Applications of Mathematics

Ivan Hlaváček

Reissner-Mindlin model for plates of variable thickness. Solution by mixed-interpolated elements

Applications of Mathematics, Vol. 41 (1996), No. 1, 57-78

Persistent URL: http://dml.cz/dmlcz/134313

Terms of use:

© Institute of Mathematics AS CR, 1996

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

REISSNER-MINDLIN MODEL FOR PLATES OF VARIABLE THICKNESS. SOLUTION BY MIXED-INTERPOLATED ELEMENTS

Ivan Hlaváček, Praha

(Received December 6, 1994)

Summary. Hard clamped and hard simply supported elastic plate is considered. The mixed finite element analysis combined with some interpolation, proposed by Brezzi, Fortin and Stenberg, is extended to the case of variable thickness and anisotropic material.

Keywords: Reissner-Mindlin plate model, mixed-interpolated elements
AMS classification: 65N30, 73K10, 73 K 25

Introduction

One of the simplest mathematical models of plate bending, which refine the wellknown Kirchhoff theory, is the Reissner-Mindlin model. It replaces the classical hypothesis on the invariance of the fiber normal to the middle surface of the plate by introducing a new variable, the vector of rotation of the fibers normal to the midplane.

Although the formulation of the potential energy is straightforward, the standard variational solution deteriorates as the thickness t tends to zero. The reason is, that the potential energy of (transversal) shear stresses has a factor t, whereas the energy of remaining stresses a factor t^{3}. Brezzi, Fortin, Bathe and Stenberg [1], [2], [3], [4] proposed a remedy, using a mixed formulation by introducing a scaled shear force and an interpolation operator.

In the present paper, we extend the theory and error analysis of [2-§VII. 3] to plates of variable thickness and anisotropic material. We consider "moderately" varying thickness functions, which are Lipschitz continuous, bounded from below
and from above and have bounded derivatives. Two cases of boundary conditions are considered simultaneously, namely so called hard clamped and hard simply supported plates.

1. Formulation of the Reissner-Mindlin model

Let Ω be a bounded, simply connected domain in \mathbb{R}^{2} with a polygonal boundary $\partial \Omega$. Let the plate occupy a three-dimensional domain $\Omega \times\left(-t\left(x_{1}, x_{2}\right), t\left(x_{1}, x_{2}\right)\right)$, where the (half-)thickness t belongs to the set

$$
\begin{aligned}
\mathscr{U}_{a d}=\{ & t \in C^{(0), 1}(\bar{\Omega}) \text { (i.e., Lipschitz function) } \mid \\
& \left.t_{\min } \leqslant t\left(x_{1}, x_{2}\right) \leqslant t_{\max },\left|\frac{\partial t}{\partial x_{1}}\right| \leqslant C_{1},\left|\frac{\partial t}{\partial x_{2}}\right| \leqslant C_{2}\right\}
\end{aligned}
$$

where

$$
0<t_{\min }<t_{\max }<+\infty
$$

and $C_{1}, C_{2}, t_{\min }, t_{\text {max }}$ are given positive constants.
The fundamental hypothesis assumes that the "horizontal" displacements u_{1} and u_{2} have the form

$$
\begin{equation*}
u_{i}=-x_{3} \beta_{i}\left(x_{1}, x_{2}\right), \quad i=1,2 \tag{1}
\end{equation*}
$$

and the "vertical" displacement u_{3} has the form

$$
u_{3}=w\left(x_{1}, x_{2}\right)
$$

Assume zero body forces, and the external surface load

$$
\boldsymbol{f}=(0,0, f)^{\mathrm{T}}
$$

acting on the upper surface $x_{3}=t\left(x_{1}, x_{2}\right)$.
In the following, we shall use Greek subscripts within the range $\{1,2\}$ and the summation convention for repeated subscripts. From (1) we easily obtain the components of the small strain tensor

$$
\begin{gather*}
e_{11}=-x_{3} \partial \beta_{1} / \partial x_{1}, \quad e_{22}=-x_{3} \partial \beta_{2} / \partial x_{2}, \quad e_{33}=0 \tag{2}\\
e_{12}=-\frac{1}{2} x_{3}\left(\partial \beta_{1} / \partial x_{2}+\partial \beta_{2} / \partial x_{1}\right) \\
e_{13}=\frac{1}{2}\left(\partial w / \partial x_{1}-\beta_{1}\right), \quad e_{23}=\frac{1}{2}\left(\partial w / \partial x_{2}-\beta_{2}\right)
\end{gather*}
$$

We assume the following generalized Hooke's law

$$
\begin{gather*}
\sigma_{\alpha \beta}=c_{\alpha \beta \gamma \delta} e_{\gamma \delta}, \quad(\alpha, \beta=1,2) \tag{3}\\
\sigma_{\alpha 3}=\mathscr{E}_{\alpha \beta} e_{\beta 3} \tag{4}
\end{gather*}
$$

where the coefficients $c_{\alpha \beta \gamma \delta}, \mathscr{E}_{\alpha \beta}$ are constant,

$$
\begin{gather*}
c_{\alpha \beta \gamma \delta}=c_{\gamma \delta \alpha \beta}=c_{\beta \alpha \gamma \delta} \tag{5}\\
c_{\alpha \beta \gamma \delta} \tau_{\alpha \beta} \tau_{\gamma \delta} \geqslant c_{0} \tau_{\alpha \beta} \tau_{\alpha \beta} \tag{6}
\end{gather*}
$$

holds for all symmetric matrices $\left(\tau_{\alpha \beta}\right)$, with some positive $c_{0} ; \mathscr{E}$ is a diagonal matrix with positive entries. (For isotropic materials $\mathscr{E}=\lambda I, \lambda=E k /(1+\sigma)$, where E is the Young's modulus and σ the Poisson's ratio, k is a correction factor).

The total potential energy of the plate is then

$$
\begin{align*}
\Pi= & \int_{\Omega \times(-t, t)}\left[\frac{1}{2} \sigma_{\alpha \beta} e_{\alpha \beta}+\sigma_{\alpha 3} e_{\alpha 3}\right] \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3}-\int_{\Omega} f w \mathrm{~d} x_{1} \mathrm{~d} x_{2} \tag{7}\\
= & \frac{1}{3} \int_{\Omega} t^{3} c_{\alpha \beta \gamma \delta} \frac{\partial \beta_{\alpha}}{\partial x_{\beta}} \frac{\partial \beta_{\gamma}}{\partial x_{\delta}} \mathrm{d} x_{1} \mathrm{~d} x_{2} \\
& +\frac{1}{2} \int_{\Omega} t \mathscr{E}_{\alpha \beta}\left(\frac{\partial w}{\partial x_{\alpha}}-\beta_{\alpha}\right)\left(\frac{\partial w}{\partial x_{\beta}}-\beta_{\beta}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}-\int_{\Omega} f w \mathrm{~d} x_{1} \mathrm{~d} x_{2} .
\end{align*}
$$

Remark 1.1. For isotropic materials we have

$$
\begin{align*}
\Pi= & \frac{E}{3\left(1-\sigma^{2}\right)} \int_{\Omega} t^{3}\left[\left(\partial \beta_{1} / \partial x_{1}+\sigma \partial \beta_{2} / \partial x_{2}\right) \partial \beta_{1} / \partial x_{1}\right. \tag{8}\\
& +\left(\partial \beta_{2} / \partial x_{2}+\sigma \partial \beta_{1} / \partial x_{1}\right) \partial \beta_{2} / \partial x_{2} \\
& \left.+\frac{1}{2}(1-\sigma)\left(\partial \beta_{1} / \partial x_{2}+\partial \beta_{2} / \partial x_{1}\right)^{2}\right] \mathrm{d} x_{1} \mathrm{~d} x_{2} \\
& +\frac{1}{2} \lambda \int_{\Omega} t|\nabla w-\beta|^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2}-\int_{\Omega} f w \mathrm{~d} x_{1} \mathrm{~d} x_{2}
\end{align*}
$$

Introducing the bilinear form

$$
\tilde{a}(t ; \beta, \eta)=\frac{2}{3} \int_{\Omega} t^{3} c_{\alpha \beta \gamma \delta}\left(\partial \beta_{\alpha} / \partial x_{\beta}\right)\left(\partial \eta_{\gamma} / \partial x_{\delta}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}
$$

we may write the relation (7) in the following form

$$
\begin{equation*}
\Pi=\frac{1}{2} \tilde{a}(t ; \beta, \beta)+\frac{1}{2} \int_{\Omega} t(\nabla w-\beta)^{\mathrm{T}} \mathscr{E}(\nabla w-\beta) \mathrm{d} x_{1} \mathrm{~d} x_{2}-\int_{\Omega} f w \mathrm{~d} x_{1} \mathrm{~d} x_{2} \tag{9}
\end{equation*}
$$

(Recall that the Kirchhoff model sets $\beta=\nabla w$, so that

$$
\tilde{a}(t ; \beta, \beta)=\tilde{a}(t ; \nabla w, \nabla w)
$$

coincides with the bending energy of the plate.)
We shall consider only the two following basic cases of boundary conditions:
(i) "hard clamped" edge of the plate

$$
\beta=0 \quad \text { and } \quad w=0 \quad \text { on } \partial \Omega
$$

(ii) "hard simply supported" edge of the plate

$$
M_{\nu}(\beta)=0, \beta \cdot \tau=0 \quad \text { and } \quad w=0 \quad \text { on } \partial \Omega
$$

where τ denotes the unit tangential vector with respect to $\partial \Omega, \beta \cdot \tau=\beta_{\alpha} \tau_{\alpha}, M_{\nu}(\beta)=$ $c_{\alpha \beta \gamma \delta} \nu_{\alpha} \nu_{\beta} \partial \beta_{\gamma} / \partial x_{\delta}$ and ν is the unit outward normal vector.

Thus the principle of minimum potential energy implies the minimization of $\Pi(\beta, w)$ on the set

$$
\begin{aligned}
{\left[H_{0}^{1}(\Omega)\right]^{2} \times H_{0}^{1}(\Omega), } & \text { in case (i) } \\
V \times H_{0}^{1}(\Omega), & \text { in case (ii) }
\end{aligned}
$$

where

$$
V=\left\{\beta \in\left[H^{1}(\Omega)\right]^{2} \mid \beta \cdot \tau=0 \quad \text { on } \partial \Omega\right\} .
$$

Henceforth we denote by

$$
(u, v)=\int_{\Omega} u v \mathrm{~d} x_{1} \mathrm{~d} x_{2}, \quad\|u\|_{0}=(u, u)^{1 / 2}
$$

the inner product and the norm in the space $L^{2}(\Omega)$. The same notation will be used for vector functions from $\left[L^{2}(\Omega)\right]^{2}$. The norm in $H^{1}(\Omega)$ will be denote by $\|u\|_{1}$. In $H_{0}^{1}(\Omega)$ we shall use the equivalent norm

$$
|u|_{1}=\|\nabla u\|_{0} .
$$

It is readily seen, that by

$$
[u, v]=(t \mathscr{E} u, v)
$$

another inner product in $\left[L^{2}(\Omega)\right]^{2}$ is defined, provided $t \in \mathscr{U}_{a d}$.

We introduce the operators

$$
\begin{aligned}
& \underline{\operatorname{rot}} q=\left(\partial q / \partial x_{2},-\partial q / \partial x_{1}\right)^{\mathrm{T}} \\
& \left.\operatorname{rot} \eta=\partial \eta_{2} / \partial x_{1}-\partial \eta_{1} / \partial x_{2}\right)
\end{aligned}
$$

and the space

$$
H_{0}(\operatorname{rot} ; \Omega)=\left\{v \in\left[L^{2}(\Omega)\right]^{2} \mid \operatorname{rot} v \in L^{2}(\Omega), v \cdot \tau=0 \text { on } \partial \Omega\right\}
$$

with the norm

$$
\begin{equation*}
\|v\|_{\Gamma}=\left(\|v\|_{0}^{2}+\|\operatorname{rot} v\|_{0}^{2}\right)^{1 / 2} . \tag{10}
\end{equation*}
$$

Lemma 1.1. Let either $\eta \in H_{0}(\operatorname{rot} ; \Omega), q \in H^{1}(\Omega)$ or $\eta \in\left[L^{2}(\Omega)\right]^{2}$, $\operatorname{rot} \eta \in L^{2}(\Omega)$ and $q \in H_{0}^{1}(\Omega)$.

Then

$$
(\operatorname{rot} \eta, q)=(\eta, \underline{\operatorname{rot}} q) .
$$

In particular,

$$
\begin{equation*}
(\nabla u, \underline{\text { rot }} q)=0 \tag{11}
\end{equation*}
$$

holds if $u \in H_{0}^{1}(\Omega), q \in H^{1}(\Omega)$.
Proof. We have

$$
\begin{aligned}
(\operatorname{rot} \eta, q) & =\int_{\Omega}\left(-\eta_{2} \partial q / \partial x_{1}+\eta_{1} \partial q / \partial x_{2}\right) \mathrm{d} x+\int_{\partial \Omega}\left(\eta_{2} \nu_{1}-\eta_{1} \nu_{2}\right) q \mathrm{~d} s \\
& =(\eta, \underline{\operatorname{rot}} q)+\int_{\partial \Omega}(\eta \cdot \tau) q \mathrm{~d} s
\end{aligned}
$$

and the last integral vanishes, as either $\eta \cdot \tau=0$ or $q=0$ on $\partial \Omega$. If $u \in H_{0}^{1}(\Omega)$, then $\nabla u \in H_{0}(\operatorname{rot}, \Omega)$ and $\operatorname{rot} \nabla u=0$.

Let $\varepsilon_{\alpha \beta}(\eta)$ be the symmetric part of the matrix $\left(\partial \eta_{\alpha} / \partial x_{\beta}\right)$.
Lemma 1.2. For all $\eta \in V$ the inequality

$$
\int_{\Omega} c_{\alpha \beta \gamma \delta} \frac{\partial \eta_{\alpha}}{\partial x_{\beta}} \frac{\partial \eta_{\gamma}}{\partial x_{\delta}} \mathrm{d} x_{1} \mathrm{~d} x_{2}=\int_{\Omega} c_{\alpha \beta \gamma \delta} \varepsilon_{\alpha \beta}(\eta) \varepsilon_{\gamma \delta}(\eta) \mathrm{d} x_{1} \mathrm{~d} x_{2} \geqslant C\|\eta\|_{1}^{2}
$$

holds with some positive constant C.

Proof. From (5) and (6) we easily obtain that the left-hand side is bounded below by

$$
\begin{equation*}
c_{0} \int_{\Omega} \sum_{\alpha, \beta=1}^{2} \varepsilon_{\alpha \beta}^{2}(\eta) \mathrm{d} x_{1} \mathrm{~d} x_{2} \tag{12}
\end{equation*}
$$

Let us consider the subspace of rigid body (2D) displacements

$$
\begin{equation*}
\mathscr{P}=\left\{\boldsymbol{v}=\left(a_{1}-b x_{2}, a_{2}+b x_{1}\right)^{\mathrm{T}}=\boldsymbol{a}+b \boldsymbol{k} \boldsymbol{x} x, a \in \mathbb{R}^{2}, b \in \mathbb{R}\right\} \tag{13}
\end{equation*}
$$

where k is the unit vector of x_{3}-axis.
Let us verify that

$$
\begin{equation*}
\mathscr{P} \cap V=\{0\} . \tag{14}
\end{equation*}
$$

In fact, denoting $\boldsymbol{a}^{\perp}=\left(-a_{2}, a_{1}\right)^{\mathrm{T}}=\boldsymbol{k} \times \boldsymbol{a}$, we may write

$$
v \cdot \tau=-\nu \cdot a^{\perp}-b x \cdot \nu=\nu \cdot\left(-a^{\perp}-b x\right)
$$

Let the origin coincide with the vertex $A \in \partial \Omega$ (see Fig. 1). Then for $v \in \mathscr{P} \cap V$ we obtain

$$
-\nu^{(1)} \cdot \boldsymbol{a}^{\perp}=0, \quad-\nu^{(2)} \cdot \boldsymbol{a}^{\perp}=0
$$

so that $\boldsymbol{a}^{\perp}=0$ and $\boldsymbol{a}=0$. Inserting $\boldsymbol{x} \in \overline{B C}$, we have

$$
b \nu^{(3)} \cdot x=0, \quad \nu^{(3)} \cdot x \neq 0
$$

so that $b=0$ follows. Consequently, (14) holds.
Having (14), we may apply the general result on inequalities of Korn's type [6Lemma 11.3.2], which says that (12) is the square of an equivalent norm in V.

Lemma 1.3. Positive constants c_{1}, c_{2}, c_{3} exist such that the inequality

$$
\begin{equation*}
\tilde{a}(t ; \beta, \beta)+[\nabla w-\beta, \nabla w-\beta] \geqslant \frac{c_{1} t_{\min }^{3}}{c_{2}+c_{3} t_{\min }^{2}}\left(\|\beta\|_{1}^{2}+|w|_{1}^{2}\right) \tag{15}
\end{equation*}
$$

holds for all $w \in H_{0}^{1}(\Omega)$ and $\beta \in V, t \in \mathscr{U}_{a d}$.
Proof. Lemma 1.2 and the definition of $\mathscr{U}_{a d}$ yield

$$
\begin{equation*}
\tilde{a}(t ; \beta, \beta) \geqslant \frac{2}{3} t_{\min }^{3} \int_{\Omega} c_{\alpha \beta \gamma \delta} \frac{\partial \beta_{\alpha}}{\partial x_{\beta}} \frac{\partial \beta_{\gamma}}{\partial x_{\delta}} \mathrm{d} x_{1} \mathrm{~d} x_{2} \geqslant c_{K} t_{\min }^{3}\|\beta\|_{1}^{2} \quad \forall \beta \in V \tag{16}
\end{equation*}
$$

Second, we have

$$
[\nabla w-\beta, \nabla w-\beta] \geqslant c_{E} t_{\min }\|\nabla w-\beta\|_{0}^{2}
$$

Obviously, we may write $\left(t_{\min } \equiv t_{m}\right)$

$$
\begin{align*}
\frac{1}{2}|w|_{1}^{2} & \leqslant\|\nabla w-\beta\|_{0}^{2}+\|\beta\|_{0}^{2} \tag{17}\\
& \leqslant t_{m}^{-3} c_{K}^{-1} \tilde{a}(t ; \beta, \beta)+t_{m}^{-1} c_{E}^{-1}[\nabla w-\beta, \nabla w-\beta] \\
& \leqslant A\left(t_{m}^{-3} c_{K}^{-1}+t_{m}^{-1} c_{E}^{-1}\right)
\end{align*}
$$

where A denotes the left-hand side of (15). Combining (16) and (17), we arrive at

$$
\|\beta\|_{1}^{2}+|w|_{1}^{2} \leqslant A\left(2 c_{K} t_{m}^{2}+3 c_{E}\right) /\left(c_{E} c_{K} t_{m}^{3}\right)
$$

so that (15) follows.
Remark 1.2. Since $\left[H_{0}^{1}(\Omega)\right]^{2} \subset V$, the inequality (15) holds for all $w \in H_{0}^{1}(\Omega)$, $\beta \in\left[H_{0}^{1}(\Omega)\right]^{2}$ and $t \in \mathscr{U}_{a d}$, as well.

Proposition 1.1. Let Ω be a convex polygon. Then the mapping

$$
B:(\eta, \zeta) \rightarrow(\nabla \zeta-\eta)
$$

is surjective from $\left[H_{0}^{1}(\Omega)\right]^{2} \times H_{0}^{1}(\Omega)$ onto $H_{0}(\operatorname{rot} ; \Omega)$ or from $V \times H_{0}^{1}(\Omega)$ onto $H_{0}($ rot $; \Omega)$.

The proof has been given in [2-Propos. VII. 3.2, p. 298] for $\eta \in\left[H_{0}^{1}(\Omega)\right]^{2}$. Since $\left[H_{0}^{1}(\Omega)\right]^{2} \subset V$ and for $\eta \in V$

$$
(\nabla \zeta-\eta) \cdot \tau=\partial \zeta / \partial s-\eta \cdot \tau=0 \quad \text { on } \partial \Omega
$$

the assertion holds for $\eta \in V$, as well.
Proposition 1.2. Any element $\gamma \in\left[L^{2}(\Omega)\right]^{2}$ can be written in a unique way as

$$
\gamma=t \mathscr{E} \nabla \psi+\underline{\operatorname{rot}} p,
$$

with $\psi \in H_{0}^{1}(\Omega), p \in H^{1}(\Omega) / \mathbb{R}$.
Proof. (cf. [2-Propos. VII. 3.4]). Let us set $\xi=\operatorname{div} \gamma \in H^{-1}(\Omega)$. Consider the solution $\psi \in H_{0}^{1}(\Omega)$ of the Dirichlet problem

$$
\operatorname{div}(t \mathscr{E} \nabla \psi)=\xi
$$

Defining $\alpha:=\gamma-t \mathscr{E} \nabla \psi$, we realize that $\operatorname{div} \alpha=0$, so that $\alpha=\underline{\operatorname{rot} p}$ for some $p \in H^{1}(\Omega) / \mathbb{R}$ (see [5 - Theorem I.3.1, p. 37]).

2. Mixed variational formulation

Approximations, based on the minimum of potential energy (9) and finite elements, cannot be recommended. They deteriorate as the thickness tends to zero. Theoretically, such phenomenon is caused by the fact, that the "constant of coercivity" in (15) is $O\left(t_{\min }^{3}\right)$.

To overcome the troubles, we apply three following steps [2]. First, we define a scaled potential energy

$$
\Pi_{o}=t_{\min }^{-3} \Pi
$$

Second, we introduce a mixed variational formulation with the help of a "scaled shear force"

$$
\begin{equation*}
\gamma:=t \mathscr{E}(\nabla w-\beta) / t_{\min }^{3} \tag{18}
\end{equation*}
$$

(Note that γ is proportional to the shearing force, i.e., to the integral

$$
\left.\int_{-t}^{t} \sigma_{\alpha 3} \mathrm{~d} x_{3}\right) .
$$

We preserve the first part of Π_{o}, and denote it by

$$
\frac{1}{2} a(t ; \beta, \beta):=\frac{1}{2} t_{\min }^{-3} \tilde{a}(t ; \beta, \beta) .
$$

The second part - energy of shear stresses - will be transformed as in the principle of Hellinger-Reissner (see [6-§5.4]). Thus we arrive at a new functional

$$
\mathscr{R}(\beta, w ; \gamma)=\frac{1}{2} a(t ; \beta, \beta)+(\gamma, \nabla w-\beta)-\frac{1}{2} t_{m}^{3}\left(\frac{1}{t} \mathscr{E}^{-1} \gamma, \gamma\right)-t_{m}^{-3}(f, w) .
$$

(For brevity, we denote $t_{m}:=t_{\min }$). The solution of our problem $\{\beta, w\}$ and γ is a saddle point of \mathscr{R} and we have the following conditions of optimality

$$
\begin{align*}
& a(t ; \beta, \eta)+(\gamma, \nabla \zeta-\eta)-t_{m}^{-3}(f, \zeta)=0 \tag{19}\\
& \quad \forall\{\eta, \zeta\} \in\left[H_{0}^{1}(\Omega)\right]^{2} \times H_{0}^{1}(\Omega), \quad \text { or } \forall\{\eta, \zeta\} \in V \times H_{0}^{1}(\Omega),
\end{align*}
$$

$$
\begin{equation*}
(\nabla w-\beta, \delta)-t_{m}^{3}\left(\frac{1}{t} \mathscr{E}^{-1} \gamma, \delta\right)=0 \quad \forall \delta \in\left[L^{2}(\Omega)\right]^{2} \tag{20}
\end{equation*}
$$

Let us insert the decomposition of γ by Proposition 1.2 and the analogous decomposition of δ. Thus we obtain the following system for ψ, β, p, w :

$$
\begin{gather*}
{[\nabla \psi, \nabla \zeta]=t_{m}^{-3}(f, \zeta) \quad \forall \zeta \in H_{0}^{1}(\Omega),} \tag{21}\\
a(t ; \beta, \eta)-(\underline{\operatorname{rot}} p, \eta)=[\nabla \psi, \eta] \quad \forall \eta \in\left[H_{0}^{1}(\Omega)\right]^{2} \text { or } \forall \eta \in V ; \tag{22}\\
-(\beta, \underline{\operatorname{rot}} q)=t_{m}^{3}\left(\frac{1}{t} \mathscr{E}^{-1} \underline{\operatorname{rot} p, \underline{\operatorname{rot}} q) \quad \forall q \in H^{1}(\Omega) / \mathbb{R},}\right. \tag{23}\\
{[\nabla w, \nabla \chi]=[\beta, \nabla \chi]+(f, \chi) \quad \forall \chi \in H_{0}^{1}(\Omega) .} \tag{24}
\end{gather*}
$$

Note that (21) and (24) is a Dirichlet problem for ψ and w, respectively. The system (22)-(23) represents a "Stokes-like" problem for β and p, "penalized" by the term on the right-hand side of (23). Indeed, to see this, we replace the vectorfunctions η by the rotated vectors η^{\perp}, so that for instance

$$
-(\underline{\operatorname{rot}} p, \eta)=-(p, \operatorname{rot} \eta)=\left(p, \operatorname{div} \eta^{\perp}\right) .
$$

On the basis of (21)-(24) a discretization by finite element method can be proposed and an error estimate derived [4]. Such a numerical method, however, is not used in practice, even if a Stokes solver is available. The solution for small thickness displays troubles, since the condition $(\nabla w-\beta)=0$ is enforced too much.

Therefore, we apply (third step) a kind of numerical integration in the second term of the potential energy. Such an approach is nearer to the engineering practice. The details will be shown in the next Section.

3. SOLUTION BY MIXED-INTERPOLATED FINITE ELEMENTS

In the present section we apply an example [2] of the so-called mixed-interpolated elements for Reissner-Mindlin plates, which were proposed by Bathe, Brezzi and Fortin in [1] and analyzed by Brezzi, Fortin and Stenberg in [3]. The error analysis will be extended to the plates of variable thickness, anisotropic materials and hard simply supported edges.

Let us consider a regular family of triangulations $\left\{\mathrm{T}_{h}\right\}, h \rightarrow 0$, of the domain Ω.
Let k be a non-negative integer, s a positive integer; we denote by \mathscr{L}_{s}^{k} the space of piecewise polynomials on T_{h} of degree $\leqslant s$, which belong to $H^{k}(\Omega),\left(H^{0}(\Omega) \equiv\right.$ $\left.L^{2}(\Omega)\right)$. Let B_{3} be the space of "bubble functions" on T_{h} of the third degree, i.e.,

$$
B_{3}=\left\{v|v|_{K} \in P_{3}(K) \cap H_{0}^{1}(K) \text { for all triangles } K \in \mathrm{~T}_{h}\right\}
$$

Let H_{h} be the intersection of

$$
\left(\mathscr{L}_{2}^{1} \oplus B_{3}\right)^{2}
$$

with $\left[H_{0}^{1}(\Omega)\right]^{2}$ or V, respectively, (Crouzeix-Raviart element),

$$
\begin{aligned}
W_{h} & =\mathscr{L}_{2}^{1} \cap H_{0}^{1}(\Omega), \quad Q_{h}=\mathscr{L}_{1}^{0} / \mathbb{R}, \\
\Gamma_{h} & =\left(R T_{1}\right)^{\perp} \cap H_{0}(\operatorname{rot} ; \Omega),
\end{aligned}
$$

where $R T_{1}$ denotes the space of Raviart-Thomas elements of the first degree and $(.)^{\perp}$ denotes the rotation by $\pi / 2$, defined by $a^{\perp}=\left(-a_{2}, a_{1}\right)^{T}=k \times a$.

Recall that [$2-$ p. 116] the restrictions on the triangles are defined by

$$
R T_{1}(K)=\left(P_{1}(K)\right)^{2}+x P_{1}(K) \quad \forall K \in \mathrm{~T}_{h}
$$

and $R T_{1} \subset H(\operatorname{div} ; \Omega)$, i.e., the degrees of freedom have been chosen in order to ensure continuity of the flux $\gamma \cdot \nu$ at interfaces of elements.

Note that $\nabla W_{h} \subset \Gamma_{h}$.
Following [$2-$ p. 312] we define the interpolation $\Pi_{h}: H_{h} \rightarrow\left(R T_{1}\right)^{\perp}$ by means of

$$
\begin{equation*}
\int_{e}\left(\eta_{h}-\Pi_{h} \eta_{h}\right) \cdot \tau \mu_{1} \mathrm{~d} s=0 \quad \forall \mu_{1} \in P_{1}(e) \tag{25}
\end{equation*}
$$

for all sides $e \in \partial K \in \mathrm{~T}_{h}$, and

$$
\begin{equation*}
\int_{K}\left(\eta_{h}-\Pi_{h} \eta_{h}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}=0 \quad \forall K \in \mathrm{~T}_{h} \tag{26}
\end{equation*}
$$

We can show, that $\Pi_{h}: H_{h} \rightarrow \Gamma_{h}$, i.e. the interpolant $\Pi_{h} \eta_{h}$ satisfies the boundary condition $\Pi_{h} \eta_{h} \cdot \tau=0$. In fact, the traces of $\gamma \cdot \tau$ for $\gamma \in\left(R T_{1}\right)^{\perp}$ on any $e \in \partial K \cap \partial \Omega$ are linear polynomials [2 - Prop. III.3.2, p. 116], so that (25) is sufficient to guarantee the zero trace of $\gamma \cdot \tau$.

Moreover, we have the estimate

$$
\begin{equation*}
\left\|\Pi_{h} \eta_{h}\right\|_{0} \leqslant\left\|\eta_{h}\right\|_{1} \quad \forall \eta_{h} \in H_{h} \tag{27}
\end{equation*}
$$

(see [2 - p. 313 and Prop. III.3.9, p. 132]) and

$$
\begin{equation*}
\left(q_{h}, \operatorname{rot}\left(\Pi_{h} \eta_{h}-\eta_{h}\right)\right)=0 \quad \forall q_{h} \in Q_{h}, \eta_{h} \in H_{h} \tag{28}
\end{equation*}
$$

(see [2 - Prop. III.3.7, p. 129]).
Lemma 3.1. [2 - Propos. VII.3.10, p. 315]. For any $g_{h} \in \Gamma_{h}$ there exist $\psi_{h} \in W_{h}$ and a unique $p_{h} \in Q_{h}$ such that

$$
\left[g_{h}, \delta_{h}\right]=\left[\nabla \psi_{h}, \delta_{h}\right]+\left(p_{h}, \operatorname{rot} \delta_{h}\right) \quad \forall \delta_{h} \in \Gamma_{h}
$$

Proof. Let us consider the following mixed problem: find $\alpha_{h} \in \Gamma_{h}$ and $p_{h} \in Q_{h}$ such that

$$
\begin{align*}
& {\left[\alpha_{h}, \delta_{h}\right]-\left(p_{h}, \operatorname{rot} \delta_{h}\right)=0 \quad \forall \delta_{h} \in \Gamma_{h},} \tag{29}\\
& \left(\operatorname{rot} \alpha_{h}, q_{h}\right)=\left(\operatorname{rot} g_{h}, q_{h}\right) \quad \forall q_{h} \in Q_{h} . \tag{30}
\end{align*}
$$

Since the pair of spaces Γ_{h}, Q_{h} fulfils the so-called inf-sup condition [2-p. 138], the problem has a unique solution. By virtue of the fact, that $\operatorname{rot}\left(g_{h}-\alpha_{h}\right) \in Q_{h}$, (30) implies $\operatorname{rot}\left(g_{h}-\alpha_{h}\right)=0$. Then a $\psi_{h} \in W_{h}$ exists such that $g_{h}-\alpha_{h}=\nabla \psi_{h}$ (see [2-Corol. III.3.2, p. 117] and [5 - Theorem I.3.1, p. 37]). Then from (29) we obtain for all $\delta_{h} \in \Gamma_{h}$

$$
\left[g_{h}, \delta_{h}\right]=\left[\nabla \psi_{h}, \delta_{h}\right]+\left[\alpha_{h}, \delta_{h}\right]=\left[\nabla \psi_{h}, \delta_{h}\right]+\left(p_{h}, \operatorname{rot} \delta_{h}\right)
$$

In order to overcome the above mentioned "shear locking" effect of numerical solution, instead of the minimization of the functional Π_{o} it is suitable to consider

$$
\begin{equation*}
\min _{\left\{\beta_{h}, w_{h}\right\} \in H_{h} \times W_{h}}\left\{\frac{1}{2} a\left(t ; \beta_{h}, \beta_{h}\right)+\frac{1}{2} t_{m}^{-3}\left[\nabla w_{h}-\Pi_{h} \beta_{h}, \nabla w_{h}-\Pi_{h} \beta_{h}\right]-t_{m}^{-3}\left(f, w_{h}\right)\right\} . \tag{31}
\end{equation*}
$$

Since by means of Lemma 1.2, (16) and (27) we can prove that the functional is strictly convex and continuous, there exists a unique minimizer. The optimality conditions of the problem (31) are

$$
\begin{gather*}
a\left(t ; \beta_{h}, \eta_{h}\right)-t_{m}^{-3}\left[\nabla w_{h}-\Pi_{h} \beta_{h}, \Pi_{h} \eta_{h}\right]=0 \quad \forall \eta_{h} \in H_{h} \tag{32}\\
{\left[\nabla w_{h}-\Pi_{h} \beta_{h}, \nabla \varphi_{h}\right]=\left(f, \varphi_{h}\right) \quad \forall \varphi_{h} \in W_{h}} \tag{33}
\end{gather*}
$$

Proposition 3.1. Let $\left\{\beta_{h}, w_{h}\right\}$ be the solution of (32)-(33), i.e., the minimizer of (31). Then the function

$$
\begin{equation*}
g_{h}=t_{m}^{-3}\left(\nabla w_{h}-\Pi_{h} \beta_{h}\right) \tag{34}
\end{equation*}
$$

belongs to Γ_{h} and can be decomposed according to the formula

$$
\begin{equation*}
g_{h}=\nabla \psi_{h}+\alpha_{h} \tag{35}
\end{equation*}
$$

where $\psi_{h} \in W_{h}$ and α_{h} belongs to the orthocomplement of ∇W_{h} in Γ_{h} (with respect to the inner product [., .]).

Moreover, there exists a unique $p_{h} \in Q_{h}$ such that $\left\{\beta_{h}, w_{h}, \psi_{h}, \alpha_{h}, p_{h}\right\} \in H_{h} \times$ $W_{h} \times W_{h} \times \Gamma_{h} \times Q_{h}$ satisfy the following system

$$
\begin{gather*}
{\left[\nabla \psi_{h}, \nabla \varphi_{h}\right]=t_{m}^{-3}\left(f, \varphi_{h}\right) \quad \forall \varphi_{h} \in W_{h}} \tag{36}\\
a\left(t ; \beta_{h}, \eta_{h}\right)-\left(p_{h}, \operatorname{rot} \eta_{h}\right)=\left[\nabla \psi_{h}, \Pi_{h} \eta_{h}\right] \quad \forall \eta_{h} \in H_{h}, \tag{37}\\
\left(\operatorname{rot} \beta_{h}, q_{h}\right)+t_{m}^{3}\left(\operatorname{rot} \alpha_{h}, q_{h}\right)=0 \quad \forall q_{h} \in Q_{h}, \tag{38}\\
{\left[\alpha_{h}, \delta_{h}\right]-\left(p_{h}, \operatorname{rot} \delta_{h}\right)=0 \quad \forall \delta_{h} \in \Gamma_{h},} \tag{39}\\
{\left[\nabla w_{h}, \nabla \varphi_{h}\right]=\left[\Pi_{h} \beta_{h}, \nabla \varphi_{h}\right]+\left(f, \varphi_{h}\right) \quad \forall \varphi_{h} \in W_{h} .} \tag{40}
\end{gather*}
$$

Proof. The system (32)-(33) is equivalent to the following three equations (a mixed formulation, cf. (19)-(20))

$$
\begin{gather*}
a\left(t ; \beta_{h}, \eta_{h}\right)-\left[g_{h}, \Pi_{h} \eta_{h}\right]=0 \quad \forall \eta_{h} \in H_{h} \tag{41}\\
{\left[g_{h}, \nabla \varphi_{h}\right]=t_{m}^{-3}\left(f, \varphi_{h}\right) \quad \forall \varphi_{h} \in W_{h}} \tag{42}\\
{\left[g_{h}, \delta_{h}\right]=t_{m}^{-3}\left[\nabla w_{h}-\Pi_{h} \beta_{h}, \delta_{h}\right] \quad \forall \delta_{h} \in \Gamma_{h}} \tag{43}
\end{gather*}
$$

Using Lemma 3.1 and substituting $\delta_{h}:=\nabla \varphi_{h}, \varphi_{h} \in W_{h}$ into (42), we obtain (36). The same Lemma in (41) and (28) yield (37). From (43) we derive with the help of Lemma 3.1 for $\delta_{h}:=\nabla \varphi_{h}, \varphi_{h} \in W_{h}$

$$
\left[\nabla \psi_{h}, \nabla \varphi_{h}\right]=t_{m}^{-3}\left[\nabla w_{h}-\Pi_{h} \beta_{h}, \nabla \varphi_{h}\right]
$$

If we substitute here from (36), we arrive at (40).
Let us choose any $\delta_{h} \in\left(\nabla W_{h}\right)^{\perp}$, i.e., $\delta_{h} \in \Gamma_{h}$ such that $\left[\delta_{h}, \nabla \varphi_{h}\right]=0 \forall \varphi_{h} \in W_{h}$. Then Lemma 3.1 and (43) imply that

$$
\begin{equation*}
\left(p_{h}, \operatorname{rot} \delta_{h}\right)=-t_{m}^{-3}\left[\Pi_{h} \beta_{h}, \delta_{h}\right] \quad \forall \delta_{h} \in\left(\nabla W_{h}\right)^{\perp} \tag{44}
\end{equation*}
$$

The function $\alpha_{h} \in \Gamma_{h}$ fullfils (39), as follows from (35) and Lemma 3.1 by comparison. Then (44) can be rewritten as

$$
\begin{equation*}
\left[\alpha_{h}, \delta_{h}\right]=-t_{m}^{-3}\left[\Pi_{h} \beta_{h}, \delta_{h}\right] \quad \forall \delta_{h} \in\left(\nabla W_{h}\right)^{\perp} \tag{45}
\end{equation*}
$$

From Lemma 3.1, however, we deduce that for any $\delta_{h} \in\left(\nabla W_{h}\right)^{\perp}$ there exists a unique $q_{h} \in Q_{h}$, such that

$$
\begin{equation*}
\left[\delta_{h}, \chi_{h}\right]=\left(q_{h}, \operatorname{rot} \chi_{h}\right) \quad \forall \chi_{h} \in\left(\nabla W_{h}\right)^{\perp} \tag{46}
\end{equation*}
$$

Since from (39) $\alpha_{h} \in\left(\nabla W_{h}\right)^{\perp}$ follows, we may write, using (46), (45) and (28),

$$
\begin{aligned}
\left(q_{h}, \operatorname{rot} \alpha_{h}\right) & =\left[\delta_{h}, \alpha_{h}\right]=-t_{m}^{-3}\left[\Pi_{h} \beta_{h}, \delta_{h}\right] \\
& =-t_{m}^{-3}\left(q_{h}, \operatorname{rot} \Pi_{h} \beta_{h}\right)=-t_{m}^{-3}\left(q_{h}, \operatorname{rot} \beta_{h}\right) \quad \forall \delta_{h} \in\left(\nabla W_{h}\right)^{\perp}
\end{aligned}
$$

Consequently, (38) is satisfied for all $q_{h} \in Q_{h}$, since for any $q_{h} \in Q_{h}$ there exists $\delta_{h} \in\left(\nabla W_{h}\right)^{\perp}$ such that (46) holds. In fact, the equation (46) is uniquely solvable for δ_{h}. (For a fixed parameter h, all norms are equivalent, so that $\left\|\operatorname{rot} \chi_{h}\right\|_{0} \leqslant\left\|\chi_{h}\right\|_{1} \leqslant$ $C\left\|\chi_{h}\right\|_{0}$, a.s.o.) The uniqueness of the decomposition (35) is obvious.

The existence and uniqueness of $p_{h} \in Q_{h}$ follows from the proof of Lemma 3.1.

Proposition 3.2. The system (36)-(40) has a unique solution in $H_{h} \times W_{h} \times W_{h} \times$ $\Gamma_{h} \times Q_{h}$.

Proof. Since the existence was proved in Proposition 3.1, it remains to verify the uniqueness. Let $\left\{\Delta \beta_{h}, \Delta w_{h}, \Delta \psi_{h}, \Delta \alpha_{h}, \Delta p_{h}\right\}$ be the difference of two solutions. Let us drop out the subscripts h in what follows.

From (3.6) $\Delta \psi=0$ follows immediately. We have therefore

$$
\begin{aligned}
a(t ; \Delta \beta, \eta)-(\Delta p, \operatorname{rot} \eta)=0 & \forall \eta \in H_{h} \\
(\operatorname{rot} \Delta \beta, q)+t_{m}^{3}(\operatorname{rot} \Delta \alpha, q)=0 & \forall q \in Q_{h} \\
t_{m}^{3}[\Delta \alpha, \delta]-t_{m}^{3}(\Delta p, \operatorname{rot} \delta)=0 & \forall \delta \in \Gamma_{h}
\end{aligned}
$$

Inserting $\eta:=\Delta \beta, q=\Delta p, \delta=\Delta \alpha$ and summing these three equations, we arrive at

$$
a(t ; \Delta \beta, \Delta \beta)+t_{m}^{3}[\Delta \alpha, \Delta \alpha]=0
$$

so that $\Delta \beta=0$ and $\Delta \alpha=0$ follows by (16).
Form (40) we derive

$$
[\nabla \Delta w, \nabla \Delta w]=[\Pi \Delta \beta, \nabla \Delta w]=0
$$

so that $\Delta w=0$.
Finally, (37) yields that

$$
(\Delta p, \operatorname{rot} \eta)=0 \quad \forall \eta \in H_{h}
$$

Since the pair $\left\{H_{h}, Q_{h}\right\}$ satisfies the inf-sup condition for the "Stokes-like" problem, [2 - chapt. VI, p. 205, (2.13)], we have

$$
k_{0}\|\Delta p\|_{0 / R} \leqslant \sup _{\eta \in H_{h}}(\Delta p, \operatorname{rot} \eta) /\|\eta\|_{1}=0
$$

and $\Delta p=0$ follows in Q_{h}.

Theorem 3.1. Let β, w, γ be the solution of (19)-(20). Let γ be decomposed by means of Proposition 1.2 and let us set

$$
\begin{equation*}
\alpha=\frac{1}{t} \mathscr{E}^{-1} \underline{\operatorname{rot} p} \tag{47}
\end{equation*}
$$

Let $\left\{\beta_{h}, w_{h}, \psi_{h}, \alpha_{h}, p_{h}\right\}$ be the solution of (36)-(40).
Then positive constants C_{0}, C exist, independent of $t \in \mathscr{U}_{a d}$ and such that

$$
\begin{aligned}
& \left\|\beta_{h}-\beta\right\|_{1}+\left\|w_{h}-w\right\|_{1}+\left\|\psi_{h}-\psi\right\|_{1}+\left\|\alpha_{h}-\alpha\right\|_{0}+\left\|p_{h}-p\right\|_{0 / R} \\
\leqslant & C_{0}\left\{\inf _{\eta_{h} \in H_{h}}\left\|\beta-\eta_{h}\right\|_{1}+\inf _{\zeta_{h} \in W_{h}}\left\|w-\zeta_{h}\right\|_{1}+\inf _{\varphi_{h} \in W_{h}}\left\|\psi-\varphi_{h}\right\|_{1}\right. \\
& +\inf _{q_{h} \in Q_{h}}\left\|p-q_{h}\right\|_{0 / R}+\inf _{\delta_{h} \in \Gamma_{h}}\left\|\alpha-\delta_{h}\right\|_{\Gamma}+\left\|\beta-\Pi_{h} \beta\right\|_{0} \\
& \left.+\sup _{\eta_{h} \in H_{h}}\left[\nabla \psi, \eta_{h}-\Pi_{h} \eta_{h}\right] /\left\|\eta_{h}\right\|_{1}\right\} \\
\leqslant & C h^{s}\left\{\|\beta\|_{s+1}+\|w\|_{s+1}+\|\psi\|_{s+1}+\|p\|_{s / R}+\|\alpha\|_{s}+\|\operatorname{rot} \alpha\|_{s}\right\}, \quad 1 \leqslant s \leqslant 2
\end{aligned}
$$

Proof. (i) It is easy to see that the functions $\beta, w, \psi, p, \alpha$ satisfy the following system

$$
\begin{gather*}
{[\nabla \psi, \nabla \varphi]=t_{m}^{-3}(f, \varphi) \quad \forall \varphi \in H_{0}^{1}(\Omega)} \tag{48}\\
a(t ; \beta, \eta)-(p, \operatorname{rot} \eta)=[\nabla \psi, \eta] \quad \forall \eta \in\left[H_{0}^{1}(\Omega)\right]^{2} \text { or } \forall \eta \in V, \tag{49}\\
(\operatorname{rot} \beta, q)+t_{m}^{3}(\operatorname{rot} \alpha, q)=0 \quad \forall q \in L^{2}(\Omega), \tag{50}\\
{[\alpha, \delta]-(p, \operatorname{rot} \delta)=0 \quad \forall \delta \in H_{0}(\operatorname{rot} ; \Omega)} \tag{51}\\
{[\nabla w, \nabla \varphi]=[\beta, \nabla \varphi]+(f, \varphi) \quad \forall \varphi \in H_{0}^{1}(\Omega)} \tag{52}
\end{gather*}
$$

In fact, (48) and (52) follows from (21) and (24), respectively. Using Lemma 1.1 in (22) (note that both $\left(H_{0}^{1}\right)^{2}$ and V are subspaces of $H_{0}(\mathrm{rot}, \Omega)$), we arrive at (49). The equation (50) follows from (23), (47), starting with $q \in C_{0}^{\infty}(\Omega)$ and employing Lemma 1.1 and the density of $C_{0}^{\infty}(\Omega)$ in $L^{2}(\Omega)$. We easily derive (51) from (47) and Lemma 1.1.

Let us define "intermediate" approximations

$$
\left\{\beta_{h}^{I}, w_{h}^{I}, \psi_{h}^{I}, p_{h}^{I}, \alpha_{h}^{I}\right\} \in H_{h} \times W_{h} \times W_{h} \times Q_{h} \times \Gamma_{h}
$$

(close to $\beta, w, \psi, p, \alpha$) in the following way.
We set (cf. (36))

$$
\begin{equation*}
\psi_{h}^{I}=\psi_{h} \tag{53}
\end{equation*}
$$

and define $\beta_{h}^{I}, \tilde{p}_{h}^{I}$ as the solution of the "Stokes-like" discrete problem in $H_{h} \times Q_{h}$

$$
\begin{gather*}
a\left(t ; \beta_{h}^{I}, \eta_{h}\right)+\left(\tilde{p}_{h}^{I}, \operatorname{rot} \eta_{h}\right)=a\left(t ; \beta, \eta_{h}\right) \quad \forall \eta_{h} \in H_{h}, \tag{54}\\
\left(\operatorname{rot} \beta_{h}^{I}, q_{h}\right)=\left(\operatorname{rot} \beta, q_{h}\right) \quad \forall q_{h} \in Q_{h} . \tag{55}
\end{gather*}
$$

For $\left\{\alpha_{h}^{I}, p_{h}^{I}\right\} \in \Gamma_{h} \times Q_{h}$ we define another mixed problem

$$
\begin{gather*}
{\left[\alpha_{h}^{I}, \delta_{h}\right]-\left(p_{h}^{I}, \operatorname{rot} \delta_{h}\right)=0 \quad \forall \delta_{h} \in \Gamma_{h},} \tag{56}\\
-t_{m}^{3}\left(\operatorname{rot} \alpha_{h}^{I}, q_{h}\right)=\left(\operatorname{rot} \beta_{h}^{I}, q_{h}\right) \quad \forall q_{h} \in Q_{h} . \tag{57}
\end{gather*}
$$

Finally, we define w_{h}^{I} by the equation

$$
\begin{equation*}
\left[\nabla w_{h}^{I}, \nabla \varphi_{h}\right]=\left[\Pi_{h} \beta, \nabla \varphi_{h}\right]+(f, \varphi) \quad \forall \varphi_{h} \in W_{h} \tag{58}
\end{equation*}
$$

The differences $\left\{\beta_{h}-\beta_{h}^{I}, \ldots, \alpha_{h}-\alpha_{h}^{I}\right\}$ satisfy the following system

$$
\begin{align*}
& a\left(t ; \beta_{h}-\beta_{h}^{I}, \eta_{h}\right)-\left(p_{h}-p_{h}^{I}, \operatorname{rot} \eta_{h}\right)=a\left(t ; \beta-\beta_{h}^{I}, \eta_{h}\right) \tag{59}\\
& \quad-\left(p-p_{h}^{I}, \operatorname{rot} \eta_{h}\right)-\left[\nabla \psi, \eta_{h}-\Pi_{h} \eta_{h}\right]+\left[\nabla \psi_{h}-\nabla \psi, \Pi_{h} \eta_{h}\right] \quad \forall \eta_{h} \in H_{h}
\end{align*}
$$

$$
\begin{gather*}
\left(\operatorname{rot}\left(\beta_{h}-\beta_{h}^{I}\right), q_{h}\right)+t_{m}^{3}\left(\operatorname{rot}\left(\alpha_{h}-\alpha_{h}^{I}\right), q_{h}\right)=0 \quad \forall q_{h} \in Q_{h} \tag{60}\\
{\left[\alpha_{h}-\alpha_{h}^{I}, \delta_{h}\right]-\left(p_{h}-p_{h}^{I}, \operatorname{rot} \delta_{h}\right)=0 \quad \forall \delta_{h} \in \Gamma_{h}} \tag{61}\\
{\left[\nabla\left(w_{h}-w_{h}^{I}\right), \nabla \varphi_{h}\right]=\left[\Pi_{h} \beta_{h}-\Pi_{h} \beta, \nabla \varphi_{h}\right] \quad \forall \varphi_{h} \in W_{h}} \tag{62}
\end{gather*}
$$

From (21), (53) and (36) we get

$$
\begin{equation*}
\left\|\psi-\psi_{h}\right\|_{1} \leqslant C \inf _{\varphi_{h} \in W_{h}}\left\|\psi-\varphi_{h}\right\|_{1} \tag{63}
\end{equation*}
$$

Let us insert $\eta_{h}:=\beta_{h}-\beta_{h}^{I} \equiv \Delta \beta_{h}$ into (59), $q_{h}=p_{h}-p_{h}^{I} \equiv \Delta p_{h}$ into (60) and $\delta_{h}:=\left(\alpha_{h}-\alpha_{h}^{I}\right)=\Delta \alpha_{h}$ into (61). Summing these three equations, we obtain

$$
\begin{aligned}
& a\left(t ; \Delta \beta_{h}, \Delta \beta_{h}\right)+\left[\Delta \alpha_{h}, \Delta \alpha_{h}\right]=a\left(t ; \beta-\beta_{h}^{I}, \Delta \beta_{h}\right) \\
& \quad-\left(p-p_{h}^{I}, \operatorname{rot} \Delta \beta_{h}\right)-\left[\nabla \psi, \Delta \beta_{h}-\Pi_{h} \Delta \beta_{h}\right]+\left[\nabla\left(\psi_{h}-\psi\right), \Pi_{h} \Delta \beta_{h}\right]
\end{aligned}
$$

Using (16), (27) and the obvious estimates, we may write

$$
\begin{gather*}
\mathrm{C}_{K}\left\|\Delta \beta_{h}\right\|_{1}^{2}+C_{E} t_{\min }\left\|\Delta \alpha_{h}\right\|_{0}^{2} \leqslant C_{3}\left\{\left\|\beta-\beta_{h}^{I}\right\|_{1}+\left\|p-p_{h}^{I}\right\|_{0 / R}\right. \tag{64}\\
\left.\quad+\left\|\psi-\psi_{h}\right\|_{1}+\sup _{\eta_{h} \in H_{h}}\left[\nabla \psi, \eta_{h}-\Pi_{h} \eta_{h}\right] /\left\|\eta_{h}\right\|_{1}\right\}\left\|\Delta \beta_{h}\right\|_{1}
\end{gather*}
$$

Next, let us show that β_{h}^{I} is an optimal approximation of β, i.e.,

$$
\begin{equation*}
\left\|\beta-\beta_{h}^{I}\right\|_{1} \leqslant C \inf _{\eta_{h} \in H_{h}}\left\|\beta-\eta_{1}\right\|_{1} \tag{65}
\end{equation*}
$$

Indeed, substituting from (49) into (54) and from (50) into (55), we have

$$
\begin{aligned}
a\left(t ; \beta_{h}^{I}, \eta_{h}\right)+\left(\tilde{p}_{h}^{I}-p, \operatorname{rot} \eta_{h}\right) & =\left[\nabla \psi, \eta_{h}\right] \quad \forall \eta_{h} \in H_{h} \\
\left(\operatorname{rot} \beta_{h}^{I}, q_{h}\right) & =-t_{m}^{3}\left(\operatorname{rot} \alpha, q_{h}\right) \quad \forall q_{h} \in Q_{h}
\end{aligned}
$$

Obviously, this is an approximation of (49)-(50), where p is replaced by $(p-\Theta)$, and the "continuous" solution is $\{\beta, \Theta\}, \Theta=0$. Since $\left\{H_{h}, Q_{h}\right\}$ is a stable pair for Stokes problem [2 - chapt. VI and Thm. II.2.1, p. 60, (2.36)], we have

$$
\left\|\beta-\beta_{h}^{I}\right\|_{1}+\left\|\Theta-\tilde{p}_{h}^{I}\right\|_{0 / R} \leqslant C\left(\inf _{\eta_{h} \in H_{h}}\left\|\beta-\eta_{h}\right\|_{1}+\inf _{q_{h} \in Q_{h}}\left\|q_{h}\right\|_{0 / R}\right)
$$

so that (65) holds.
Let us show that $\left\{\alpha_{h}^{I}, p_{h}^{I}\right\}$ is an optimal approximation of $\{\alpha, p\}$. By virtue of (55), the right-hand side of (57) is (rot $\left.\beta, q_{h}\right)$. The solution $\{\alpha, p\}$ of the limit problem $(h \rightarrow 0)$ exists and is unique, as follows from [2-Theorem II.1.1, p. 42].

Since the pair $\left\{\Gamma_{h}, Q_{h}\right\}$ satisfies the inf-sup condition [2-p. 135-139 and (1.25)(1.26), p. 139], we have

$$
\begin{gather*}
\left\|\alpha_{h}^{I}-\alpha\right\|_{\Gamma} \leqslant C \inf _{\delta_{h} \in \Gamma_{h}}\left\|\alpha-\delta_{h}\right\|_{\Gamma} \tag{66}\\
\left\|p_{h}^{I}-p\right\|_{0 / R} \leqslant C\left(\inf _{\Gamma_{h}}\left\|\alpha-\delta_{h}\right\|_{\Gamma}+\inf _{Q_{h}}\left\|p-q_{h}\right\|_{0 / R}\right) . \tag{67}
\end{gather*}
$$

The triangle inequality, (63), (64), (65) and (67) imply

$$
\begin{equation*}
\left\|\beta-\beta_{h}\right\|_{1} \leqslant\left\|\beta-\beta_{h}^{I}\right\|_{1}+\left\|\beta_{h}^{I}-\beta_{h}\right\|_{1} \leqslant C_{4}\{\mathscr{V}\} \tag{68}
\end{equation*}
$$

where

$$
\begin{aligned}
\{\mathscr{V}\} & \equiv \inf _{H_{h}}\left\|\beta-\eta_{h}\right\|_{1}+\inf _{\Gamma_{h}}\left\|\alpha-\delta_{h}\right\|_{\Gamma}+\inf _{Q_{h}}\left\|p-q_{h}\right\|_{0 / R} \\
& +\inf _{W_{h}}\left\|\psi-\varphi_{h}\right\|_{1}+\sup _{H_{h}}\left[\nabla \psi, \eta_{h}-\Pi_{h} \eta_{h}\right] /\left\|\eta_{h}\right\|_{1} .
\end{aligned}
$$

From (64) we also obtain

$$
C_{E} t_{\min }\left\|\Delta \alpha_{h}\right\|_{0}^{2} \leqslant C_{4}\{\mathscr{V}\}\left\|\Delta \beta_{h}\right\|_{1} \leqslant\left(C_{4}\{\mathscr{V}\}\right)^{2}
$$

so that

$$
\left\|\Delta \alpha_{h}\right\|_{0} \leqslant C_{5}\{\mathscr{V}\}
$$

Using (66), we derive

$$
\begin{equation*}
\left\|\alpha-\alpha_{h}\right\|_{0} \leqslant\left\|\alpha-\alpha_{h}^{I}\right\|_{\Gamma}+\left\|\Delta \alpha_{h}\right\|_{0} \leqslant C \inf _{\Gamma_{h}}\left\|\alpha-\delta_{h}\right\|_{\Gamma}+C_{5}\{\mathscr{V}\} \leqslant C_{6}\{\mathscr{V}\} \tag{69}
\end{equation*}
$$

Let us employ the inf-sup conditon for the "Stokes-like" problem [2-pp. 213 and 205 (2.14)] in the equation (59). Using also (27), (68), (67) and (63), we have

$$
\begin{aligned}
k_{0}\left\|\Delta p_{h}\right\|_{0 / R} \leqslant & \sup _{\eta_{h} \in H_{h}}\left(\Delta p_{h}, \operatorname{rot} \eta_{h}\right) /\left\|\eta_{h}\right\|_{1} \\
\leqslant & C\left\{\left\|\Delta \beta_{h}\right\|_{1}+\left\|\beta-\beta_{h}^{I}\right\|_{1}+\left\|p-p_{h}^{I}\right\|_{0 / R}+\left\|\psi-\psi_{h}\right\|_{1}\right. \\
& \left.+\sup _{H_{h}}\left[\nabla \psi, \eta_{h}-\Pi_{h} \eta_{h}\right] /\left\|\eta_{h}\right\|_{1}\right\} \leqslant C_{7}\{\mathscr{V}\} .
\end{aligned}
$$

The triangle inequality and (67) yield

$$
\begin{equation*}
\left\|p-p_{h}\right\|_{0 / R} \leqslant\left\|p-p_{h}^{I}\right\|_{0 / R}+\left\|\Delta p_{h}\right\|_{0 / R} \leqslant C_{8}\{\mathscr{V}\} . \tag{70}
\end{equation*}
$$

Let us define the orthogonal projection $P_{h}: H_{0}^{1}(\Omega) \rightarrow W_{h}$ by means of the inner product $[\nabla u, \nabla v]$. Then

$$
\begin{equation*}
\left\|w-w_{h}\right\|_{1} \leqslant\left\|w-P_{h} w\right\|_{1}+\left\|P_{h} w-w_{h}^{I}\right\|_{1}+\left\|w_{h}^{I}-w_{h}\right\|_{1} \tag{71}
\end{equation*}
$$

Inserting $\varphi_{h}:=\Delta w_{h}=w_{h}-w_{h}^{I}$ into (62), we may write

$$
\begin{equation*}
\left\|w_{h}-w_{h}^{I}\right\|_{1} \leqslant C\left\|\Pi_{h}\left(\beta_{h}-\beta\right)\right\|_{0} \leqslant \widehat{C}\left\|\beta_{h}-\beta\right\|_{1} \tag{72}
\end{equation*}
$$

[2-p. 220, (4.2)].
By definition of P_{h} and (52)

$$
\left[\nabla P_{h} w, \nabla \varphi_{h}\right]=\left[\nabla w, \nabla \varphi_{h}\right]=\left[\beta, \nabla \varphi_{h}\right]+\left(f, \varphi_{h}\right)
$$

Subtracting (58), we obtain

$$
\left[\nabla\left(P_{h} w-w_{h}^{I}\right), \nabla \varphi_{h}\right]=\left[\beta-\Pi_{h} \beta, \nabla \varphi_{h}\right] .
$$

Inserting $\varphi_{h}=P_{h} w-w_{h}^{I}$, we arrive at

$$
\begin{equation*}
\left\|P_{h} w-w_{h}^{I}\right\|_{1} \leqslant C\left\|\beta-\Pi_{h} \beta\right\|_{0} \tag{73}
\end{equation*}
$$

The optimality of the projection implies

$$
\begin{equation*}
\left\|w-P_{h} w\right\|_{1} \leqslant C \inf _{W_{h}}\left\|w-\varphi_{h}\right\|_{1} \tag{74}
\end{equation*}
$$

Combining (71)-(74) and (68), we are led to

$$
\begin{align*}
\left\|w-w_{h}\right\|_{1} & \leqslant C\left\{\left\|\beta-\beta_{h}\right\|_{1}+\left\|\beta-\Pi_{h} \beta\right\|_{0}+\inf _{W_{h}}\left\|w-\varphi_{h}\right\|_{1}\right\} \tag{75}\\
& \leqslant C_{9}\left(\{\mathscr{V}\}+\inf _{W_{h}}\left\|w-\varphi_{h}\right\|_{1}+\left\|\beta-\Pi_{h} \beta\right\|_{0}\right)
\end{align*}
$$

Finaly, the first inequality of Theorem 3.1 follows from (68), (75), (63), (70) and (69).
(ii) It remains to estimate the individual terms on the right-hand side. We have [2 - Proposition III.3.9, p. 132 and (3.43) - p. 125]

$$
\begin{equation*}
\left\|\beta-\Pi_{h} \beta\right\|_{0} \leqslant C h^{m}\|\beta\|_{m}, \quad 1 \leqslant m \leqslant 2 \tag{76}
\end{equation*}
$$

The Crouzeix-Raviart elements satisfy [2 - Propos. III.2.2, p. 106]

$$
\begin{equation*}
\inf _{\eta_{h} \in H_{h}}\left\|\beta-\eta_{h}\right\|_{1} \leqslant C h^{m-1}\|\beta\|_{m}, \quad 1 \leqslant m \leqslant 3 . \tag{77}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\inf _{W_{h}}\left\|w-\zeta_{h}\right\|_{1}+\inf _{W_{h}}\left\|\psi-\varphi_{h}\right\|_{1} \leqslant C h^{m-1}\left(\|w\|_{m}+\|\psi\|_{m}\right) \tag{78}
\end{equation*}
$$

provided $1 \leqslant m \leqslant 3$ and the family of triangulation $\left\{\mathscr{T}_{h}\right\}$ is regular,

$$
\begin{equation*}
\inf _{Q_{h}}\left\|p-q_{h}\right\|_{0 / R} \leqslant C h^{m}\|p\|_{m / R}, \quad 1 \leqslant m \leqslant 2 . \tag{79}
\end{equation*}
$$

From [2 - Propositions III.3.6 and III.3.8 - p. 128, 130] we have

$$
\begin{equation*}
\inf _{\Gamma_{h}}\left\|\alpha-\delta_{h}\right\|_{\Gamma} \leqslant C h^{m}\left(|\alpha|_{m}+|\operatorname{rot} \alpha|_{m}\right), \quad 1 \leqslant m \leqslant 2 \tag{80}
\end{equation*}
$$

Let $\bar{\psi}$ be the projection of $t \mathscr{E} \nabla \psi$ onto the subspace $\left(\mathscr{L}_{0}^{0}\right)^{2}$ of piecewise constant functions in $\left[L^{2}(\Omega)\right]^{2}$. Then (26) implies

$$
\left(t \mathscr{E} \nabla \psi, \eta_{h}-\Pi_{h} \eta_{h}\right)=\left(t \mathscr{E} \nabla \psi-\bar{\psi}, \eta_{h}-\Pi_{h} \eta_{h}\right)
$$

Moreover, we have the classical estimate

$$
\|t \mathscr{E} \nabla \psi-\bar{\psi}\|_{0} \leqslant C h|t \mathscr{E} \nabla \psi|_{1} \leqslant \widetilde{C} h\|\psi\|_{2}
$$

Using also (76), we may write

$$
\begin{equation*}
\sup _{\eta_{l} \in H_{l h}}\left[\nabla \psi, \eta_{h}-\Pi_{h} \eta_{h}\right] /\left\|\eta_{h}\right\|_{1} \leqslant \widetilde{C} h\|\psi\|_{2} C^{*} h=C h^{2}\|\psi\|_{2} \tag{81}
\end{equation*}
$$

Combining (76)-(81), we obtain the second inequality of the Theorem.

Corollary. From (18) and (34) it follows, that $t \mathscr{E} g_{h}$ is an approximation of the "scaled shear force" γ. We have the following error estimate

$$
\left\|\gamma-t \mathscr{E} g_{h}\right\|_{0} \leqslant C\left(\left\|\psi-\psi_{h}\right\|_{1}+\left\|\alpha-\alpha_{h}\right\|_{0}\right)=O\left(h^{s}\right), \quad 1 \leqslant s \leqslant 2
$$

In fact, using Proposition 1.2, Proposition 3.1 - (35) and (47), we have

$$
\gamma-t \mathscr{E} g_{h}=(t \mathscr{E} \nabla \psi+\underline{\operatorname{rot}} p)-t \mathscr{E}\left(\nabla \psi_{h}+\alpha_{h}\right)=t \mathscr{E}\left(\left(\nabla \psi-\nabla \psi_{h}\right)+\left(\alpha-\alpha_{h}\right)\right) .
$$

Consequently, the error estimate follows from Theorem 3.1.
Theorem 3.2. Let β, w, γ be the solution of (19)-(20), let γ be decomposed by means of Proposition 1.2 and let us set $\alpha=t^{-1} \mathscr{E}^{-1} \underline{\text { rot } p \text {. Assume no additional }}$ regularity of the solution, i.e., let $\beta \in\left[H^{1}(\Omega)\right]^{2}, w \in H_{0}^{1}(\Omega), \psi \in H_{0}^{1}(\Omega), p \in$ $H^{1}(\Omega) / \mathbb{R}, \alpha \in\left[L^{2}(\Omega)\right]^{2}, \operatorname{rot} \alpha \in L^{2}(\Omega)$.

Let $\left\{\beta_{h}, w_{h}, \psi_{h}, \alpha_{h}, p_{h}\right\}$ be the solution of (36)-(40). Then

$$
\lim _{h \rightarrow 0}\left(\left\|\beta_{h}-\beta\right\|_{1}+\left\|w_{h}-w\right\|_{1}+\left\|\psi_{h}-\psi\right\|_{1}+\left\|\alpha_{h}-\alpha\right\|_{0}+\left\|p_{h}-p\right\|_{0 / R}\right)=0
$$

Proof. Let us use the first inequality from Theorem 3.1.
Assume $\beta \in\left[H_{0}^{1}(\Omega)\right]^{2}$. Since $C_{0}^{\infty}(\Omega)$ is dense in $H_{0}^{1}(\Omega)$ for any $\kappa>0$ there exists $\beta_{\kappa} \in\left[C_{0}^{\infty}(\Omega)\right]^{2}$ such that $\left\|\beta-\beta_{\kappa}\right\|_{1}<\kappa / 2$. Denoting by r_{h} the interpolation from $[C(\bar{\Omega})]^{2}$ into H_{h}, we have (see (77))

$$
\left\|\beta_{\kappa}-r_{h} \beta_{\kappa}\right\|_{1} \leqslant C h^{2}\left\|\beta_{\kappa}\right\|_{3} .
$$

Consequently, we obtain

$$
\begin{equation*}
\inf _{\eta_{h} \in H_{h}}\left\|\beta-\eta_{h}\right\|_{1} \leqslant\left\|\beta-r_{h} \beta_{\kappa}\right\|_{1} \rightarrow 0, \quad \text { as } h \rightarrow 0 \tag{82}
\end{equation*}
$$

The same argument can be applied to the case $\beta \in V$, since $V \cap\left[C^{\infty}(\bar{\Omega})\right]^{2}$ is dense in V.

In a parallel way, we can show that

$$
\begin{equation*}
\inf _{\zeta_{h} \in W_{h}}\left\|w-\zeta_{h}\right\|_{1} \rightarrow 0, \quad \inf _{\varphi_{h} \in W_{h}}\left\|\psi-\varphi_{h}\right\|_{1} \rightarrow 0 \tag{83}
\end{equation*}
$$

Let us introduce the projection $\pi_{h}: H^{1}(\Omega) \rightarrow \mathscr{L}_{1}^{0}$ in $L^{2}(\Omega)$. The we have

$$
\left\|p-\pi_{h} p\right\|_{0 / R}=\inf _{c \in R}\left\|p-\pi_{h} p+c\right\|_{0} \leqslant\left\|p-\pi_{h} p\right\|_{0} \leqslant \tilde{C} h|p|_{1} \leqslant C h\|p\|_{1 / R}
$$

since $|p|_{1}$ is equivalent to the standard norm in $H^{1}(\Omega) / R$.
Consequently, we obtain

$$
\begin{equation*}
\inf _{q_{h} \in Q_{h}}\left\|p-q_{h}\right\|_{0 / R} \leqslant\left\|p-\pi_{h} p\right\|_{0 / R} \leqslant C h\|p\|_{1 / R} \tag{84}
\end{equation*}
$$

Form (47) $\alpha \in\left[L^{2}(\Omega)\right]^{2}$ follows and (50) implies that

$$
\operatorname{rot} \alpha=-t_{m}^{-3} \operatorname{rot} \beta \in L^{2}(\Omega)
$$

As $\operatorname{rot} \alpha=-\operatorname{div} \alpha^{\perp}$, we have $\alpha^{\perp} \in H(\operatorname{div}, \Omega)$. The space $\left[C^{\infty}(\bar{\Omega})\right]^{2}$ is dense in $H(\operatorname{div}, \Omega)$, as follows form [5-Theorem 2.4, p. 27]. Consequently, a function $\alpha_{\kappa}^{\perp} \in$ $\left[C^{\infty}(\bar{\Omega})\right]^{2}$ exists, such that

$$
\begin{align*}
& \left(\left\|\alpha^{\perp}-\alpha_{\kappa}^{\perp}\right\|_{0}^{2}+\left\|\operatorname{div}\left(\alpha^{\perp}-\alpha_{\kappa}^{\perp}\right)\right\|_{0}^{2}\right)^{1 / 2} \tag{85}\\
& \quad=\left(\left\|\alpha-\alpha_{\kappa}\right\|_{0}^{2}++\left\|\operatorname{rot}\left(\alpha-\alpha_{\kappa}\right)\right\|_{0}^{2}\right)^{1 / 2}=\left\|\alpha-\alpha_{\kappa}\right\|_{\Gamma} \leqslant \kappa / 2
\end{align*}
$$

Then $\Pi_{h} \alpha_{\kappa} \in \Gamma_{h}$ and

$$
\begin{equation*}
\left\|\alpha_{\kappa}-\Pi_{h} \alpha_{\kappa}\right\|_{\Gamma} \leqslant C h\left(\left|\alpha_{\kappa}\right|_{1}+\left|\operatorname{rot} \alpha_{\kappa}\right|_{1}\right) \tag{86}
\end{equation*}
$$

follows from [2 - Propos. III.3.6 and Propos. III.3.8, pp. 128, 130]. Combining (85) and (86), we arrive at

$$
\begin{align*}
\inf _{\delta_{h} \in \Gamma_{h}}\left\|\alpha-\delta_{h}\right\|_{\Gamma} & \leqslant\left\|\alpha-\Pi_{h} \alpha_{\kappa}\right\|_{\Gamma} \tag{87}\\
& \leqslant\left\|\alpha-\alpha_{\kappa}\right\|_{\Gamma}+\left\|\alpha_{\kappa}-\Pi_{h} \alpha_{\kappa}\right\|_{\Gamma} \rightarrow 0, \quad \text { as } h \rightarrow 0
\end{align*}
$$

Form (76) we see that

$$
\begin{equation*}
\left\|\beta-\Pi_{h} \beta\right\|_{0} \leqslant C h\|\beta\|_{1} \tag{88}
\end{equation*}
$$

Since

$$
\left(t \mathscr{E} \nabla \psi, \eta_{h}-\Pi_{h} \eta_{h}\right) \leqslant\|t \mathscr{E} \nabla \psi\|_{0}\left\|\eta_{h}-\Pi_{h} \eta_{h}\right\|_{0} \leqslant C\|\psi\|_{1} h\left\|\eta_{h}\right\|_{1}
$$

we arrive at

$$
\begin{equation*}
\sup _{\eta_{h} \in H_{h}}\left[\nabla \psi, \eta_{h}-\Pi_{h} \eta_{h}\right] /\left\|\eta_{h}\right\|_{1} \leqslant C h\|\psi\|_{1} \tag{89}
\end{equation*}
$$

Collecting (82), (83), (84), (87), (88) and (89), we obtain the assertion of the Theorem.

Remark 3.1. One can derive an error estimate for $\left\|\beta-\beta_{h}\right\|_{1}+\left\|w-w_{h}\right\|_{1}$ in a direct way, starting with the minimization problem (31) and treating the "perturbation" by the interpolation operator Π_{h} in the shear stress energy as numerical integration. By means of the First Strang Lemma [7-Theorem 26.1, p. 192], we can get

$$
\left\|\beta-\beta_{h}\right\|_{1}+\left\|w-w_{h}\right\|_{1} \leqslant C h\left(\|\beta\|_{1}+\|w\|_{1}\right) .
$$

We conclude that the more sophisticated error analysis of Theorem 3.1 is better, as it yields error estimates $0\left(h^{2}\right)$ optimal (with respect to the choice of quadratic polynomials in H_{h} and W_{h}).

Remark 3.2. To elucidate the relations between various continuous and discrete problems, we display the following table.

Continuous formulations

(via decomposition (Prop. 1.2))

Discrete formulations

via decomposition
(Proposition 3.1)

Acknowledgement. This work was supported by Grant 201/94/1067 of the Grant Agency of the Czech Republic.

References

[1] Brezzi, F. - Bathe, K. J. - Fortin, M.: Mixed-interpolated elements for Reiss-ner-Mindlin plates. Internat. J. Numer. Methods Engrg. 28 (1989), 1787-1801.
[2] Brezzi, F. - Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York, Berlin, 1991.
[3] Brezzi, F. - Fortin, M. - Stenberg, R.: Error analysis of mixed-interpolated elements for Reissner-Mindlin plates. Math. Models and Meth. in Appl. Sci 1 (1991), 125-151.
[4] Brezzi, F. - Fortin, M.: Numerical approximation of Mindlin-Reissner plates. Math. Comp. 47 (1986), 151-158.
[5] Girault, V. - Raviart, P. A.: Finite element methods for Navier-Stokes equations. Theory and Algorithms. Springer-Verlag, Berlin, 1986.
[6] Nečas, J. - Hlaváčék, I.: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction. Elsevier, Amsterdam, 1981.
[7] Ciarlet, P.G.: Basic error estimates for elliptic problems. Handbook of Numer. Anal. (P. G. Ciarlet and J. L. Lions vol. II, eds.). North-Holland, Amsterdam, 1991, pp. 17-352.

Author's address: Ivan Hlaváček, Matematický ústav AV ČR, Žitná 25, 11567 Praha 1.

