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REISSNER-MINDLIN MODEL FOR PLATES 

OF VARIABLE THICKNESS. 

SOLUTION BY MIXED-INTERPOLATED ELEMENTS 

IVAN HLAVA<5EK, Praha 

(Received December 6, 1994) 

Summary. Hard clamped and hard simply supported elastic plate is considered. The 
mixed finite element analysis combined with some interpolation, proposed by Brezzi, For tin 
and Stenberg, is extended to the case of variable thickness and anisotropic material. 
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INTRODUCTION 

One of the simplest mathematical models of plate bending, which refine the well-

known Kirchhoff theory, is the Reissner-Mindlin model. It replaces the classical 

hypothesis on the invariance of the fiber normal to the middle surface of the plate 

by introducing a new variable, the vector of rotation of the fibers normal to the 

midplane. 

Although the formulation of the potential energy is straightforward, the standard 

variational solution deteriorates as the thickness t tends to zero. The reason is, that 

the potential energy of (transversal) shear stresses has a factor £, whereas the energy 

of remaining stresses a factor t3. Brezzi, Fortin, Bathe and Stenberg [1], [2], [3], [4] 

proposed a remedy, using a mixed formulation by introducing a scaled shear force 

and an interpolation operator. 

In the present paper, we extend the theory and error analysis of [2 - §VII. 3] 

to plates of variable thickness and anisotropic material. We consider "moderately" 

varying thickness functions, which are Lipschitz continuous, bounded from below 
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and from above and have bounded derivatives. Two cases of boundary conditions are 
considered simultaneously, namely so called hard clamped and hard simply supported 
plates. 

1 . FORMULATION OF THE REISSNER-MlNDLIN MODEL 

Let fi be a bounded, simply connected domain in (R2 with a polygonal boundary 

dft. Let the plate occupy a three-dimensional domain l l x ( - t(xi1x2)1t(xi,x2)), 

where the (half-)thickness t belongs to the set 

fyad = he C(0),1(fi) (i.e., Lipschitz function) | 

£min ^ ^(^1^2) ^ *max, ~ ^ Ci, ^ C2 [ 
I OX\ I I OX2 I J 

where 

дt 

0 < tmin < tma.x < +OO 

and Ci, C 2 , £mm, £max are given positive constants. 

The fundamental hypothesis assumes that the "horizontal" displacements u\ and 

U2 have the form 

(1) Ui = -Xz(5i(xi,X2), i = l ,2 

and the "vertical" displacement u3 has the form 

u3 = w(xi,x2)-

Assume zero body forces, and the external surface load 

f = (0,0,ff, 

acting on the upper surface x3 = t(x\,x2). 

In the following, we shall use Greek subscripts within the range {1,2} and the 

summation convention for repeated subscripts. From (1) we easily obtain the com

ponents of the small strain tensor 

(2) en = -£3d/3i /d£i , e22 = -xzd(32/dx2, e33 = 0, 

ei2 = --xz(dfii/dx2 + dfa/dxi), 

C13 = ^(dw/dxx - /3i), e23 = -(dw/dx2 - /?2). 
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We assume the following generalized Hooke's law 

(3) aa(3 = Ca(3~ySCy6, (a, (3 = 1 ,2) 

(4) aa3 = &apep3, 

where the coefficients capys, <£*/? are constant, 

(5 ) Cap~yS = CjSaP = CpaiS, 

(6 ) CaQySTapT^s ^ C0TapTap 

holds for all symmetric matrices (Tap), with some positive Co; £ is a diagonal matrix 

with positive entries. (For isotropic materials S = AI, A = Ek/(\ + a), where I£ is 

the Young's modulus and a the Poisson's ratio, k is a correction factor). 

The total potential energy of the plate is then 

(7) П = / y-aapeaß + aaЪeaĄ dxx dx2 dx3 - fw dxг dx2 

Пx(-í,í) 

Ąjt^ дßa дßy 

OXß OXs 

lJ"A§!t~ßa)Җ -ßßjàx.dx.-jfwdx.dx,. + 
2 

ӣ 

R e m a r k 1.1. For isotropic materials we have 

(8) n = f j ^{{d^/dx, + adfo/dx2)dt3i/dxl 

+ (dp2/dx2 + <rd(3i/dxi)d/32/dx2 

+ i ( l - a){d^/dx2 + d(32/dx!)2] dn dx2 

+ o"W t\^w ~ P\2 dxi dx2 — I fwáxi dx2-
Q 

Introducing the bilinear form 

d(t;/3,rj) = - / t3cap16(d/3a/dxp)(dr}J/dxs)dx1dx2) 

we may write the relation (7) in the following form 

(9) n = ia(<;/?,/?) + i [ t(Vw - P)T&(Vw - (l)dx1dx2 - f fwdxxdx2. 
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(Recall that the Kirchhoff model sets /? = Vw, so that 

d(t;/3,p) =a(t;Vw,Vw) 

coincides with the bending energy of the plate.) 

We shall consider only the two following basic cases of boundary conditions: 
(i) "hard clamped" edge of the plate 

P = 0 and w = 0 on 9ft; 

(ii) "hard simply supported" edge of the plate 

M„(/?) = 0, /? • r = 0 and w = 0 on 90 , 

where r denotes the unit tangential vector with respect to dtt, /3-T = /3ara, Mu(fi) = 
Cap-ySVctVpdPy/dxs and i/ is the unit outward normal vector. 

Thus the principle of minimum potential energy implies the minimization of 
U(/3,w) on the set 

[H%(Sl)]2 x H%(Q), in case (i), 

V x Ho(n), in case (ii), 

where 
v = {@e [Hx(n)]2 | /?-r = o on an}. 

Henceforth we denote by 

(u,v) = / uvdxi d£2, ||u||o = (u,u)1!2 

the inner product and the norm in the space L2(Q,). The same notation will be used 
for vector functions from [L2(17)]2. The norm in Hl(il) will be denote by ||u||i. In 
HQ(Q) we shall use the equivalent norm 

H i = IIVtiHo. 

It is readily seen, that by 
[u, v] = (t Su, v) 

another inner product in [L2(Q)]2 is defined, provided t e Wad-
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We introduce the operators 

rotq = (dq/dx2, —8q/8xi)T, 

rotr] = dr)2/dx\ — 81)1/8x2), 

and the space 

H0(rot;ft) = {v G [L2(Q)]2 | rotv G L2(tt), v • r = 0 on 8Q} 

with the norm 

(10) W r = (IHl2 + ||rott;||g)1/2. 

Lemma 1.1. Let either rj G Ho(rot;f-0, q G HH-l) orrj e [L2(ft)]2, rotr] G L2(Q) 
andq G H%(Sl). 

Then 

(rotr],q) = (77, rot g). 

In particular, 

(11) (Vu,rotq)=0 

holds if ti G H£(Sl), q G H1^). 

P r o o f . We have 

(rotrj,g) = / (-^dq/dxx + r)idq/8x2) dx + / ( r ^ i - r7i.v2)gds 

= (r7,rotg)+ (rf-T)qds 

an 

and the last integral vanishes, as either r7-r = 0 o r g = 0on dfl. If u G FT0(H), then 
Vu G H0(rot, n) and rot Vu = 0. • 

Let £ocp(r]) be the symmetric part of the matrix (drj^/dxp). 

Lemma 1.2. For aii T7 G V the inequality 

/

*"» /5|M r 

Cocfas-r^-^1 d^i da;2 = / cotp1se0cp(r])e16(r]) dxi dx 2 ^ C||r/||i 

ft Q 

holds with some positive constant C. 
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P r o o f . From (5) and (6) we easily obtain that the left-hand side is bounded 
below by 

f 2 

(12) c0 / ^2 dp(v)dx1dx2. 

Let us consider the subspace of rigid body (2D) displacements 

(13) 9> = {v = (ax -bx2,a2 + bxi)T = a + bkxx, a G (R2, be R}, 

where k is the unit vector of £3-axis. 
Let us verify that 

(14) ^ f 1 V = {0}. 

In fact, denoting aL = ( - a 2 , a i ) T = k x a, we may write 

v • r = — v • aL — bx - v = v - (—a1" — bx). 

Let the origin coincide with the vertex A G dfi, (see Fig. 1). Then for v G £? fl V we 

obtain 

-i/*1) • o x = 0, -i/(2> • o x = 0 

so that a1- = 0 and a = 0. Inserting x G BC, we have 

fa/3' • x = 0, i/(3) • x 7- 0 

so that 6 = 0 follows. Consequently, (14) holds. 
Having (14), we may apply the general result on inequalities of Korn's type [6 -

Lemma 11.3.2], which says that (12) is the square of an equivalent norm in V. • 

Lemma 1.3. Positive constants ci, c2, c$ exist such that the inequality 

(15) a(t;/?,/?) + [Vw -0,Vw-l3]> Cfm% (11/311? + M i ) 
c2 + c3tm[n 

holds for all w G H%(Sl) and (3 G V,t G % d . 

P r o o f . Lemma 1.2 and the definition of fyad yield 

(16) a(t;(3,P) > ^ i n | w g | g d ^ dx2 > cKt9
min\m\i V/J € V 
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Second, we have 

[Vw - /?, Vw - P\ > c^*min | |V^ - /?||2. 

Obviously, we may write (tmin = tm) 

(17) \\w\U\\Vw-/3\\l + \\l3\\l 

^ t^c-K
la(t;l3,l3) + t^c^Vw - 0. Vw - 0\ 

U f t ' + Cci1) 
where A denotes the left-hand side of (15). Combining (16) and (17), we arrive at 

||/3||2 + M 2 ^ A(2cKt2
rn + 3cE)/(cECKt3

rn) 

so that (15) follows. • 

R e m a r k 1.2. Since [tf£ (ft)]2 C V, the inequality (15) holds for all w G H0 (fi), 

/? G [tfoU^)]2 and * G <%ad, as well. 

Proposi t ion 1.1. Let ft be a convex polygon. Then the mapping 

fl:(t7,C)->(VC-i?) 

is surjective from [tf0(H)]2 x H0(D.) onto tf0(rot;ffc) or from V x tf0(ffc) onto 
tf0(rot;n). 

The pr00/ has been given in [2 - Propos. VII. 3.2, p. 298] for rj G [tf^(fi)]2. Since 

[tf2(fi)]2 C F and for 7? G V 

(VC - v)' r = dC/ds - rj • r = 0 on dft, 

the assertion holds for rj G V, as well. 

Proposi t ion 1.2. Any element 7 G [L2(ft)]2 can be written in a unique way as 

7 = t&Vip + rot p, 

with il> G tfo1 (ft)> P G tfH^/R. 

P r o o f , (cf. [2 - Propos. VII. 3.4]). Let us set f = div7 G tf-1(ft). Consider 
the solution \\> G tf0(ft) of the Dirichlet problem 

div(t<f V</>) = f. 

Defining a := 7 — tS>V^p, we realize that diva = 0, so that a = rotp for some 
p G tf X(ft)/R (see [5 - Theorem 1.3.1, p. 37]). • 
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2. MIXED VARIATIONAL FORMULATION 

Approximations, based on the minimum of potential energy (9) and finite elements, 
cannot be recommended. They deteriorate as the thickness tends to zero. Theoret
ically, such phenomenon is caused by the fact, that the "constant of coercivity" in 
(15) is 0(t3

min). 

To overcome the troubles, we apply three following steps [2]. First, we define a 
scaled potential energy 

IL = t~3
nU. 

Second, we introduce a mixed variational formulation with the help of a "scaled 
shear force" 

(18) 7:=t£(Vw-0)/t3
min. 

(Note that 7 is proportional to the shearing force, i.e., to the integral 

1 

/ ^aзd^з)-

We preserve the first part of n o , and denote it by 

)a(t;0,l3):=ltm

3

na(t;/3,(3). 
2 - V > г - , Г W 2 

The second part — energy of shear stresses — will be transformed as in the principle 
of Hellinger-Reissner (see [6 - §5.4]). Thus we arrive at a new functional 

»\h *>\ 7) = \a(t\ /J, /?) + (7, Vu; - /?) - ±tz

m (~/~1^ l) - C U ")• 

(For brevity, we denote tm :-= tmm). The solution of our problem {/3,w} and 7 is a 
saddle point of ffi and we have the following conditions of optimality 

(19) a(t; /?, 77) + (7, VC - »?) - C U 0 = 0 

V{r,,C} € [Hl(Sl)]2 x #o(«)> or V{r;,C} G V x ^ ( J l ) , 

(20) (Vw-ß,5)-t3
m[-tď-l

Ъs)=0 V<Je[L2(П)]2 
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Let us insert the decomposition of 7 by Proposition 1.2 and the analogous decom

position of 6. Thus we obtain the following system for ifr, (3,p,w: 

(21) [v^vc] = *-3(/,0 v c e H o m 
(22) a(t- /?, 77) - (rotp, rj) = [ W , rj[ Vr? G [Ho1 W? or Vrj G V; 

(23) - ( / ? , M q ) = ^ ( ^ ~ 1 2 M p , r o t ^ ) V t f E H 1 ^ ) / ^ 

(24) [Vti;, VX] = [/?, VX] + (/, x) VX G #*((!). 

Note that (21) and (24) is a Dirichlet problem for \j) and w, respectively. The 

system (22)-(23) represents a "Stokes-like" problem for /3 and p, "penalized" by 

the term on the right-hand side of (23). Indeed, to see this, we replace the vector-

functions 77 by the rotated vectors r/1-, so that for instance 

-(rotp,??) = - (p , rot 77) = (p,div77"L). 

On the basis of (21)-(24) a discretization by finite element method can be proposed 
and an error estimate derived [4], Such a numerical method, however, is not used in 
practice, even if a Stokes solver is available. The solution for small thickness displays 
troubles, since the condition (Vw - /?) = 0 is enforced too much. 

Therefore, we apply (third step) a kind of numerical integration in the second term 
of the potential energy. Such an approach is nearer to the engineering practice. The 
details will be shown in the next Section. 

3 . SOLUTION BY MIXED-INTERPOLATED FINITE ELEMENTS 

In the present section we apply an example [2] of the so-called mixed-interpolated 
elements for Reissner-Mindlin plates, which were proposed by Bathe, Brezzi and 
Fortin in [1] and analyzed by Brezzi, Fortin and Stenberg in [3]. The error analysis 
will be extended to the plates of variable thickness, anisotropic materials and hard 
simply supported edges. 

Let us consider a regular family of triangulations {T/J, h —r 0, of the domain ft. 
Let k be a non-negative integer, s a positive integer; we denote by j£fs

fc the space 
of piecewise polynomials on T^ of degree -̂  5, which belong to Hfe(fi), (H°(fi) = 
L2(ffc)). Let H3 be the space of "bubble functions" on T^ of the third degree, i.e., 

H3 = {v\v\K G P3(K) PI Hl(K) for all triangles K G T^}. 

Let Hh be the intersection of 
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with [HQ f̂fc)]2 or V, respectively, (Crouzeix-Raviart element), 

wh = j?lnH*(n), Qh = j??/u, 

rh = (RT1)
±DH0(rot;n), 

where RT\ denotes the space of Raviart-Thomas elements of the first degree and 
(.)J- denotes the rotation by TT/2, defined by a1- = (-a2,ai)T = k x a. 

Recall that [2 - p. 116] the restrictions on the triangles are defined by 

RT1(K) = (Pl(K))2 + xP1(K) \/KeTh 

and I?Ti C H(div; Cl), i.e., the degrees of freedom have been chosen in order to ensure 
continuity of the flux 7 • v at interfaces of elements. 

Note that VWh C I V 
Following [2 - p. 312] we define the interpolation Uh: Hh -^ (RTi)1- by means of 

(25) f(rJh-Uhr]h)'T^1ds = 0 V^i G Fi(e) 

e 

for all sides e G dK G Th, and 

(26) f(r1h-Uhr1h)dxldx2 = 0 VKeTh. 

K 

We can show, that Uh: Hh -» I \ , i.e. the interpolant Uhr]h satisfies the boundary 
condition Uhrjh • r = 0. In fact, the traces of 7 • r for 7 G (RTi)1- on any e G dKndQ 

are linear polynomials [2 - Prop. III.3.2, p. 116], so that (25) is sufficient to guarantee 
the zero trace of 7 • r . 

Moreover, we have the estimate 

(27) | |n^ | |o < ||»?fc||i VrjheHh 

(see [2 - p. 313 and Prop. III.3.9, p. 132]) and 

(28) ( ^ rot ( 1 1 ^ - rjh)) = 0 Vqh G Qh, rjh G Hh 

(see [2 - Prop. III.3.7, p. 129]). 

Lemma 3.1. [2 - Propos. VII.3.10, p. 315]. For any gh G Th there exist iph G Wh 

and a unique ph G Qh such that 

[gh,6h] = [V^h,6h] + (ph,iot6h) V6h G Th. 
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P r o o f . Let us consider the following mixed problem: find ah G Yh and ph G Qh 

such that 

(29) K , 6h] - (ph^ot6h) = 0 V6h G Yh, 

(30) (rot ah,qh) = (rotghlqh) Vqh G Qh-

Since the pair of spaces Yh, Qh fulfils the so-called inf-sup condition [2 - p. 138], 
the problem has a unique solution. By virtue of the fact, that rot(gh — ah) G Qh, 

(30) implies r o t ( ^ — ah) = 0. Then a rph G Wh exists such that gh — ah = Vrph (see 
[2 - Corol. III.3.2, p. 117] and [5 - Theorem 1.3.1, p. 37]). Then from (29) we obtain 
for all 6h G Yh 

[9h,6h] = [Viph,6h] + [ahl6h] = [Výhl5h] + (ph,rot 6h). 

D 

In order to overcome the above mentioned "shear locking" effect of numerical 
solution, instead of the minimization of the functional n o it is suitable to consider 

(31) min {iaft&./JO + J ^ 
{Ph,wh}eHhxwh vl I J 

Since by means of Lemma 1.2, (16) and (27) we can prove that the functional 
is strictly convex and continuous, there exists a unique minimizer. The optimality 
conditions of the problem (31) are 

(32) a(t]0hlrih)-t-
3\ywh-nh0hinhrih] = O Vrjh e Hhl 

(33) [Vwh - Tlhph, Viph] = (/, tph) VcDfc G Wh 

Proposition 3.1. Let {/3h,Wh} be the solution of (32)-(33), i.e., the minimizer 
of (31). Then the function 

(34) gh = t-3(Vwh-nhph) 

belongs to Yh and can be decomposed according to the formula 

(35) gh = ^il>h + OLh, 

where iph G Wh and ah belongs to the orthocomplement ofVWh in Yh (with respect 
to the inner product [.,.]). 
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Moreover, there exists a unique ph G Qh such that {/3h,wh,i/;h,ah,ph} G Hh x 
Wh x Wh x Th x Qh satisfy the following system 

(36) [V^h, V<ph] = tm
3{f,<ph) V(Dh G Wh, 

(37) a{t;/3h,r)h) - {ph,rotrjh) = [Viph,Uhr}h] \frfh G Hh, 

(38) {rotf3h,qh) + t3
m{rotah,qh) = 0 V ^ G Qfc, 

(39) [ah,6h] - {ph,rot6h) = 0 V5heTh, 

(40) [ V ^ , V ^ ] = pfc/?fc, V<ph] + (/,(DO V ^ G Wfc. 

P r o o f . The system (32)-(33) is equivalent to the following three equations (a 
mixed formulation, cf. (19)-(20)) 

(41) a{t,$h,r]h) - [gh,Uhrjh] = 0 Vifo G .fffcl 

(42) [gh,V(D/l] = f-3(/,(D,) V(DhGVV,, 

(43) [gh, 6h] = tm
3[Vwh - Uhf3h,6h] V6h G Th. 

Using Lemma 3A and substituting 6h := V<ph, <ph G Wh into (42), we obtain (36). 
The same Lemma in (41) and (28) yield (37). From (43) we derive with the help of 
Lemma 3.1 for 6h := V<ph, <ph G Wh 

[vv>h, v<Ph] = tm
3[Vwh - nhph, v<ph]. 

If we substitute here from (36), we arrive at (40). 

Let us choose any 6h G (VVVh)x, i.e., 6h G Th such that [6h,V<ph] = 0 V<ph G Wh. 

Then Lemma 3.1 and (43) imply that 

(44) {Ph,rot6h) = -tm
3[Uhph,6h] V6h G {VWh)

L. 

The function ah G Th fullfils (39), as follows from (35) and Lemma 3.1 by com

parison. Then (44) can be rewritten as 

(45) [ah,6h] = -tm
3[Uhf}h,6h] V6h G (VTVh)x. 

From Lemma 3.1, however, we deduce that for any 6h G (VVVh)1- there exists a 

unique qh € Qh, such that 

(46) [6h,Xh] = {qh,rotXh) VXh G (VIVH)X. 
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Since from (39) ah G (VWh)1- follows, we may write, using (46), (45) and (28), 

(qh,rotah) = [6h,ah] = -tm

3[Uhph,6h] 

= -tm

3(qh,rotUh(3h) = -tm

3(qh,rot(3h) V6h G ( V ^ ) x . 

Consequently, (38) is satisfied for all qh G Qh, since for any qh G Qh there exists 

Sh G (VWh)L such that (46) holds. In fact, the equation (46) is uniquely solvable for 

6h> (For a fixed parameter h, all norms are equivalent, so that || rot Xh\\o ^ \\Xh\\i ^ 

C||X/i||o5 a.s.o.) The uniqueness of the decomposition (35) is obvious. 

The existence and uniqueness of ph G Qh follows from the proof of Lemma 3.1. 

• 

Proposition 3.2. The system (36)-(40) has a unique solution in Hh x Wh x Wh x 

Th x Qh. 

P r o o f . Since the existence was proved in Proposition 3.1, it remains to verify 

the uniqueness. Let {A/3 ,̂ Awh,Ail>h, Aah, Aph} be the difference of two solutions. 

Let us drop out the subscripts h in what follows. 

From (3.6) Aip = 0 follows immediately. We have therefore 

a(^;A/3,77)-(Ap,rot77)=0 V77 G Hh, 

(rotA(5,q)+t3

m(rotAa,q)=0 VqeQh, 

t3

m[Aa,6]-t3

m(Ap,rotS)=0 V8 G Th. 

Inserting rj := A/3, q = Ap, 5 = Aa and summing these three equations, we arrive 

at 

a(*;A/3,A/J) + ^ [ A a , A a ] = 0 , 

so that A/3 = 0 and Aa = 0 follows by (16). 

Form (40) we derive 

[VAw, VAw] = [ПД/3, VДw] = 0, 

so that Aw; = 0. 

Finally, (37) yields that 

(Ap,roťn) = 0 Vr/ G Hh. 

Since the pair {Hh, Qh} satisfies the inf-sup condition for the "Stokes-like" problem, 
[2 - chapt. VI, p. 205, (2.13)], we have 

MIApllo/R < sup (Ap,rotri)/||T7||i = 0 
r)£Hh 

and Ap = 0 follows in Qh. • 
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Theorem 3.1 . Let /3, w, 7 be the solution of (19)-(20). Let 7 be decomposed by 
means of Proposition 1.2 and let us set 

(47) a = - ^ r o t p . 

Let {Ph,Wh,iph,oth,Ph} be the solution of (36)-(40). 
Then positive constants C0, C exist, independent ofte ^ad and such that 

\\Ph - /3||i + | K - w||i + | K " ^lli + I K " alio + \\Ph - p||o/.R 

^C0{ inf 11/3 - ^ | | i + inf | |u;-ai|i + iff ||V>-<^lli 
VheHh ChtWh <Ph€Wh 

+ inf | jp-gh | |o/fl + .inf ||« - 4 | | r + ||/3 - nk /5| |0 
QhEQh OhSl H 

+ sup [ v ^ ^ - n ^ / i K H i } 

< C/is{ll/?lls+i + IMI.+1 + IML+i + \\P\\S/R + N l - + || rota|U}, U ^ 2 . 

P r o o f , (i) It is easy to see that the functions [3,w,ip,p,a satisfy the following 
system 

(48) [V^,V(^]=t-3(/ ,(D) V ^ ^ f D ) 

(49) a(t; (3,77) - (p, rot 77) = [V^ , 1?] V77 G [H,1 (XI)]2 or V77 G V, 

(50) (rot/?,g)+^(rota,<?) = 0 V? G L2(ft), 

(51) [a,<J]-(p,rot<J)=0 V<5 G #0(rot; ft), 

(52) [Vw,V(D] = [/3,V(p] + (/,(vp) VcDGH^ft). 

In fact, (48) and (52) follows from (21) and (24), respectively. Using Lemma 1.1 in 
(22) (note that both (H0)2 and V are subspaces of H0(rot,ft)), we arrive at (49). 
The equation (50) follows from (23), (47), starting with q G CQ°(Q) and employing 
Lemma 1.1 and the density of Co°(ft) i n £2(^)- We easily derive (51) from (47) and 
Lemma 1.1. 

Let us define "intermediate" approximations 

{Piw^iPiplai} EHhxWhxWhxQhX Th, 

(close to (3, w, ip, p, a) in the following way. 

We set (cf. (36)) 

(53) ip[ = ^h 
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and define Ph, p{ as the solution of the "Stokes-like" discrete problem in Hh x Qh 

(54) a(t;/3I
h,rih) + (p{,r:otrjh) = a(t;P,rih) Vr)h e Hh, 

(55) (rat01
h,qh) = (rat0,qh) VqheQh. 

For {ah,ph} € Tfc x Qfc we define another mixed problem 

(56) [a(,Sfc]-(p£,rot<5fc) = 0 V6h e Tfc, 

(57) -&(nrtafc^fc) = (rot/3fc",gfc) Vgfc € Qh. 

Finally, we define w£ by the equation 

(58) [VwI
h,V<ph] = [IlhP,V<ph] + (f,ip) V<pheWh. 

The differences {/3fc — /?£,..., ah — a{} satisfy the following system 

(59) a(t;0h-f3i,Vh)-(Ph-p{,rotr)h) = a(t;/3 - f3h,r)h.) 

- (P ~ p{, rot??fc) - [VV>, Vh - nfc»7fc] + [V f̂c - Vip, UhVh} Vrjfc € Hh, 

(60) (rot(^fc - f3{), qh) + t3
m(rot(afc - a{),qh) = 0 Vgh € <?/,, 

(61) [afc-aft,<5fc]-(pfc-ph,rot($fc) = 0 V6h 6 Tfc, 

(62) [V(«;fc-«;(),VVfc] = [nfc^fc-nfc^,V^fc] V % ^ k . 

From (21), (53) and (36) we get 

(63) U-Mli^C inf l^-Vfclli. 
<Phewh 

Let us insert r\h '= Ph - P{ = A/3^ into (59), qh = Ph - p{ = &Ph into (60) and 
6̂  :-= (a/̂  — QJ) = Aa^ into (61). Summing these three equations, we obtain 

a(t; A/3h, WK) + [Aafc, Aafc] = a(t; /3 - ft, A0h) 

- (p - p^, rot A/30 " [V</>, A/4 - EU A/4] + [V(^ - V), I-U A&]. 

Using (16) ? (27) and the obvious estimates, we may write 

(64) C |̂|A/3fc||f + Cs(min||Aafc||g ^ Cstll/J-fl...! + ||p-Pfc||0/i. 

+ | | t f - lMl i+ SUP [V ,̂»7fc-nfct7fc]/||f7fc||i}||Aj9fc||i. 
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Next, let us show that /?£ is an optimal approximation of /?, i.e., 

(65) WP-tiWi<C inf H/S-tTiHx. 

Indeed, substituting from (49) into (54) and from (50) into (55), we have 

a(t;0l,rih) + (p[ -P,rotr)h) = [Vtp,r)h] \ % G Hh, 

(rotp^qh) = -tm(rota,qh) Vqh G Q/>. 

Obviously, this is an approximation of (49)-(50), where p is replaced by (p — 0 ) , 
and the "continuous" solution is {/?,©}, 0 = 0. Since {Hh,Qh} is a stable pair for 
Stokes problem [2 - chapt. VI and Thm. II.2.1, p. 60, (2.36)], we have 

W-Pl\\i + \\*-fihlR^C{ inf 11/3-77,11!+ inf M o / R ) , 
1/ifcn/. qh€Qh 

so that (65) holds. 

Let us show that {a£,P£} is an optimal approximation of {a,p}. By virtue of (55), 
the right-hand side of (57) is ( rot /? ,^) . The solution {a,p} of the limit problem 
(h —> 0) exists and is unique, as follows from [2 - Theorem II. l . l , p. 42]. 

Since the pair {Th.Qh} satisfies the inf-sup condition [2 - p. 135-139 and (1.25)-
(1.26), p. 139], we have 

(66) W^i-aWr^C inf | | a - ^ | | r 

(67) \\Ph - p\\o/R < o(inf Hoc - Sh\\r + inf ||p - gfc||0/*). 
1 h Qh 

The triangle inequality, (63), (64), (65) and (67) imply 

(68) ||/3 - &IU < H/? - /tfiu + \\0'h - 0h\u < c4{y}, 

where 

{T} = inf ||/3 - -MIII. + inf ||a - 5h\\T + inf ||p - qh\\0/R 

Hh I h s?/i 

+ inf ||^ - iphWi + sup[V</>, r7/i - n^/Hr/fcHi. 
W - 11/. 

From (64) we also obtain 

CstminllAafcHS < C 4 { r } | | A ^ | | 1 ^ (C4{^})2 , 

72 



so that 
IIAofcHo < C5{Y}-

Using (66), we derive 

(69) ||o - Ofc||o < ||o - ah\\T + ||Aafc||o < Cinf ||a - <5fc||r + CS{Y} < C9{r). 
- h 

Let us employ the inf-sup conditon for the "Stokes-like" problem [2 - pp. 213 and 
205 (2.14)] in the equation (59). Using also (27), (68), (67) and (63), we have 

ko\\Aph\\o/R ^ sup (Aph,Totr]h)/\\rjh\\1 
Vh€Hh 

< C{\\Aph\\1 + ||/3 - /3£||i + \\P ~ Ph\\o/R + IIV> - iMIi 

+ sup[v<Mfc - n^/n^Hi} ^ c7{r}. 
Hh 

The triangle inequality and (67) yield 

(70) ||p - ph\\o/R ^ lb " Phh/R + IIAp,J|o/R ^ C*{Y}. 

Let us define the orthogonal projection Ph: Ho (ft) -+ Wh by means of the inner 
product [Vu, Vv]. Then 

(71) ||tD - wh\\x ^ \\w - Phw\U + \\Phw - wiW, + \\w*h - wh\\x. 

Inserting <ph := Awh = wh — wh into (62), we may write 

(72) \\wh - w'hh < C\\Uh(0h - (3)\\o ^ C\\/3h - 0\U 

[2 - p. 220, (4.2)]. 

By definition of Ph and (52) 

[VPfcW, V<pfc] = [Vw, V f̂c] = [/?, V<ph] + (/, <ph). 

Subtracting (58), we obtain 

[V(Phw - w[), V<ph] = [/3- Uhf3, Vcpfc]. 

Inserting iph = Phw — wh, we arrive at 

(73) HPfcW-^II^CH/J-IIfc/Sllo. 
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The optimality of the projection implies 

(74) W*>-PKv\\i<CMWw-<PhWi-
wh 

Combining (71)-(74) and (68), we are led to 

(75) Ww-w^^CiWp-p^U + WP-UhPWo+iniWw-^W^ 
Wh 

< C9({Y} + igf ||w - v>fc||i -+-1|/3 -II fc/J| |o). 
Wh 

Finaly, the first inequality of Theorem 3.1 follows from (68), (75), (63), (70) and 
(69). 

(ii) It remains to estimate the individual terms on the right-hand side. We have 
[2 - Proposition IIL3.9, p. 132 and (3.43) - p. 125] 

(76) ||/3 - TLhPWo < ChTWPWm, 1 ̂  m ^ 2. 

The Crouzeix-Raviart elements satisfy [2 - Propos. III.2.2, p. 106] 

(77) inf ||/3 - Vh\\i ^ Chm-l\\P\\m, 1 ̂  m ^ 3. 
Vh 6 H h 

We also have 

(78) Lrrf ||w - Cfclli -h inf ||V - Vfclli < oftm_1(HU + W m ) , 
Wh Wh 

provided 1 -̂  m -̂  3 and the family of triangulation {^h} is regular, 

(79) inf \\p - qh\\o/R ^ Chm\\p\\m/R, 1 < m ^ 2. 
Qh 

From [2 - Propositions III.3.6 and III.3.8 - p. 128, 130] we have 

(80) inf ||a - Sh\\v < Chm(\a\m + | rot a |m ) , 1 ̂  m ^ 2. 
T/i 

Let \j) be the projection of t&Vip onto the subspace (^§)2 °f piecewise constant 
functions in [L2(Sl))2. Then (26) implies 

(t£VtPyrih - Uhr]h) = (t&Vtl> -tp,rih- Uhrih). 

Moreover, we have the classical estimate 

||^VV> - ^||o < Ch\t£\7*p\i < Cft||^||2. 

Using also (76), we may write 

(81) sup [Vtl>,r,h ~ n ^ ] / | | ^ | | i ^ Ch\\tl>\\2C*h = C/i2||Vll2. 
VhEHh 

Combining (76)-(81), we obtain the second inequality of the Theorem. • 
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Corollary. From (18) and (34) it follows, that tSgh is an approximation of the 

''scaled shear force" 7. We have the following error estimate 

||7 - t£ghWo < C( | |^ - MX + ||a - afc||0) = 0(/i s) , l^s^2. 

In fact, using Proposition 1.2, Proposition 3.1 - (35) and (47), we .have 

7 - tggh = (t^Vtf; + rotp) - t£(V^h + ah) = *<f ((V</> - V ^ ) + (a - afc)). 

Consequently, the error estimate follows from Theorem 3.1. 

Theorem 3.2. Let (5, w, 7 be the solution of (19)-(20), 1et 7 be decomposed 
by means of Proposition 1.2 and let us set a = t~1S>~1rotp. Assume no additional 
regularity of the solution, i.e., let (3 G [H 1 ^ ) ] 2 , w G H£(Sl), V G Hd(ft), p G 
H\n)/U, a G [L2(ft)]2, ro ta G L2(ft). 

Let {/3h,wh,iph,ah,ph} be the solution of (36)-(40). Then 

lim (\\0h - /3||i + | K - ii;||i + \\^h - </>l|i + \\c*h - a||o + \\ph - p||o/R) = 0. 

P r o o f . Let us use the first inequality from Theorem 3.L 

Assume /3 G [Ho(f-0]2. Since Co°(ft) is dense in Ho (ft) f° r a n v ^ > 0 there exists 
/3K G [Co°(ft)]2 such that ||/3 — y9«||i < ft/2. Denoting by r^ the interpolation from 
[C(H)]2 into Hh, we have (see (77)) 

l l ^ - r ^ U i ^ C ^ l l ^ l l a . 

Consequently, we obtain 

(82) inf 11/3-r/fclU^ 1 1 0 - r f c / y ! - > 0 , as h -> 0. 

The same argument can be applied to the case (3 G V, since V D [C°°(n)]2 is dense 
in V. 

In a parallel way, we can show that 

(83) inf \\w - a l i i -> 0, inf ||V - ^ | | i -> 0. 

Let us introduce the projection ~h: Hx(ft) -» .i^0 in L2(ft). The we have 

IIP - ~hP\\o/R = mf ||p - Tr̂ p + c||0 ^ ||p - Tr̂ pHo ^ C7i|p|i ^ Cft||p||i/fl, 
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since \p\\ is equivalent to the standard norm in H1(Q)/R. 
Consequently, we obtain 

(84) inf ||p - qh\\0/R ^ \\p - 7rhp\\0/R ^ Ch\\p\\1/R. 
<lh€Qh 

Form (47) a € [L2(ft)]2 follows and (50) implies that 

ro ta = -£~3rot/3 E L2(ft). 

As ro t a = — d i v a x , we have a1- E H(div,ft). The space [C°°(Q)]2 is dense in 

H(div,fi), as follows form [5 - Theorem 2.4, p. 27]. Consequently, a function aj^ G 

[C°°(n)]2 exists, such that 

(85) ( l l a ^ - a ^ l l g + l l d M a ^ - a ^ H 2 ) 1 / 2 

= (||a - aK||2 + +|| rot(a - a.) | |g)1 / 2 - ||a - a j r ^ * /2 . 

Then H^a* G Th and 

(S6) \\aK - UhaK\\T ^ Ch(\aK\x + | rotaK | i ) , 

follows from [2 - Propos. IIL3.6 and Propos. III.3.8, pp. 128, 130]. Combining (85) 
and (86), we arrive at 

(87) inf | | a - < y r < | | a - n * a , - | | r 
d/ .€ lh 

^ ||a - aK | | r + ||«« - I -Ua j r -> 0, as h -> 0. 

Form (76) we see that 

(88) | | /3-n, /3 | |0<C / i | | /5 | | i 

Since 

(t£ViP,Vh - UhVh) ^ II^V^Holl^ - Uhrjh\\0 ^ CIMUMMIi, 
we arrive at 

(89) sup [V^-ifo - n ^ i / i M i i ^ C/iUVHi. 
Vh€Hh 

Collecting (82), (83), (84), (87), (88) and (89), we obtain the assertion of the Theo

rem. Q 
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R e m a r k 3.L One can derive an error estimate for \\/3 — (3h\\i + ||iv — wh\\i in 

a direct way, starting with the minimization problem (31) and treating the "per

turbation" by the interpolation operator Hh in the shear stress energy as numerical 

integration. By means of the First Strang Lemma [7 - Theorem 26.1, p. 192], we 

can get 

11/3 - 0h\\i + \\w - wh\\i < Ch{\\0\\i + IMIi). 

We conclude that the more sophisticated error analysis of Theorem 3.1 is better, 

as it yields error estimates 0(h2) optimal (with respect to the choice of quadratic 

polynomials in Hh and Wh). 

R e m a r k 3.2. To elucidate the relations between various continuous and dis

crete problems, we display the following table. 

Continuous formulations Discrete formulations 

minimum of (scaled) potential 
energy mmЦ0(ß,w) 

V 
Saddle point of 

Җ{ßM'n) 
v 

optimality conditions 
for ß, w; 7 (19)-(20) 

(via decomposition (Prop. 1.2)) 

System for ip, ß, p, w 
(21)-(24) 

minimum of (31) over 
{(3h,wh}EHh xWh 

mixed formulation for 
{(3h,wh},gh (41)-(43) 

Theorem 3 A 

via decomposition 
(Proposition 3.1) 

System for iph, ßh, Ph 
ah, wh (36)-(40) 

(32ҢЗЗ) 

(computations) 

(computations) 

only for 
numerical 
analysis 
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