
Applications of Mathematics

Todd Arbogast; Clint N. Dawson; Mary F. Wheeler
A parallel algorithm for two phase multicomponent contaminant transport

Applications of Mathematics, Vol. 40 (1995), No. 3, 163–174

Persistent URL: http://dml.cz/dmlcz/134289

Terms of use:
© Institute of Mathematics AS CR, 1995

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/134289
http://dml.cz


40 (1995) APPLICATIONS OF MATHEMATICS No. 3, 163-174 

A PARALLEL ALGORITHM FOR TWO PHASE 

MULTICOMPONENT CONTAMINANT TRANSPORT 

T O D D ARBOGAST, CLINT N. DAWSON, MARY F. WHEELER, Houston 

Summary. We discuss the formulation of a simulator in three spatial dimensions for a 
multicomponent, two phase (air, water) system of groundwater flow and transport with 
biodegradation kinetics and wells with multiple screens. The simulator has been devel
oped for parallel, distributed memory, message passing machines. The numerical proce
dures employed are a fully implicit expanded mixed finite element method for flow and 
either a characteristics-mixed method or a Godunov method for transport and reactions 
of dissolved chemical species in groundwater. Domain decomposition, symmetric and non-
symmetric solvers have been developed for solving the systems of equations resulting from 
the discretization of the model. Results from applying this simulator to a bioremediation 
field problem with several injection and production wells each having multiple screens are 
presented. 

Keywords: multicomponent contaminant transport, characteristic-mixed Godunov 
method, domain decomposition 
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1. INTRODUCTION 

Microbial biodegradation (the decomposition of contaminants by microorganisms) 
is an important process for rendering certain contaminants harmless. It is a natural 
process that can be accelerated to protect a potable water supply. U.S. Environmen
tal Protection Agency studies [20] have shown that this strategy can result in almost 
complete removal of contaminants, whereas many alternative restoration strategies 
have not proven as effective. Biodegradation technologies are being employed at 
several U.S. Department of Energy Laboratories in an effort to remove or contain 
volatile organic compounds [5, 8, 11, 12, 13, 15, 18, 19, 20, 22]. 

Biological decontamination is physically and chemically complex. It involves flow 
and transport in both unsaturated soils and the aquifer, and the interaction of hy-
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drocarbons, microbes, oxygen, nitrogen, and various other chemical compounds. 

Numerical simulation of these processes is a critical step in understanding and de
signing biorestoration applications [5, 8, 13, 22]. Indeed, without applying numerical 
simulation, wide-scale in situ biodegradation of contaminants is impractical. 

In attempting to model these physical systems, one encounters certain difficulties. 

The physical, chemical and geologic definition of the problem is always incomplete 
and imprecise. In addition, the chemical processes involve interphase mass transfer 
as well as a host of intraphase chemical reactions, including dissolution, aqueous 
phase complexation, ion exchange, adsorption, precipitation, oxidation/reduction, 
and even biological degradation kinetics. The extent of mass transfer and chemical 
reaction is ultimately limited by thermodynamic equilibrium, but compositions far 
from equilibrium often arise locally because of kinetic and surface area constraints. 

Additional complexities arise in scaling since parameters derived in laboratory ex
periments are not always applicable to the field scale aquifer. 

Parallel computing offers an opportunity for building detailed models of the chem
ical and physical processes and in providing the capability of solving larger, more 
realistic and practical problems faster and more economically. This includes the abil
ity to use an adequately refined discretization mesh, to incorporate complex chemical 
and physical effects associated with the transport of both hydrocarbons and organic 
contaminants in porous media, and to employ stochastic or conditional simulation. 
The latter is essential for simulating a realistic geologic aquifer, since much of the 
data needed to characterize it cannot be quantified accurately. 

The outline of the paper is as follows. In §2 we describe the governing flow 
and transport equations with biodegradation in an unsaturated/saturated porous 
medium. For simplicity, we assume linear sorption and aerobic conditions. More 
general kinetics such as Michaelis-Menton can be treated with the numerical tech
niques described in this paper. In §3, we describe the parallel implementation of 
the model, and in §4 we present three dimensional, parallel, bioremediation simula
tion results. Conclusions and current directions on parallel implementation are given 
in §5. 

2 . T W O PHASE FLOW AND CONTAMINANT TRANSPORT WITH BIODEGRADATION 

We first present the two phase flow model. It is very similar to the well known 
black oil model from petroleum engineering as described by Peaceman [17] and the 
formulation presented by Parker [16]. The coupled equations are: 

(1) Water Phase d{yQwsw) + y = Qw + lw] 

ot 
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(2) Air Phase 

(3) Equations of State 

(4) Darcy's Law 

(5) 

(6) Capiììary Pressure 

(7) VЫшne Balance 

d(<PQgSa) 

dt 
+ V-(DaUa) =Qa + la', 

fí — fí0 pcwPw _ O caPa. 
bfw — Uwt , Ua — í /ae > 

I- Krw\Sw) /—> г-, \ 
uw = (Vpw - Qwgvz), 

Un= -

P>w 
i\ rCra\Sa) 

Џa 

Pc(Sw) =Pa ~Pw', 

Sw i Sa — -t • 

(VPa - Qag^z); 

Here <D is porosity, p phase pressure, Q phase density, K absolute permeability, k phase 

relative permeability, \i phase viscosity, s phase saturation, c phase compressibility, g 

gravitational constant, z depth, Q an external phase source or sink, and 7 are source 

or sink terms due to mass transfer between phases (subscripts have been omitted for 

simplicity). 

Multicomponent transport and biodegradation are governed by a system of 

advection-diffusion-reaction equations consisting of ms electron donors (substrates) 

and m n electron acceptors or nutrients, and a system of mx ordinary differential 

equations involving microbial mass (transport of microbes can be treated also if one 

assumes instead a system of advection-diffusion-reaction equations for the microbes). 

They can be written in terms of the concentration dissolved in water, Ci = C™, as: 

Electron Donor (Substrate) 

(8) ^ 9 ^ ~ " V ' &&& - Uid) - yxi +9u * = 1,..., m s; 

Electron Acceptor (Nutrient) 

(9) —jr-1 V • (DiVCi - UiCi) - (fXi +gu i = m s + 1,. . . , m 5 + m n ; 

(10) Microbial Mass — — — = ipxu i = ms + mn + 1, . . . ,m s + mn + mx. 

Since we assume that mass transfer between phases is based on equilibrium parti

tioning among the phases, we have 

Equilibrium Phase Partitioning 

(11) C t

a - r , a C r , Cs

i=TisCT t = l , . . . , m f l + m n , 

where Yia and Tis are the equilibrium phase partitioning constants between an 

air/water system and a soil/water system, respectively, for component i. Here we 
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define 

<fi = <P{SW + <Saria) + TtS) Ui = Uw+ UaYia, 

Di = ip{swDiw + saTiaDia), 

where Diw{uw) is the hydrodynamic diffusion/dispersion tensor, and Dia{ua) is de
fined similarly for the air phase. The \i a r e possibly nonlinear kinetic terms which 
account for biodegradation of contaminants, utilization of nutrients, and growth and 
decay of microorganisms. The number and complexity of specific metabolic path
ways or chemical reactions varies with the application. The source/sink terms g\ 

represent production and injection wells. 

3. PARALLEL IMPLEMENTATION 

Our two-phase flow and reactive transport code involves the coupling of flow and 
transport /reaction modules. The latter module was developed to simulate the trans
port and reactions of dissolved chemical species in the groundwater. This fully paral
lel code is based on .time splitting for advection, diffusion, and reactions. Either the 
method of characteristics or a higher order Godunov method is employed for treating 
advection. The mixed finite element method is used to treat diffusion. Reactions 
are handled separately as a differential algebraic system. The Godunov scheme is 
especially useful when the reactive time steps are on the order of a CFL time step. 
The characteristics-mixed method allows for much larger time steps, since no CFL 
restriction is needed for stability. The Godunov mixed finite element scheme and the 
characteristic-mixed method for advection/diffusion were introduced and analyzed 
by Dawson [9, 10] and Arbogast and Wheeler [4, 5] respectively. 

The transport/reaction module handles an arbitrary number of component chem
ical species, as well as microbial mass and radionuclide decay. The code also in
corporates equilibrium and nonequilibrium biological and geochemical kinetics and 
treats an arbitrary number of phases including the solid phase (adsorption). Each 
component is dissolved in one or more of these phases. The distribution of mass 
in the phases is assumed to follow the linear Raoult's or Henry's Law. This code 
achieves almost linear parallel scaling [5,3]; thus, it is highly effective when run on a 
parallel machine. Application to contaminant transport in single phase groundwater 
flow can be found in [1] and [5]. 

The flow module is a fully implicit two phase flow code with fully coupled wells. 
Capillary pressure and relative permeability are functions of water saturation and 
formation type. Functional forms can be defined by tables or by definition as piece-
wise C2 splines. Equations {\)-{2) and (4)-(5) are discretized using an expanded 
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mixed finite element method with the Raviart Thomas lowest order approximating 
spaces. The trapezoidal quadrature rule is used to obtain a finite difference scheme 
for the unknowns. This expanded mixed finite element method with quadrature was 
developed and analyzed in [6, 7, 2] for single phase flow. Constitutive laws (3), (6) 
and (7) are used to close the system. The resulting nonlinear equations are treated 
by Newtonian iteration. Here pa and sa are chosen as primary variables. A precon
ditioned domain decomposition GMRES procedure has been developed for treating 
the nonsymmetric system. 

We now describe briefly how the combined modules solve the model (1)—(12). The 
flow module first approximates (l)-(7). Given the saturations and phase velocities 
the transport module is called. Here equations (8)-(12) are solved. One global time 
step of the transport module involves the following three sequential steps: 

(A) Pure transport. For each electron donor or acceptor, the characteristics of the 
flow are tracked or Godunov fluxes found to treat the advection terms. In the 
former case, the characteristics are traced backwards in time to locate their 
origin at the previous time level, and fluid is transported directly forward. This 
may be done by taking small micro time steps. This solves (8)-(9) without the 
reaction terms \% a n d the dispersion terms D{. 

(B) Reactions. The coupled system of reaction equations (i.e., (8)-(10) without the 
two divergence terms and without the gi source terms) are approximated using 
a fourth order Runge-Kutta procedure. Initial conditions are the cell averages 
from (A) for acceptors and donors, and the previous time step concentrations 
for the microbes. Many small time steps may be taken to improve the accuracy. 

(C) Diffusion and dispersion. The diffusion/dispersion step involves approximating 
a parabolic system for each donor or acceptor using initial data from (B) and 
applying the mixed finite element method, again implemented as a cell-centered 
finite difference method. A tensor product trapezoidal rule is used in treating 
the diffusion/dispersion term. A finite stencil is obtained for each component, 
nine points in two dimensions and nineteen in three. The discrete system is 
solved using a Jacobi preconditioned conjugate gradient algorithm. Details may 
be found in [1, 5, 6]. 

After having completed the transport and reactive step, mass transfer source and 
sink terms 7P are computed. The time step is then incremented and the flow sub
routine is called to obtain new saturations and phase velocities. 
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4 . MULTIPLE WELL BIOREMEDIATION RESULTS 

Rice University and Pacific Northwest Laboratory (PNL) began a collaborative 
research effort in 1992 that involves laboratory, field, and simulation work directed 
toward validating remediation strategies. We discuss below some preliminary compu
tational results based on some recent microbial CC14 destructive kinetics developed 
by Skeen and Chan of PNL [19]. 

The model has six components: electron acceptors nitrate NO", nitrite N O - , and 
acetate CH3COO-, CC14, microbial mass C5H9O3N, and a nonreactive tracer. We 
also assume that the retardation factor for acetate is 1.8. The chemical reactions for 
this system are: 

8NO~ + 2CH3COO- + 2H+ -> 4CO2 + 8NO" + 4H2O, 

8NO- + 3CH3COO- + 11H+ -> 6CO2 + 4N2 + 10H2O, 

7CH3COO- + 2NO - + 9H+ -> 4CO2 + 6H2O + 2C5H9O3N, 

13CH3COO- + 4NO~ + 17H+ -> 6CO2 + 10H2O + 4C5H9O3N, 

and bioremediation is described by 

d(CCl4) _ -//(CCl4)(C5H9O3N) 

d* l + ki((NO3-) + (NO2-)) 

for the two parameters \x and k{. 

An unsaturated/saturated domain with 3 wells was simulated. The physical do
main was [0,123] x [0,123] x [220,305] feet. The vertical wells were placed arealy 
in a straight line running from the lower left corner to the upper right corner of the 
domain with the inner well as injection and the outer 2 wells as extraction, with 
approximately 6 meter spacing between the wells. The production wells had one 
screened interval from 240 to 279 feet, while the injection well was screened at 3 
intervals: 240 to 257 feet, 274 to 279 feet, and 294 to 299 feet. The flow rates at the 
production wells were 0.3125 gpm/meter (gallons per minute per meter) well screen 
and at the injection well 0.625 gpm/meter well screen. A schematic drawing of a 
vertical cross-section containing all the wells along with the location of the water 
table is given in Figure 1. The domain had heterogeneous layered permeabilities 
in the vertical direction dominated by two tight streaks with low permeability (« 
10 milliDarcy) as sketched in Figure 2. A constant porosity of 0.25 was assumed. 

Background concentrations of 2000 ppb for carbon-tetrachloride, 300 ppm for ni
trate, and 1.27*10-9 for microbes were assumed. Acetate was injected twice a day 
at 1000 ppm over a 1 hour duration, with a 12 hour frequency, starting from time 
zero. Nitrate was injected twice a day at 1400 ppm over a 1 hour duration with a 12 
hour frequency, starting at 1 hour. 
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Fig. 1. Location of injection and production wells. 

Tight 

Streaks 

< 

Wateг 

Table 

Production 

Wells 

Injec tion Well 

Fig. 2. Position of tight permeability streaks in relation to wells. 

Cross-sectional plots of the carbon-tetrachloride, nitrate, nitrite, microbe, and 

acetate solutions are given in Figures 3-7. These plots show the solutions in a 

vertical slice of the domain which passes through the wells. The carbon-tetrachloride 

solution at 1, 3, 5, and 7.5 days is given in Figure 3. This figure shows that carbon-
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tetrachloride is being removed from the area near the injection well. The nitrate, 
nitrite, microbe, and acetate solutions at 7.5 days are given in Figures 4-7. Note that 
microbial growth is occurring near the injection well, indicating biological activity. 
Nitrite is also being produced as a byproduct of biodegradation. Moreover, the 
acetate front movement is retarded relative to the nitrate front due to adsorption. 

Carbon-tst, cross-section through wslls: contours .002, .005, .008 lb/ftAA3 

© 

IDay 

5 Daya 7.5 Days 

Fig. 3. Carbon-tetrachloride solution at 1, 3, 5, and 7.5 days. 

5 . CONCLUSIONS AND FUTURE DIRECTIONS 

A parallel algorithm for modeling three dimensional groundwater reactive multi
phase flow and transport has been presented. A code has been under development at 
Rice University. Its purpose is to simulate the flow and transport of reacting chemi
cal species in the groundwater. This code is based on combining locally conservative 
schemes: an expanded mixed finite element method for flow with a characteristics 
or higher order Godunov method for advection coupled with a mixed finite element 
method for diffusion/dispersion. Computational experiments indicate that this ap
proach is useful in solving grand challenge problems such as bioremediation and that 
the code achieves good parallel scaling. 

We are presently modifying the flow module to treat three phases (air, non-aqueous 
phase liquid, and water). Logically rectangular grids on general geometry are being 
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Acétate solution cross-section through wells 

Contours in lb/ftAA3 

7.5 Days 

Fig. 4. Acetate solution at 7.5 days. 

Microbe solution cross-section through wells 

Contour In lb/ftAA3 

7.5 Days 

Fig. 5. Microbe solution at 7.5 days. 

tested for the multiphase simulator. Current work also includes the testing and devel
opment of robust differential algebraic solvers for the equilibrium and nonequilibrium 
reactions and mass transfer. 
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Nitrate solution cross-section through wells 
Contours in lb/ftAA3 

7.5 Days 

Fig. 6. Nitrate solution at 7.5 days. 

Nitrite solution cross-section through wells 

Contours in lb/ftAA3 

7.5 Days 

Fig. 7. Nitrite solution at 7.5 days. 
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