape optimization problem is 
proposed and studied. 

Finite element method using piecewise linear triangular elements is applied for the 
solution of elastostatic problems of both models under consideration. Then a penalty 
approach enables us to remove both the mechanical and the geometrical constraints 
and thus to simplify the resulting nonlinear programming problem. 
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1. FORMULATION OF PROBLEM 1 

Let us consider a class of admissible domains tt(v), where 

Q(v) = {x = (xx,x2) I 0 < xi < v(x2), 0 < x2 < L) 

and the function v(x2) — the design variable — belongs to the set of admissible 

functions 

Uлd = {vЄ C^ҶfrL]) | a ^ v(x2) ţ ß, 

dv 
dx2 

<Ѓv 
< Ci in [0,L], |-j-4j ^ C2 a.e. in [0,L] | 

with given positive constants a, /3, Ci, C2, L, (a < (3). Here C^^QO,L]) denotes 

the space of functions with Lipschitz-continuous derivatives. 
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Figure 1. Problem 1—system under study 

We shall consider the following boundary value problem (plane strain) 

( ì . i ) 

+7; = o, 
__ 1 / dui duj \ 

£ij^2\dx~+dx'i)1 

<y%j = Eijkieki in tt(v), 

Ui = 0 on Tu, 

dijUj = gi on T0, i, j = 1,2, 

where Oij, Sij are the components of the stress and strain tensors, respectively, Ui are 

the components of the displacements and rii are the components of the unit outward 

normal with respect to r 0 . 
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A (weak) solution of the elastostatic problem (1.1) is described as follows: 

(1.2) { Find u(v) G V(v) si 

a(y;u(v),w) = F(v 

such that 

w) Vw G V(v), 

where 

V(v) = {we[H1(Sl)]2 \w = 0 onr u (v ) } , 

a(v;u(v),w) = / Eijkleij(w)ekl(u(v)) dx, 
Jn{v) 

F(v; w) = fiWi dx+ giWi dT 
Jn{v) Jr0 

with / { G [L2(ns)]
2 and 9i G [L2(r0)]2 (ils = (0,6) x (0,L), S > /3). Here H1^) 

denotes the standard Sobolev space W1 ,2(n). 
Let us consider the penalized cost functional 

1 -r— 
(1.3) j£(v,a)=j(v) + -^Si(v,a), e > 0, 

£ i=i 

where 

j(v) = / v(x2)dx2, 
Jo 

Si(v, <r) = (an — A;)+ dx, i = 1,2 (no sum), 
JQ{V) 

sz(v,a) = (det(a - AC)) dx, (K{J = k • 6ij), 
JQ{V) 

where ( ) + and (•)"" denote the positive and negative parts, respectively. The func
tions j(v) and s\(v,a), S2(v,a), s$(v,a) represent the optimized area and material 
constraints, respectively, k is a given positive constant representing the maximum 
admissible tensile stress. 

We define the Optimal Design Problem: 

!

Find v* G Uad such that 

j£(v*,a(v*))^j£(v,a(v)) VuGUad, 

where a(v) denotes the stress field which follows from the solution u(v) of the state 
problem (1.2). 
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Figure 2. Scheme of the computational model 

2 . NUMERICAL REALIZATION OF PROBLEM 1 

After approximating the state problem (1.2) and the penalized cost functional 
(1.3) by finite elements we get the equivalent mathematical programming problem 
for fixed h > 0 in matrix notation. 

Let us denote 

X = ( X o , A ^ , . . . , X , v ) T - ^ 

the vector of the optimization parameters. 

For a fixed h the approximate solution uh(vh) is given by the vector of nodal values 

q = q(x), which is the solution of the linear system of equations 

(2.1) K(x)q = f(x), 

where K(x) is the stiffness matrix and f(x) is the force vector. The approximated 
form of (1.4) is equivalent to the mathematical programming problem 

(2.2) 
Find X* E U such that 

J(X*,q(X*))<J(X,q(X)) VX G U, 

where q(x) solves (2.1) and U denotes the set of the admissible design vectors given 

by 

U={XeRN+1 \a^Xj^0, j = 0, l , . . . ,JV; 

-Cth^Xj+i-Xj^Cih, j = 0 , l , . . . , i V - l ; 

- C2h
2 < Xj+2 - 2Xj+1 + Xj < C2h

2, j = 0 , 1 , . . . , N - 2}. 
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2.1. Sensitivity analysis. According to [1] the gradient of the cost functional 

(1.3) with respect to X is given by 

(2.3) VxJ(X,q(X)) = VxJ(X,q) + (Vxf(X) - VXK(X) • q) T p, 

where p is the solution of the adjoint state problem 

(2.4) K(X)p = V gJ(X,q). 

The following sensitivity analysis is derived in detail in [3]. The components of the 

stiffness matrix and the force vector of the e-th finite element are given by 

U(e) _ _L_Q(e)TC(e)B(e) 
"~2_4M ' 

fW = f(g) + f(*) = / N ( e ) T F( e ) dx + /LTLP(e> d/. 
JA(«) Jl 

Here N and B contain the values of the elements basis functions and their derivatives, 

respectively, A is the element area, F and P are the vectors of the volume forces and 

surface tractions, respectively, L contains the basis functions of the ID element and 

/ is the length of the element side loaded with surface tractions. 

It is obvious that we obtain the global stiffness matrix and the force vector by 

summing over all elements: 

NE NE 

K - _ > W f = __f ( e ). 
e = l e = l 

where NE is the number of all finite elements. 

The derivatives of the e-th element stiffness matrix and the force vector with 

respect to the optimization parameter Xj are given by 

^ W = 2 B ( e ) T ( X ) C ( e ) ^ W ^ ) 
dXj K ' dX5 

+ B W r ( X ) . C W B W ( X ) - ^ - , 
oXj 

af(«)(x) = i a ^ ) F ( e l 

дXj 3 дXj 

It is obvious that 

3K(X) _ ^ 3KW(X) 

df(x) _ £2, af(g)(x) 
~dX~ ~ - ^ ~dX~-

3 e=Nl 3 
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Here we sum only over the elements at least one node of which lies on the j - th 

optimization parameter (see Fig. 3). 

x2 

Ы 

Xi 

Figure 3. Detail of the computational model 

The partial derivative of the cost functional J(X,q(X)) with respect to the j - th 

optimization parameter is given by (see Fig. 3) 

(2.7) 

дJ(X,ą) 
дXj 

. 1 (h 
= Һ+Å2[ (<-<?> - fc)+ + (<#> - fc)+ + ( ,£> - fc)+ + (<#> - fc)+ 

+ (І*ÌÏ> - щ*w - k) - *[u

2

)2y + ((aí? - *)(«#> - fc) - wy 
N2 r 6 6 

+ £ Я(^>-fc)5:(Cß)i:>'gW + Я(4e>-fc)5:(CЯ)W'g(
e> 

e=Nl *• Г=l Г=l 

- H( - det(a - к)(e>) J2 ((<-&> " ЩCBft} + (aЙ> - *)(C8)£>' 
Г=l 

- 2a$(CB)g)qҢЛW}, 0 < j < N. 

Here (CB)'{ r denotes the component (i,r) of the partial derivative of the product 

of matrices C and B with respect to Xj {-^-(CB)). It is important to note that for 

j = 0 and j = N the formula (2.7) has to be modified. 

The vector VgJ(X,q) is obtained by summing over all finite elements 

NE 

(2.8) V,Ј(X,q) = 5:V,j(e>(X,q). 
e = l 
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For the e-th finite element we obtain 

^ ^ = I [ * ( , « - fc)(CB)W + * ( < # - *)(CB)W 

_ # ( __ det(a- - * )«) ((CB)[%£ - k) 

+ ( C B ) ^ ( ^ - fc) - 2a$(CB)$)] A^\ 

r = 1,...,6, 

where (CB)iir denotes the component (i,r) of the product of matrices C and B. 

3. FORMULATION OF PROBLEM 2 

On the basis of the numerical results obtained from the solution of problem 1, the 
second model is suggested. 

Figure 4. Problem 2—system under study 

The cross section of the body considered represents the domain Q, where 

n(v) = fti(v) U ft2 (v(0)), (n2 (v(0))—dashed region), 

Vt\(v) = {x = (x\,x2) | 0 < xi < v(x2), 0 < x2 < L}, 

Q2(v(0)) = {x = (xux2) | -7 i < xi < v(0) +71, - 7 2 < x2 < 0} 

and the function v(x2) belongs to the set Uad which was defined above, 71, 72 are 
given positive constants. The boundary value problem (1.1) and the weak solution 
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(1.2) remain unchanged, only the domain il(v) and the boundary Tu are different 
(see Fig. 4). It is important to note that now two different types of material are 
under consideration (material I — dam, material II — foundation). 

Let us define the penalized cost functional (1.3) on the region fli(v). The Optimal 
Design Problem is defined as in (1.4). 

4. NUMERICAL REALIZATION OF PROBLEM 2 

The numerical realization of problem 2 is similar to that of problem 1. We shall 
concentrate only on the differences in the sensitivity analysis, which result from the 
fact that the cost functional is defined on the region fii. The computation of the 

vector VgJ(X,q) is as in Section 2.1, only the summation in (2.8) is over elements 
belonging to the region fii. 

The computation of 
dJ(X,q) 

dXj ' 

and 

0 ^ j ^ N 

^ W *W 0<j<N 
dXj ' dxt'

 u < ^ i V 

is the same as in Section 2.1. For j = 0, in the formulas (2.5) and (2.6) we have to 
sum also over the elements belonging to the region tt2 at least one node of which lies 
on the optimization parameter K0. 

5. NUMERICAL EXAMPLES 

In this section we present numerical results of the problem 1 and 2. The state prob
lem (2.1) and the adjoint problem (2.4) were solved using symmetric Gauss-Doolitle 
decomposition. In optimization we have used the method of steepest descent with 
the adaptive step size determination. The geometrical constraints were treated by 
means of a penalty method as well. All computations were done in double precision 
using VAX 4000/VLC computer. 

The following results (Examples 5.1-5.4) have been obtained for L = 10 m, a = 
1 m, 0 = 20 m, 7! = 0.2X5 (Kg—initial length of K0), 72 = 0.4L, Cx = 1.5, 
C2 = 1., k = 2000 Pa, E = 2.1 x 1010 Pa (Young's modulus), /i = 0.2 (Poisson's 
ratio), /1 = 0, f2 = 21582 Nm"3 , gi{x2) = 9810 • (L - x2) [Nm~2], g2 = 0. As 
to problem 2, the material of the foundation was considered to be the same as the 
material of the dam. 
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E x a m p l e 5.L Problem 1 
Number of degrees of freedom 160, number of iterations — 24, CPU — 4 min. 

Figure 5. (h = L/10). Initial cost = 66.245. Final cost = 53.525. 

E x a m p l e 5.2. Problem 2 
Number of degrees of freedom — 286, number of iterations — 81, CPU — 14 min. 

Figure 6. (h = L/10). Initial cost = 66.245. Final cost = 53.H8. 
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E x a m p l e 5.3. Problem 1 

Number of degrees of freedom — 500, number of iterations — 35, CPU — 25 min. 

Figure 7. (h = L/20). Initial cost = 86.243. Final cost = 68.747. 

E x a m p l e 5.4. Problem 2 

Number of degrees of freedom — 996, number of iterations — 62, CPU — 63 min. 

Figure 8. (h = L/20). Initial cost = 86.243. Final cost = 57.765. 
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6. CONCLUSIONS 

Problem 2 better represents physical reality since the elastic body is considered 
with sufficiently large surroundings — the foundation. As to problem 1, the pre
scribed zero displacements along the bottom of the optimized domain cause an unre-
alistically high stress peak. Namely, at the place loaded with maximum hydrostatic 
pressure the zero displacement is prescribed as well. 

Numerical results confirm this hypothesis. While for h = L/10 the final value of 
the cost functional for problem 1 is greater than that of problem 2 by 0.7 percent, for 
refined mesh — h = L/20 the difference increases up to 19 percent. The numerical 
results presented show that it is not sufficient for the conclusions to consider mesh 
characterized by ft = L/10, because such a mesh is not fine enough to express the 
stress singularity in problem 1. 

The authors intend to investigate elastic bodies with two curved sides (design 
variables) in a forthcoming paper. 
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