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Summary. In this paper we study bounds for the off-diagonal elements of the homoge­
nized tensor for the stationary heat conduction problem. We also state that these bounds 
are sharp by proving a formula for the homogenized tensor in the case of laminate structures. 
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1. INTRODUCTION 

We consider the stationary heat conduction problem 

div(a grad V) = f on ft C UN, 

where the heat conductivity tensor a is of the form AI and also periodic relative 
to a cell Y which is very small compared with ft. A direct numerical treatment of 
this problem leads to difficulties due to the rapid variations on micro scale level. 
However, if a ^ A ^ /3 a.e. for some positive constants a and /?, then there exists 
a homogeneous material with a constant heat conductivity tensor q whose overall 
response is close to that of the heterogeneous material under consideration. We can 
compute the homogenized tensor q by identifying and solving a certain variational 
problem called the cell problem. This is the key step in the homogenization procedure. 
Concerning this and other basic information in the homogenization theory we refer 
to the literature, e.g. the books [1] and [8]. 

Many different types of bounds for q have been found by several authors (see 
e.g. [2], [3], [5], [6] and [7] and the references therein). In this work we focus on the 
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cell problem and prove upper and lower bounds for the off-diagonal elements of the 
homogenized tensor. In order to show that these bounds are sharp we also present 
an explicit formula for the homogenized tensor in the case of laminate structures. 

2. PRELIMINARIES 

N 

In the space RN, we consider a fixed parallelepiped Y = II ]0>#j[ (a y-cell). 
j = i 

Throughout this paper we assume that the thermal conductivity tensor a is Y-

periodic and that Vx G UN, Q>ij(x) = S{j\(x), where a ^ A ^ 0 a.e. for some positive 
constants a and 0. 

The weak formulation of the cell-problem takes the following form: Find \% in 

Hper(y) (= the space of all y-periodic ip G HX(Y)) such that 

(i) flAfex^AM 

for all (f G Hper(y). Here, a*(-, •) and /(•) are defined by 

«A(¥M» = I E ^ f ^ d * and fx(v) = ^ A^dx. 

It is also possible to prove (see e.g. [4], p. 50) that 

(2) L A M ^ Lx(x%Lx(<p) = \ax(<p,<p) - A M 

for all <p G Hper(y) if and only if \ l 1S a solution to (1). The solution \ l is unique 
up to an additive constant. 

The elements of the homogenized tensor q are given by 

(3) qi^±.JY{x5ij.x
d£yx. 

(We do not use the summation convention in any part of this paper.) 
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3. T H E MAIN RESULTS 

In this section we present the main results of the paper. We let qa and qh denote 

the arithmetic and the harmonic mean of A, respectively. First, we consider bounds 

for the off-diagonal elements of q. 

Theorem 1. Ifr^s, then 

\qrs\ ^qa- -(qrr + qss)-

The following result is a simple formula for the homogenized coefficients for the 

case of laminate structures. 

Theorem 2. Suppose that A varies periodically only in one spatial direction, say 
f, where |£| is the period. Then the homogenized coefficient qrs is given by 

(4) qrs = Srsqa + -^-(qh - qa)-
írţ. 

R e m a r k 1. If A is only a function of a direction parallel to er ± e s , then 
Theorem 2 shows that qrs actually equals ±(qa — \(qrr + qss))- Thus, we can give 
non-trivial examples where equality occurs in the statement of Theorem 1. 

In (R2 the results of Theorem 2 can be translated into geometrical language. Let 
(p be the angle between e s and £. In terms of (D, qa and qn we see that qrs takes the 

following form: 

qh — qa . 0 r / 
qrs = — - — sin 2(D tor r ^ s, 

qrs = qa sin 2(D 4- qh cos 2(D for r = s. 

4. PROOFS 

P r o o f of T h e o r e m 1. Consider the solutions of the cell-problem (1), \ r 

and x s f° r i = r and i = s, respectively. By putting <D = \ k we get that 

(5) / E A ( g ) a d x = / A g d . - for*€{r,a}. 
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Moreover, (2) gives that 

i = l l—1 

This also holds if we replace xr by ~xr• Using (5), we now get that 

\qrA = |_L / A | ^ d J < - 1 J / xd
1fdx+ [ x^dx). 

\\Y\JY dxs \^2\Y\\JY dxs JY dxr ) 

Hence, 

^A^^-^Fl(jY(x-x^-)dx + lY(x-x^-)dx)^qa-
1-(qrT + qss), 

and the proof is complete. • 

P r o o f of T h e o r e m 2. We first prove the following statement: Suppose 
f G L2(I)> I = [0,1], and that the following holds for every disjoint segments I\ and 
I2 of I: II2I/7 fdx = |Ii I Jj fdx. Then f is constant a.e. 

We state that 

[ fdx= [ 
Jv Jv 

(6) / fdx= kdx 
Jv Jv 

for every open or closed set V C I, where k = \I\~ Jj f dx. This can be seen by 
observing that (6) holds for every segment, hence also for open sets since they are 
unions of countable collections of disjoint segments. Finally, (6) holds for closed sets 
since they are complements of open sets. 

Fix e > 0. Since I is bounded, / £ Ll(I) and there is a continuous function g 

such that | | / - g\\x < e/2. Let V be the open set {x G I: g(x) > k}. By (6) it yields 
that 

\g-k\dx=\ g-fdx\ + \ / g - / dx\ ^ \g-f\dx<^-. 
J1 \Jv I \Ji\v I Ji z 

The triangle inequality gives 

J |/ - k\ dx ̂  J |/ - g\ dx + J \g - k\ dx < 5, 

and since e was arbitrarily chosen, | | / - k\\x = 0 which, in its turn, implies that 
f = k a.e. 
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Let x s be the solution of (1) for i = s. Since A varies only in the direction £ any 
translation of xs orthogonal to £ will be a solution to the cell problem. Hence, by 
uniqueness this implies that xs varies only in the direction £. Now we let £k be a 
non-zero component of £ and Ii and I2 two disjoint segments of [0,1]. In addition 
we choose a function ip E Hper(Y) defined within an arbitrary constant by 

(7) ^ m = a\h\xh(t)-\h\xi2m «G[O,I]. 

Here, XA denotes the usual characteristic function of the set A. Since xs> <P and A 
vary only in the direction £, (1) may be written in the form 

i,,(p£S>-*l>))d'=0-
Since xs varies only in direction £, Vxs is parallel to £, i.e. there exists a real function 

r] such that Vx s = ??£• This implies that dxs/dxr = rj^r and dxs/dxk = rj^k- Hence, 

(9) dJ<L = kdJ<L 

dxr & dxk 

for all r € {1 ,2 , . . . , N}. According to (7), (8) reduces to 

' '<(flH^''4(£g-^ 
and the fact that this holds for every disjoint segments Ii and I2 of I, combined with 
(9) yields 

do) *(^i£-«•)=*•*• 
a.e. in y , where Ks is a constant. Dividing by A and recalling that xs takes the 
same values on opposite traces of Y, i.e. fY dxs/dxr = 0, we get that Ks = —qh£s 

and according to (3) it easily follows that 

srsqa + -Tjrtei - qa). 

The proof is complete. • 
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