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Summary. The paper deals with a theoretical model of the Crowel-Alipanahi correlator. 
The model describes a new possible effect of the DLTS spectra-exponential and nonexpo-
nential transient capacitance, normal or anomalous spectra. 
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INTRODUCTION 

We investigate the deep trap in avalanche photodiodes measured by the deep level 
transient spectroscopy (DLTS). This method is based on the analysis of transient 
capacitance induced by thermal emission of carriers from traps within the depletio. 
region of the diode structure. 

In conventional DLTS measurements, the analysis of the result is based upon the 
assumptions of an exponential transient capacitance and of negligible errors due to 
the system of data analysis technique (see [3], [7]). 

In this paper we generalize the theoretical model 

(1) S0(x, r) = (1/x) ( J C(t/r) dt - f C(tr) dt) 

of the Crowel-Alipanahi correlator (see [4]-[6]) to 

0
px/2+d(x) nx+d(x) \ 

f C(t/r) dt- C(t/r) dt) 
d(x) Jx/2+d(x) ) 
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and then to 

(3) S(X,T) =XPS(X,T), 

where S(x, r) is the function (2) and p is a real number. Without loss of generality 
we can suppose that A is positive real constant. 

The model (3) describes a new possible effect of the DLTS spectra given by the 
process transformation of the capacitance relaxation into DLTS spectra, and also by 
the physical properties of the samples, especially the high-resistive ones. 

Using a theory of functional equations (see [1], [2]) we present a description of the 
anomalous DLTS spectra observed in experiments (see [7]). 

We also discuss a nonexponential transient capacitance and a possibility to use a 
new theoretical model a modelling of DLTS spectra. 

We remark that the results of mathematical modelling are in good agreement with 
experiments. 

NOTATION, BASIC DEFINITIONS 

We denote by N the set of natural numbers, by (R (R+) the set of real (positive 
real) numbers, R+ = R+ U {0}. We have the symbol t for time, T for temperature, 
T = T(T) for a time constant, C for a transient capacitance, x for a pulse period and 
5 = S(X,T) for the DLTS function. 

We use the following forms of the function S(x, r ) : 

AT / r(x/*+*(*))/* r(*+d(x))/T \ 
(4) S(x, r) = —( / C(s) ds - / C(s) ds , 

X \Jd(x)/T J(x/2 + d(x))/T / 

where TS = t\ 

(5) S(X,T) = ^ ( J * C((s-d(x))/T)ds-J^C((s-d(x))/T)ds\ 

where s = t + d(x); 

(6) S(x, T)=A( [ C((xs + d(x))/T) ds- f C((xs + d(x))/T) ds\, 

where xs +• d(x) = t, x G IR+ being fixed. 
In the paper we will use the following assumptions: 

(Al) d(x) is a continuous function satisfying 0 ^ d(x) < rrfor every re G IR+ fixed; 

(A2) C(s) is a positive decreasing bounded and continuous function on (R+. 

If d(x) = 0 and A = 1 then the expressions (2), (4)-(6) are equivalent to (1). 
According to (A2) there exists a finite UmC(u) = L for u -> oo, L G R°. 
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Definition 1. Let p be an arbitrary fixed real number. We say that g(x^y) is a 
homogeneous function of the order p if the Euler's functional equation 

(7) g(ax,ay) = apg(x,y) 

is valid for every a,x,y G R+. 

A general solution g: R+ x R+ -» R of (7) is of the form 

(8) g(x,y) = xph(y/x) 

for an arbitrary function h: R+ -» R (see [1], [2]). 

Definition 2. For any x G R+ fixed, let the DLTS function (2) reach its maxi
mum Sm at a point rm , i.e. Sm = S(x,Tm). We say that the DLTS function S(X,T) 

forms a normal spectra if for every a G R+ the function S(ax, ar) reaches its maxi
mum at the point aTm and S(ax,aTm) = Sm. Otherwise we call the DLTS spectra 
anomalous. 

THE EXPONENTIAL CASE 

Lemma 1. IfC(t) = exp{-*}, t G R+, then 

(9) S(X,T) = AC(~d(x)/T)S0(x,T) 

for all X,T G R+. Conversely, ifF: U% -± R+ and 

(10) S(x,T) = F(d(x)/T)S0(x,T) 

then there exist solutions C(t) = exp{-k£}, k G R+ such that F(d(x)/r) = 
AC(—d(x)/T). Hence (9) is satisfied. 

P r o o f . Substituting C(t) = exp{-£} into the expression (5) w e get 
C((s - d(x))/T) = C(s/T)C(-d(x)/T) and 

S(x,T) = ^C(-d(x)/r)(l /a:)( / * C(S/T)ds - [ C(S/T)ds) 
\ Jo Jx/2 / 

= AC(-d(x)/T)S0(x,r) 

for i , r G R+. 
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Suppose that S(X,T) = F(d(x)/T)S0(x,T) for X,T E IR+. According (1), (2) and 
using the expression (5) we obtain 

A( T C((8-d(x))/r)ds- f C((s - d(x))/r) d s ) 

= F{d(x)/r) ( í C(S/T) ds - fX C(S/T)ds). 

From linearity of integrals and in accordance with the assumption (A2) we obtain 
for the decreasing function C the condition C(S/T - d(x)/r) = F(d(x)/T)C(s/T)/A, 
i.e. 

(11) C(u-v) =a(v)C(u), 

where u = S/T, V = d(x)/r; u,v G IR+ and 

(12) a(v) =F(v)/A> 1. 

The method of invariants then yields a mapping u -> u — v, C —> aC thus u/v —> 
u/v — 1, In C/ In a -> In C/ In a + 1. The expression In Cj In a + u/v is an invariant 
of the given mapping and we have 

^ , ч í l n a Ы ì 
C(u) = exp< к—uy 

The function C is a solution of the functional equation (11). But C(u) is independent 
of v, hence \na(v)/v = k > 0 and a(v) = exp{kv}, k G IR+ being constant. 

We conclude that 
C(u) = exp{—ku], u = S/T 

and 
F(v) = Aa(v) = Aexp{kv} = AC(-v), v = d(x)/T 

according to (12). D 

R e m a r k 1. It follows from Lemma 1 that if the function C is exponential, 
then the theoretical models (1) and (2) are equivalent in the following sense: We can 
integrate over the interval (0,x) instead of (d(x),x + d(x)) for every x € (R+ fixed. 

R e m a r k 2. In the same manner as the function C(t) = exp{—t}, any function 
CT(t) = C(t/T) for r G (R+, can be considered. This follows from the fact that C 
satisfies Cauchy's functional equation C(u + v) = C(u)C(v) on IR+. A continuous 
decreasing solution of Cauchy's functional equation is of the form C(u) = exp{-ku}, 
k > 0, and we can always put k = 1/r, r > 0 (see [1]). 
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R e m a r k 3. In the exponential case we obtain from (2) that 

(13) S(x,T) = A(T/x)exp{-d(x)/T} ( l - exp {~})2 

and 

(14) S0(X,T) = (T/X) ( l - e x p { - | ; } ) 2 

for d(x) = 0, A = 1. 

The function ho(x/T) := SO(X,T) is homogeneous (of the order p = 0) since 

S0(ax,aT) = h0 (—) = h0 ( - J = S0(X,T) 

for every a, x, r E R+. 
It is clear that (13) is a homogeneous function if and only if d(x) = kx for a fixed 

fcG (0,1) since d(x) is a continuous solution of the functional equation d(ax) = ad(x) 
on R+ and d(x) satisfies the assumption (Al). In this case we have 

(15) S(X,T) = Aexp{-kx/T}S0(x,T). 

Let us denote u = X/T and consider a function 

(16) h(u) = _4exp{-ktx}(l - exp{-u/2})2/u 

on R+ . Then 

(17) h(u) > 0, lim h(u) = 0 for u -> 0+, u -> oo 

and there exists a local maximum of h(u) at some point txm. This point wm is a 
unique solution of the equation h'(u) = 0, which is equivalent to 

(18) (u + 1 + ku)exp{-ii/2} = 1 + ku, u G R + . 

Thus if x G R+ is fixed then S(X,T) reaches its maximum at the point r m = x/um 
and we see that the function S(X,T) forms normal spectra. 

Lemma 2. Let C be exponential and let x € R+, a E R+ — {1} be fixed. Then 
the value 

(19) S(ax,aTm) = A5(x,rm), A G R+ 
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is the maximum of the function S(ax,aT) whenever rm = kix, k\ = l/um and 

(20) d(x) = ( k - ki J ^ In A J x 
\ In a / 

on R+ , k G R+ is arbitrary and um is a solution of the equation (18). 

P r o o f . We consider the normal and anomalous spectra of the function (2) for 
A = 1 and A G R+ — {1}, respectively. Since C(u) is an exponential function, we 
obtain from (13) and (14) that 

S(X,T) = Aexp{—d(x)/T}So(x, T). 

Using (13) we then have a condition equivalent to (19) in the form 

(21) d(ax) = ad(x) — aTm In A 

for every a,x € R+, a 7-= 1 and the given AG R+; rm = l/um according to Remark 3 . 
Hence we need to solve a functional equation 

(22) d(ax) = a(d(x) - k2x) 

for a, x G R+ , a 7-= 1, A G R+; k2 = InX/um. 
In the case that A = 1 we obtain k2 = 0 and the equation d(ax) = ad(x) has a 

continuous solution of the form d(x) = kx, k G R+ . 
In the latter case AG R+ - {1} we can substitute values x = 1, a, a2,... into (22). 

Thus 
d(a) = a(d(l)-k2), 

d(a2) = a(d(a) - k2a) = a2(d(l) - 2k2), 

and by the assumption 

(23) d(an) = an(d(l)-nk2) 

we obtain 

d(an+l) = a(d(an) - k2a
n) = an+l(d(l) - (n + l)k2). 

Hence (23) is satisfied for every n G N, a G R+ - {1}. 
If we denote x = an then n = In x/ In a and 

(24) d(x) = (d(l) - {^ 2)x. 

478 



If we suppose that the function d(x) is defined by (24) for all x G R+, then we have 

( In x \ 

d(l) - k2 - k2 ) = ad(x) - k2ax 
in a / 

for arbitrary a € R+ — {1} and (24) is a continuous solution of the equation (22) on 
R+. Thus we get (20) for k = d(l), k2 = kx In A, kx = l/um. 

Using (13) and (20) we prove that (19) is fulfilled and the assertion of Lemma 2 
is proved. • 

R e m a r k 4. In the case A = 1 we have d(x) = kx. Hence (13) and also (2) is a 
homogeneous function described in Remark 3. The condition o -̂  d(x) < x is then 
equivalent to 0 -̂  k < 1. 

The situation is different on the case A ^ 1. Here 0 -̂  d(x) < x and (2) imply 
that In A/ In a > -um/lnx for any fixed A, a G R+ - {1} and x ^ 1. In the limit 
case x -+ oo we obtain In A In a ^ 0 and a < 1 implies A < 1 which does not agree 
with experiments. Hence the theoretical model (2), (24) is false for anomalous DLTS 
spectra. Thus we will always suppose that 

(25) d(x) =kx, xe (0,1) 

THE GENERAL CASE 

L e m m a 3. Let d(x) = kx for some k G (0,1). The function (2) is homogeneous 
and 

r(k+l/2)u r(k+l)u 

l(k+l/2)t 

A / f(k+l/2)u f(k+l)u \ 
(26) S(x, T) = h(x/T) = h(u) = - ( / C(s) ds - / C(s) ds ) 

u \Jku J(k+l/2)u ) 

for u = X/T and X,T G R+. Moreover, h(u) is nonnegative and lim h(u) = 0 for both 
u —> 0+ and u —> oo. 

P r o o f . The relation h(u) ^ 0 follows from the assumption (A2). It is clear 
that S(X,T) is a homogeneous function, i.e. 5(arr ,ar) = S(X,T) for a,x,T G R+. If 
u —•> 0+ then we have 

l f(k+l/2)u f(k+l)u 
lim h(u) = A • lim - ( / C(s) ds - / C(5) ds) 

uKJku J(k+l/2)u ' 

= Alim[(l + 2k)C((k + ±)u) - kC(ku) - (1 + fc)C((l + k)u)] = 0, 

using PHospital's rule. 
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We have 

C(s)^C(ku) on (ku,(k+±)u), 

-C(s) ^ -C((l + k)u) on ((k + \)u, (k + l)u) 

for every fixed u G IR+. Hence if u -> oo then 

0 ^ h(u) = -(\C(ku)u - \C((1 + k)u)u) = ^(C(ku) - C((l + k)u)) -> ^(L - L) 
u 2 2 

and lim h(u) = 0. D 
u—>oo 

R e m a r k 5. It is a basic fact that for any homogeneous function S there is a 

function h: (R+ —> U such that S(x, r) = h(x/r). Let us consider the expression (26). 

Due to Lemma 3, it is possible to investigate functions C(u) other than exp{—u}. 

For example, the function 

(27) C(u) = l/(u + a)r 

for a,r G (R+ or the function C(u) = arccotanu can be considered. 

The function h(u) corresponding to (27) will be of the form 

(28) 
A / 77 \ 

h(u) = — ln (1 + — -77- — -) for r = 1, v ; u V A(ku + a)((k + l)u + a)J 

h(u) = 

i(ku + a)((k + l)u + a). 

A ((1 + k)u + a)1'1- - 2((k + \)u + a)1'1- + (ku + a)1'' 

r-1 
for r Є K + - {1}, 

so that h(u) reaches its maximum value at the same point i/m as in the exponential 

case. For example, if k = 1/25 then wm = 2.226 and the related constants are 

V 
i 
8 

i 
4 

i 
2 

1 x/2 yß 2 3 4 5 

a 0.09 0A8 0.4 0.86 1.27 1.55 1.8 2.8 3.8 4.8 

where the values of a were computed from the equation h'(u) = 0 for wm = 2.226 by 
means of (28). 

Lemma 4. Consider a function (2) in the form (6) and d(x) = kx, k G (0,1), i.e. 

(29) S(x,T)=A( J C((s + k)x/T) ds - f C((s + k)x/T) ds\, 
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x, T G R+. If the function C satisfies the relation 

(30) C((s + k)~)=1c[(s + k)^) 

for every a, (3 G R+ such that a ^ 1, /3 ?- a, 7 G R+, then 

(31) S(ax,/3T) = ^S(X,T) 

and there exists a solution 

(32) C(v)=v
ln^/ln(a/^ 

on R+. 

P r o o f . The equation (31) is a consequence of (29) and (30). Let us denote 
a = a/P,v = (s + k)f and consider (30) in the form C(av) = yC(v) for a,v,y 
positive numbers. By means of the method of invariants we obtain a mapping v —> 
av,C^yC, thus fe* -* fe2 + l , fe f - • ^ + 1 and ^ - j ^ is an invariant. Hence 
we have C(v) = v l n ^ / l n a and C(cw) = ainT/ina^inTjina = 7c(v). The function (32) 
is a solution of the equation (30). • 

R e m a r k 6. The function C(v) obtained in Lemma 4 cannot describe the tran
sient capacitance because C(v) is decreasing only in the case that ln7/ln(a//3) < 0. 
But in this case C(v) is unbounded at v = 0 which is a contradiction to (A2). Hence 
the function (2) cannot form anomalous spectra even though (31) would be satisfied 
for arbitrarily small /3 — a, ft / a. 

Theorem 1. For a fixed x G R+. If the DLTS spectra are normal or anomalous, 
then the DLTS function is expressible as 

(33) S(X,T) =XPS(X,T), 

where S(x, r ) = H(X/T) = h(u) is the homogeneous function given by (26) and p is 
fixed real number. Moreover, if for a fixed a G R+ - {1} and a given X G R+ 

S(ax,aT) = XS(X,T) 

holds, then X = ap, i.e. p = In A/ In a, and the maximal values of the family of 
functions 

S(x,Tm), S(ax,aTm), S(a2x,a2Tm), ... 

satisfy the relation 

(34) S = Sm • (T/Tm)p 
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where Sm = S(x,Tm) is the maximal value of S(X,T) at the corresponding point 
Tm = x/um- Here um is a solution of the equation h'(u) = 0. 

P r o o f . Let the function S(X,T) satisfy 

(35) S(ax,aT) = \S(X,T) 

for x,a,T, A G R+. Then there exists a real number p = In A/ In a such that A = 
ap and (35) defines a homogeneous function of the order p of the form S(X,T) = 
xph(x/T), where h: R+ —r R is a suitable function. Now, by means of the generalized 
DLTS function (26) we obtain the function (33). We can choose a fixed a G *R+ — {1} 
and investigate a family of functions 

S(x,Tm), S(ax,aTm), ..., S(aqx,aqTm); q G N, 

for a fixed x G R+. For a fixed x, the function (33) reaches its maximal value at the 
point Tm = x/um, where um is a stationary point of the function h(u) = h(x/T) = 
S(X,T) given by (26). Since S(ax,aT) = apS(x,T), we obtain S(ax,aTm) = 
apS(x,Tm) = apSm, where Sm = S(x,Tm). Hence S(anx,anTm) = anpSm = XnSm 

are maximal values of the functions S(anx, a n r ) at the points anTm, n = 1,2,. . . , q. 
Thus S(anx,anTm) satisfy the equation S = Sm • (T/Tm)p for all n G { 0 , 1 , . . . ,q} 
and Theorem 1 is proved. • 
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