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Summary. This paper is devoted to the study of a class of hemivariational inequalities 
which was introduced by P. D. Panagiotopoulos [31] and later by Z. Naniewicz [22]. These 
variational formulations are natural nonconvex generalizations [15-17], [22-33] of the well-
known variational inequalities. Several existence results are proved in [15]. In this paper, 
we are concerned with some related results and several applications. 
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1. ІNTRODUCTЮN 

This paper follows the work of Z. Naniewicz [22] concerning the study of con-

strained problems in a reflexive Banach space, in which the set of all admissible 

elements is not necessarily convex but fulfils some star-shaped property. 

In [15] we proved some new abstract existence results for the following problem: 

Problem P. Find u Є C wuch that 

(Au-f,v) Ž0, \/vЄTc(u), 

where the set C is assumed to be closed and star-shaped with respect to a certain 

ball and Tc(u) denotes Clarke's tangent cone of C at u Є C, and where A is as-

sumed to be a pseudomonotone operator. Problem P is a special case of a large class 

of variational problems called hemivariational inequalities which was introduced by 
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P. D. Panagiotopoulos [24-33] in order to study several mechanical problems con
nected to energy functionals which are neither convex nor differentiable. The first 
existence result concerning directly problem P is due to Z. Naniewicz [23]. How
ever, the original theory of Z. Naniewicz requires a coercivity assumption on A. In 
our previous paper [15], we have extended the theory of Z. Naniewicz to problem P 
when A is no more coercive. In this paper, we will show that this improvement is 
useful for the study of some unilateral problems where the boundary conditions are 
insufficiently blocked up. 

Moreover, if C is supposed to be convex, then problem P takes the form of the 
following variational inequality: 

Problem P \ Find u G C such that 

(Au - / , v - u) ^ 0, \/v eC, 

and as a consequence of our study devoted to problem P, we will also obtain some 

new results concerning problem P\ 

ABSTRACT THEORY FOR CONSTRAINED PROBLEMS 

Let X be a real reflexive Banach space. We will write "->" and "—-" to denote 
respectively the strong convergence and the weak convergence. For a nonempty 
subset D of X, we write int(.D) for the interior of D in X and c\(D) for the closure. 
For an operator A: X -> X* we write Ker(A) for the kernel, R(A) for the range and 
D(A) for the domain. 

An operator T: X —•> 2X* is said to be pseudomonotone if 
(i) the set Tu is nonempty, bounded, closed and convex for any u € X; 

(ii) T is upper semicontinuous from each finite dimensional subspace F of X to X* 

equipped with the weak topology, i.e. to a given element / G F and a weak 
neighborhood V of T(f) in X* there exists a neighborhood U of / in F such 
that T(u) C F for all u G U; 

(iii) if un —- u and if zn G T(un) is such that 

limsup(zn ,un - u) ^ 0, 

then for each v G V there exists z(v) G T(u) such that 

liminf(zn ,un - v) ^ (z(v),u-v). 
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An operator A: X -+ X* is said to have the S+-property if un —- u and 
limsup(Aun ,un — u) < 0 implies that un -> u. 

An operator A: D(A) -» K* is said to be monotone if 

(Ax - Ay,a? - y> ^ 0, to,*/ E D(A)y 

and maximal monotone if it is monotone and the inequality 

( / -Ax,z-x)^ 0, Vz E .D(J4) 

implies z E D(A) and / = _4z. 
The operator A: D(A) -> X* is said to be hemicontinuous at x € D(A) if -O(-4) is 

convex and for any y E D(A) the map t -+ A((l - t)x + ty) is continuous from [0,1] 
into the weak topology of X*. We refer the reader to [34] for more details concerning 
these classes of operators. 

Let G: X —> U U {+00} be a functional. Then its behavior at infinity can be 
described in terms of what is called the recession function of G [4], defined as follows: 

Goo(:r) : = lim inf - ^ - 2 
v—>x £-»+oo t 

= inf {lim inf G(tnvn)ltn: tn -+ 00, vn -> x}. 
n—>--foo 

We recall that if G and H are two functionals defined on X with values in (—00, + 00], 
then (G + H)^ ^ G^ + H^. 

Let no E X, we define the recession function associated to a general operator A: 
X —:> X* with respect to UQ by the formula 

, v r . , (A(tv),tv-u0) 
LUoAx) := h? , JS? : • 

' v—¥x t—y+00 t 

If we set G(x) := (Ax,x — u0), then clearly 

LuoAx) =°oc(oo). 

If UQ = 0, then our definition reduces to the one introduced by H. Brezis and L. Niren-
berg [5] in order to characterize the range of some nonlinear operators. 

Let If be a subset of X, the recession cone of K is the closed cone 

Koo := dom[(^K)oo = {x e X: (IPK)OO(X) < + 0 0 } , 

where ipK denotes the indicator function of K. Equivalently, this amonts to say
ing that x belongs to If 00 if and only if there exist sequences {tn \ n E N} and 
{xn I n E N} C K such that tn -> +00 and t~lxn -> x. 
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Let C C X be a nonempty closed subset. We denote by 

Tc(u) := {ke X:Vun e C,un ->u ,VA n ^0 , 

--'-'71 ^ ^ • 7̂1 + AnKn t C ] 

Clarke's tangent cone of C at u, by 

Nc(u) := {u* GX*: (ii*,fc) ^0,Vk eTc(u)} 

Clarke's normal cone to C at it, by 

dC(w) *= inf \\u - tu|| 
wEC 

the distance function of C, by 

KD / x r dc(y + tv)-dc(y) 
drc(u, v) := hm sup — — 

y-+u no t 

the generalized directional derivative in the direction v of dc at u, and by 

ddc(u) := {weX*: d°c(u,v) ^ (w,v),Vv e X} 

the generalized gradient of Clarke of dc at u [10]. 

Let B(UQ, Q) be a closed ball in X with center UQ and radius Q > 0. We say that 

C is star-shaped with respect to B(UQ,Q) [22] if 

v e C & Av + (1 - A)w e C,VA G [0,1], Vw GH^ 0 ,D ) . 

We call in the following lemma a basic result concerning the function distance of 
a star-shaped set which has been proved by Z. Naniewicz. 

Lemma 2.1. [22; Z. Naniewicz]. Let X be a real reflexive Banach space, C a 

nonempty closed subset of X. If C is star-shaped with respect to B(u$, Q) then 

1) (£Q(U,UQ — u) ^ —dc(u) — D,Vw ^ C, 
2) (Pc(u,u0 -U) = 0,\/ue C. 

The following remarkable result concerning the pseudomonotonicity property of 
the generalized Clarke's gradient is also due to Z. Naniewicz. 

Lemma 2.2 [22; Z. Naniewicz]. Let X be a real reflexive Banach space. Let fi: 

X —> R be a finite collection of locally Lipschitzian convex functions defined on X. 

Define f: X -> R as 

f(u) := min{fi(u): i = 1,... ,N},u e X. 
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Let A: X —> X* be a maximal monotone operator with D(A) = X satisfying the 

S+-property. Then A + df is pseudomonotone. 

The next result is an easy consequence of the previous one. 

Lemma 2.3. Let X be a real reflexive Banach space, A: X -> X* a maximal 

monotone operator with D(A) = X satisfying the S+-property. Let C be a sub

set of X which can be represented as the union of a finite collection of nonempty 
N 

closed convex subsets Cj (j = 1,...,IV) of X, i.e. C = \J Cj. We assume that 

/ IV V 

J I f\ Cj) 7-= 0. Then i) C is star-shaped with respect to a certain ball and ii) for 

each A ̂  0. A + A • ddc is pseudomonotone. 

Let us now introduce the following set of asymptotic directions: 

R(A,f,C,u0) := {w G X: 3un G C, \\un\\ -> +oo,wn := un • Hunll"1 - - w 

and 

(Aun,un - u0) -̂  (/, un - u0)}. 

On this set, we introduce a compactness condition. 

Definition 2.1. We say that R(A,f,C,uo) is asymptotically compact (shortly 
"a-compact") if for each w G R(A,f,C,uo), the sequences {wn | n G N} which 
appear in the definition of this set are strongly convergent to w, i.e. if {wn; n e N} 

is a sequence such that wn := un • H^nll"1 - 1 w, where un G C, \\un\\ -> +oo and 
(Aun,un — u0) ^ ( / ,u n — u0), then wn -> w in X. 

The use of recession sets and compactness conditions for the study of noncoercive 
problems is now classical. See for instance [2], [4], [5], [8], [12], [14], [20], [21] and 
[36] for similar approaches in the field of partial differential equations, variational 
inequalities and optimization problems. 

In [15], we proved the following abstract existence result. 

Theorem 2.1. Suppose that the following hypotheses hold true: 
(Hi) X is a real reflexive Banach space and C is a nonempty closed subset of X 

which is star-shaped with respect to a ball B(uo, Q), Q > 0; 
(H2) A + Xddc is pseudomonotone for each A > 0; 
(H3) A is bounded. 

If R(A, f, C,UQ) = 0 then problem P has at least one solution. 
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Sketch of the p r o o f. Fix n 6 N \ {0} and let 

Bk:={xeX: \\x\\^k}, 

where k G N \ {0} is chosen great enough so that u0 e Bk. 
Let j ^ k be given in fU A well-known theorem in the theory of variational 

inequalities [6; Theorem 7.8] guarantees the existence of unj G Bj such that (see 
[15] or [22] for more details) 

n • (fc(unj,v - unj) + (Aunj - / , v - unj) ^ 0, Vv e Bj. 

We claim that there exists 9 = 0(j) eN\ {0} such that UQJ G C. Indeed, suppose 
on the contrary that unj £ C,Vn G N \ {0}. Then 

(Aunyj - f,u0- unJ) + n • dPc(unj,u0 - unJ) ^ 0 

implies 

(Aunj - f,u0- unj) ^ n • dc(unj) + n • D ^ n • g. 

Thus 

n - ^ | | / | U - ( j + |K||) + ||-4|U-j.(j + |KH). 

This is a contradiction if n is large enough. 

We prove that there exists k' E N, k' ^ k such that Hit̂ fc'),*;'!, < k'. If not, 

li^(i),i|| = i for e a c n i e N,i ^ k. After relabeling if necessary, the sequence defined 

by Wi := vJe(i),i = Ue(i),-A satisfies Wj —- iv, n; :--- ug^^i G C and 

(.Aiix - f,Ui - n 0 ) ^ 0, 

which means that w G R(A,f,C,u0), a contradiction. 
We have 

9(k') • (Pc(uk>,v -uk>) + (Aufc' - / , v - u*') ^ 0, VL> G £/c'. 

Let y G X be given. There exists e > 0 such that 

uk> +e(y -uk<) G Bk>. 

If we set v := uk> + e(u - uk>) then we get 

0(k') -e>(Pc(uk',y-uk') + £ • (_4ufc/ - f,y-uk') ^ 0. 
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D 

This means that 

0(k')-<Pc(uk.,v) + (Auk. - / , v ) ^ 0 , VvGX. 

We know that uk. € C and thus 

y eTc(uk.)&d?c(uk.,y) = 0. 

Therefore 

(.Atifci - / , v ) £ 0 , Vy€Tc(tifc/). 

Corollary 2 .1 . Suppose that assumptions (Hi)-(H3) are satisfied. If 

(i) R(A,f, C, u0) is a-compact, 

(ii) there exists a nonempty subset W of X \ {0} such that 

fl(A,/,C,tio)Ciy 

and 

(C) ruo>A(w)>(f,w), VweW, 

then problem P has at least one solution. 

P r o o f . We claim that R(A,f,C,u0) = 0. Indeed, if we suppose the contrary 
then we can find a sequence un € C such that ||wn|| —> +oo, wn := un • | |wn | | - 1 —- w 
and 

(Aun,un -u0) ^ (f,un -wo) . 

The a-compactness of R(A, f, C, u0) implies that ivn -> w. Moreover, we have 

(Aun,un - u0)/tn ^ (f,wn - u0/tn) 

so that 

LUO,A(W) ^ ( / » ^ > I 

which contradicts condition (C). D 
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Some useful properties of the set of asymptotic directions are now given in the 
following three propositions. 

Proposition 2.1. Let u0 be given in X and f in X*. If 

(i) A satisfies the 5+-property; 

(ii) (Ax,x) ^ 0 , Vz E X; 
(iii) A is weakly continuous, i.e. xn —- x => Axn —- Ax; 
(iv) -4 is positively homogeneous. 
(v) L? is monotone on X. Then 

(1) it(.A + 5 , / , C, ^o) is a-compact 

and 

(2) fl(il + B, / , C, u0) C{weCQO\ {0}: (Atu, w) = 0}. 

P r o o f . Let w E ii(-4 + £?,/, C,w0) be given. There exists un E C such that 

tn := |kn| | -> +oo, ivn := un/*n -* w, and 

(2.1) (Aun + Bun,un -u0) ^ ( / ,u n - i /o ) . 

Since B is monotone, (2.1) implies that 

(2.2) (BUQ, un - u0) + (Aun, un - UQ) ^ (/, un - iz0). 

Dividing (2.2) by £n, we obtain 

(2.3) (Awn,wn) < (Awn,j-/ + ^\Bu°^ ~wn) + \riWn~ 7 / 

and thus, using assumption (iii), 

(2.4) limsup(Awn,ujn) ^ 0. 

We have 

l imsup(Aiv n ^ n - w) ^ \imsup(Awn,wn) + limsup(AiDn, —w). 

Thus, using assumptions (ii) and (iii) we obtain 

limsup(Aujn,wn -w) ^ l i m s u p ( ^ n , w n ) . 
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This together with (2.4) imply that 

limsup(Awn ,wn — w) ^ 0, 

and thus, by assumption (i), the sequence wn is strongly convergent to w, which 
proves the a-compactness of R(A + B,f,C,u0). Since ||wn|| — 1 a n c- wn ~> w, we 
have ||uj|| = 1. On the other hand, since wn = un/tn, tn —> +co and wn —» w, 

we obtain w G Coo, so that R(A + B,f,C,u0) C Coo \ {0}. Moreover, if we use 
(2.3) again, we get (Aw,w) ^ 0. This together with assumption (ii) imply that 
R(A + B,f,C,u0) c{weCoo\ {0}: (Aw,w) = 0}. • 

R e m a r k 2.L i) If A is bounded linear and coercive, i.e. there exists a > 0 such 
that (Au,u) ^ a • \\u\\2, \fu G X, then A satisfies assumptions (i)-(iv). If in addition 
B is monotone then we can directly see that R(A + B, f,C,u0) = 0. ii) It is easy to 
see that Proposition 2.1 remains true if assumption (v) is replaced by 

(v') (Bx,x-u0) ^ 0 , VxG X. 

Proposition 2.2. Let u0 be given in X and f in X*. If 

(i) A is bounded linear and semicoercive, i.e. there exists a > 0 such that 

(Au,u) >a-\\Puf, VuGK , 

with P = I — Q, where I denotes the identity mapping and Q denotes the 

orthogonal projection ofX onto Ker(^4 + A*) (A* is the adjoint operator of A); 

(ii) dim{Ker(A + A*)} < +oo; 

(iii) B is monotone; or 

(iii)' (Bx,x- u0) ^ 0 , Vx G X, then 

(1) R(A + B, f', C',u0) is a-compact 

and 

(2) R(A + B, f, C, u0) C Ker(_4 + A*) n Coo \ {0}. 

P r o o f . It is clear that assumptions (ii), (iii), (iv) and (v) (or (v')) of Proposi
tion 2.1 are satisfied. It remains to prove that A satisfies the 5+-property. Indeed, 
let {un; n G N} be a sequence such that 

un —- u in X, 
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and 

limswp(Aun,un — u) ^ 0. 

We have 

a • lim sup \\Pun — Pu\\2 ^ limsup(_4un - Au,un - w) 

^ lim sup (Aun, un — u) + lim sup(_4ix, ii — un) 

and thus Pun —> Pu. 

Moreover, Q is bounded linear and thus weakly continuous. Therefore Qun -> Qu 

since dim(Ker_4 + A*) < +00. Thus un = P u n + Qun -> Pn + Qu = u. D 

Proposition 2.3. Let K := X(1) x K(2) x . . . x X(N) where each K(a) is a real 

reflexive Banach space such that K(a) *-> L2(f_(a)) continuously (-7(a) denotes an 

open set in Un) and let u0 be given in X and f in X*. Let f^(x,z): ft(a) x R -> R 

be measurable in x and continuous in z. For a.e. x G f-(a) and aii z € R, assume 

(F ( a )) | / ( a ) ( z , 2 ) | ^ a ( a ) • |^| + 6(a)(rr), a ( a ) G R,b(a) G L2(17(a)) 

and 

(F_a)) z • / ( a ) (x ,2 ) ^ -c ( a )(rr) • |*| - d ( a )(z), c ( a ) G L2(ft ( a )) ,d ( a ) G L x (n ( a ) ) . 

Let A: X -> K* be an operator satisfying assumptions (i)-(iv) of Proposition 2.1 

and Jet P : X -> _Y* be defined by 

N r 
(Bu,v) := У " / / ( a ) ( x , u ( a ) ) - i ^ d z , 

__ÍЛ-<«> 

Vu = (uM,... , u ( N ) ) , v = (vW,... ,vW) G X. 

Then 

(1) R(A + P , /, C, u0) is a-compact 

and 

(2) R(A + B,f,C,u0) C {w G Coo \ {0} | <_4u;,u;) = 0}. 

P r o o f . Let w G P(_4 + B,f,C,u0). There exists n n G X such that t n := 

| |u n | | -+ +00, wn := un/tn -- uj and 

^ n n \^l A uo\ , (Bun,un) if iBun \ / u 0 \ {Bun,un) / J u0\ 
(Awn,wn) + \ - y - > w n ^ ^ ^-4wn, —y + ^ + \í"~~' ~ T / ' 
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which means that 

(A^)t±[ *g>rt*\*+f «^<b + ( jtaWl!,) 
^J IO(«) Cn /n<«) *n X *n ' 

+aW/ ! ^ w / ^ ^ > | d x + / / , „ *). 
Jfl(«) t n J ft *n X tn t n / 

The embedding .K(a) «-> L2(fi(a)) is continuous and there exists Ca > 0 such that 
Ma < <?« • ||tx||a, Viz € X(a) (|| • ||a denotes the X(a)-norm and | • | a the L2(fi(a))-
norm). Then it is easy to compute positive constants a and r such that 

(Awn,Wn) ^ (Awn, ^ ) + (f,Wn ~ ^)+<r/tn+T/t2
n. 

\ tn I \tn tn I 

Thus 

limsup(.Aii;n,wn) ^ 0, 

and we complete the proof as in Proposition 2.1. • 

R e m a r k 2.2. If assumptions (F{a)) and (Fj ) are satisfied, then the functions 

(f{a))oo(x) := liminf{/(a)(x,u) | u -> +oo}, 

(f{a))°°(x) := limsup{/(a)(a:,ix) | u -> -oo} 

are well defined and if K(a) <-> L2(rQ(a)) continuously, then by using [5; Proposition 
ii.4], it is easy to see that 

N 

E0,BM> £ / (f{a))oo(x)'W^(x)dx 
~lJ0+^)(w) 

+ f (f{a))00(x)-wi<a\x)dx, Vw e X, 

where 

and 

П+(в)(и;) := {x Є Í.W : w^^x) > 0} 

íГ ( a )(w) := {x € П ( a ) : tu(a)(x) < 0}. 
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EXISTENCE RESULTS FOR NONLINEAR PERTURBATIONS OF LINEAR 

HEMIVARIATIONAL INEQUALITIES WHERE THE CONSTRAINTS ARE DEFINED 

BY A FINITE UNION OF CLOSED CONVEX SETS 

Throughout the rest of this paper, we will suppose that the following assumption 
is satisfied. 

(Hi) X is a real reflexive Banach space and C is a nonempty closed subset of X 

which can be represented as the union of a finite collection of nonempty closed 
convex subsets Cj (j = 1 , . . . , 1V) of X, i.e. 

N 

c=\Jcj. 
3 = 1 

Moreover, we assume that 
N 

int ( f| C3) ± 0. 
.7 = 1 

Then C is star-shaped with respect to a certain ball in X with center u0 e C 

and radius g > 0. 
We are now able to establish four basic results which will be referred to in the 

following two sections when we will be concerned with concrete applications. The
orem 3.1 and 3.3 concern nonlinear perturbations of coercive linear hemivariational 
inequalities while Theorems 3.2 and 3.4 are applicable to nonlinear perturbations of 
semicoercive linear hemivariational inequalities. 

Theorem 3.1. Suppose that assumption (H^) is satisfied. If 

(i) A: X —» X* is bounded linear and coercive; 

(ii) B: X —•» X* is bounded, hemicontinuous and monotone or 

(ii/) B: X —> X* is bounded, pseudomonotone and 

(Bx, x - uo) ^ 0, Vx G X, 

then for each g G K* there exists u G C such that 

(Au + Bu-g,v) ^ 0, VU G Tc(u). 

P r o o f . All assumptions required by Proposition 2.1 are satisfied and thus R(A+ 
B,g,C,u0) C W := CoonKer(.A + -4*)\{0}. Since A is coercive, Ker(_4 + _4*) = {0}. 
Thus W is empty and R(A + B, g, C, u0) is empty, too. In order to get our result, it is 
sufficient to prove that all assumptions of Theorem 2.1 are satisfied. By assumption 
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(i), A is a maximal monotone operator which satisfies the S+-property. Thus, using 
Lemma 2.3 together with assumption (Hi), we obtain the pseudomonotonicity of 
A+Xddc for each A > 0. If B is monotone and hemicontinuous, it is pseudomonotone 
too and in each case, assumption (H2) is satisfied. The conditions required by (Hi) 
and (H3) are direct consequences of our assumptions. The conclusion follows. • 

Theorem 3.2. Let X be a real Hilbert space and suppose that assumptions (H^) 
is satisfied. Let g be given in X*. If 

(i) A: X —> X* is bounded linear and semicoercive; 
(ii) dim{Ker(_4 + A*)} < +00; 

(iii) u0 G CnKer (A ) ; 

(iv) (g,w) < 0, \fw G Coo H Kev(A + A*)\ {0}; 

(v) B: X -» X* is bounded, hemicontinuous, monotone and uo G KevB; 

or 

(v') B: X -» X* is bounded, pseudomonotone and 

(Bx,x -u0) ^ 0, Vx G X, 

then there exists u G C such that 

(Au + Bu-g,v)^z 0, Vv G Tc(u). 

P r o o f . By Proposition 2.2, R(A + B,g,C,u0) is a-compact and R(A + 
B,g,C,u0) C W with W = C^ n Ker(_4 + A*) \ {0}. As in the proof of The
orem 3.1, it is easy to show that conditions (Hi)-(H3) are satisfied. If we prove 
that 

(3.1) ruoA+B(w)>(g,w), Vw G W, 

then we can apply Corollary 2.1 to get our result. 
Case 1. Suppose that assumption (v) is satisfied. We have 

(A(tx),tx-u0) (B(tx),tx-u0) . /A . (B(u0),tx-u0) r- ^ -(Ax,u0) H = 0. 

The inequality follows from the monotonicity of B, and the equality is due to the 
fact that uo G Ker(_4)nKer(H) and Ker(A) = Ker(.A*) since A is positive. Therefore 

(3.2) H u c A + B H ^ O , VwGX. 

Using (3.2) together with assumption (iv), we get (3.1). 
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Case 2. Suppose that assumption (v;) is satisfied. Then 

(A(tx),tx-u0) (B(tx),tx-u0) 
+ ^ -(Ax,u0) = 0. 

Thus LUo,A+B(W) ^ 0 , Ww G X and we may conclude as before. • 

R e m a r k 3.1. If A is symmetric then W C Coo n Ker(A) \ {0} so that 

LuotA+BM > ^ V™ € W 

even if assumption (iii) is not satisfied. 

Theorem 3.3. Let X := X™ x X<2) x . . . x X^ where each X<a) is a real 

reflexive Banach space such that X<a) <-> L2(n<a)) compactly, and suppose that 

assumption (rl[) is satisfied. If 

(i) A: X -> X* is bounded linear and coercive; 

(ii) f(a)(x,u): fi<a) x R -+ R is measurable in x, continuous in u and satisfies 

assumptions (F[a)) and (F^a)) (a = 1,...,N), then for each g E X* there 

exists u € C such that 

N 

(Au,v) + Y\ / / ( a ) ( x , i x ( a ) ) . u < a ) d x ^ (g,v), \tv<ETc(u). 

P r o o f . Let B: X -> X* be defined by 

N f 
(Bu,v):=Y / /<a)(x,u<a))-t;<a)dar, Vu,vGX. 

Using Proposition 2.3, it is easy to see that R(A + B,g,C,u0) is empty, and it 
remains to prove that all assumptions of Theorem 2.1 are satisfied. Using Lemma 
2.3 together with assumption (H[), we obtain the pseudomonotonicity of A + Xddc 
for each A > 0. The compact embedding X<a) <-> L2(fi<a)) together with assumption 
(Fj ) (a = 1 , . . . , N) guarantees that B is completely continuous and thus bounded 
and pseudomotone, too. Therefore, condition (H2) of Theorem 2.1 is satisfied. As 
already mentioned, the conditions required by (Hi) and (H3) are direct consequences 
of our assumptions. • 

Theorem 3.4. Let X := X^ x X<2) x . . . x X<N) where each X<a) is a real 

Hilbert space such that X<a) <-> L2(H<a)) compactly, and suppose that assumption 

(Hi) is satisfied with u0 = 0. Let g be given in X*. If 
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(i) A: X -+ X* is bounded linear and semicoercive; 

(ii) dim{Ker(A + .A*)} < +00; 

(hi) f{a)(x,z): fi(a) x R -+ 1R is measurable in x, continuous in z and satisfies 

assumptions (F{a)) and (F2
(a)) (a = 1 , . . . , N); 

(iv) E U i ^ ^ J o o W ' ^ d x T U ^ ) ^ > (fl,e),Ve € 

Co^n(KerA + A*) \{0} , 
then there exists u G C such that 

(Au,v) + y / f{a\x,u{a)) - v^ dx > (g,v), VveTc(u). 
^ i J ^ a } 

P r o o f . By Proposition 2.3, R(A + B,p,C ,0) is a-compact and R(A + 

£ ,g ,C , 0 ) c W with IV = C^ n Ker(A + A*) \ {0}. As in the proof of Theo

rem 3.3, it is easy to prove that conditions (Hi)-(H3) are satisfied. To be able to 

apply Corollary 2.1, it remains to prove that 

(3.3) Io,A+B(e)>M, VeeW. 

By Remark 2.2, we have 

N 

(3.4) r o i B ( » >- £ / (/(a))oo(x) • w^(x) dx 

f (/ (o ))°°(-0 • «>(o,)(x) dx, Vtu G X, 
jn-<")(w) 

+ 

where 

аnd 

Moreover 

U+(aҲw) := {ï Є fi(oi) | w(a)(x) > 0} 

ÍГ ( a )(u>) := {x Є П ( o i ) | u>(a)(а;) < 0}. 

-T-A+B.oM ^ LA,O(W)+LBI0(W) > LBt0(w), 

and thus assumption (iv) together with (3.4) imply (3.3). • 

R e m a r k s 3.2. i) Condition (iv) in Theorem 3.2 and condition (iv) in Theo

rem 3.4 (compatibility condition) have been used in various directions by quite a 

number of authors. See for instance [2], [12], [14] and [36] fot the study of noncoer

cive variational inequalities. We refer to [4] and the references cited therein for the 

study of noncoercive variational problems. See also [3], [5] and [19] where further 
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references concerning the study of noncoercive partial differential equations may be 

found. 

ii) It is worthwhile to notice that if C is convex then the existence result given by 

Theorem 2.1 can be proved without using the fact that C has a nonempty interior 

(see [2; Lemma 1.4 and Remark 3.5]). Therefore if C is convex then all results of 

this section remain true if assumption (H^) is replaced by the following one: 

(H") X is a real reflexive Banach space and C is a nonempty closed convex subset 

ofX. 

4 . CONSTRAINED EQUILIBRIUM OF A MATERIAL POINT 

As an example, in order to illustrate Problem P we consider a material point with 

mass m which is constrained to remain in a closed subset C of IR3 which is star-

shaped with respect to some ball B(UO,Q) (Q > 0). When m is in contact without 

friction with the boundary of C, the reaction force R is normal to the boundary, i.e. 

ЯЄ--Vc(x) . 

Fig. 1. Constrained equilibrium of a material point 

Therefore, if fo(x) is an external force acting on m, it is necessary and sufficient 

for the equilibrium to occur that 

x eC and f0 = -Re Nc(x), 

or also 

xeC and (-fo(x),v) > 0, \/v e Tc(x). 

We suppose that 

fo(x) :=m- g + f(x), 
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where m • g is the gravity force and f(x) = —A(x) where A is a continuous function 
of x. For instance, if / is a force which derives from a potential, i.e. there exists a 
differentiable function $ : IR3 -> R such that 

/ (z ) = - g r a d $ ( z ) , 

then A(x) = grad^(x). Therefore, we have 

(A(x) - mg,v) ^ 0, Mv G T c(x) 

(here (x, y) := Xiyi). This simple example shows that Problem P is nothing else that 
a general expression of the classical principle of virtual work [31, 32]. 

Proposition 4.1. Let C be a nonempty subset of R3. The set-valued function 

x —> ddc(x) is pseudomonotone. 

P r o o f . By [10; Proposition 2.1.2] the set ddc(x) is nonempty convex and com
pact. By [10; Proposition 2.1.5], the function x —> ddc(x) is upper semicontinuous. 
It remains to prove that if un —> u and if zn G ddc(un) then for each v G R3 there 
exists z(v) G ddc(u) such that \immi(zn,un — v) ^ (z(v),u — v). Let v G R3 be 
given. We have 

liminf(^n ,un — v) = - limsup(zn,i; - un) ^ - limsupd%(un,v — un). 

The map df^(x,y) is upper semicontinuous as a function of (x,y) [10, Proposition 
2.1.1], and thus 

(4.1) \iminf (zn,un - v) ^ -dPc(u,v - u). 

For each y G R3 there exists z(y) G ddc(u) such that [10, Proposition 2.1.2] 

(fc(u,y) = (z,y). 

Therefore, there exists z(v) G ddc(u) such that 

liminf(2;n,ixn - v) ^ (z(v),u - v). 

• 
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Since A is continuous, it is clear that A + Xddc is pseudomonotone for each 
A ^ 0. Therefore, we are in position to use the basic results presented in Section 3. 

For instance, if C is closed and star-shaped with respect to B(0, g) (g > 0) and if 
A(x) = A - x where A is a positive semidefinite matrix, then by using Proposition 
2.2 together with Corollary 2.1, it is easy to see that 

(g, v) < 0, Vv e Coo n Ker(,4 -f AT) \ {0} 

is a sufficient condition for the existence of an equilibrium. 

Further applications in the field of adhesive grasping problems in robotics can be 
found in [16]. 

5 . ON A LAMINATED PLATE PROBLEM 

We consider a laminated plate consisting of two isotropic and homogeneous lam
inae and the binding material between them. We suppose that each lamina Q ( a ) C 
R2 (a = 1,2) has a constant thickness /i ( a). Each lamina is identified with a 
bounded open and connected subset of R2 and its boundary T ( a ) is assumed ap
propriately smooth. Let also the interlaminar binding material occupy a measurable 
subset 0,' such that /x(fl') > 0 (here /i denotes the 2-dimensional Lebesgue mea
sure), W C tt(1) fl fi(2), and H' fl T(1) = 0, fP fl T(2) = 0. The system is referred 
to a fixed right-handed cartesian coordinate system O.X1X2X3 and the middle plane 
of each lamina coincides with the OX1X2 plane. By C(a)(#) we denote the vertical 
deflection of the point x = (xi,X2,X3) of the a-th lamina, and by w(a) = (14 , *4 ) 
the horizontal displacement of the a-th lamina. 

The theory of Von Karman plates gives rise to the following system of partial 
differential equations: 

(5.1) jfc(a)A2C(a) - h^(a\fclfh = f{a) in -^(a) 

(5.2) 4 a ] = 0 in D(a) 

(5.3) <#> = c W ( e W + ! # > # > ) in ft(a). 

Here, i,j,k,l = 1,2, A2 is the biharmonic operator, k(a) is the bending rigidity 
of the a-th plate, / ( a ) = (0 ,0 ,F ( a ) ) is the distributed vertical load acting on the 
a-th lamina. The tensors <7(a) = {cr\f} and s ( a ) = {e\f} denote the stress and 
strain tensor respectively in the plane of the a-th lamina and C ( a ) := {C^t} is the 
corresponding elasticity tensor, the components of which are assumed to be elements 
of L°°(n ( a)) and to satisfy the usual symmetry and ellipticity properties. We assume 
that n ( a) ,v ( a) e [Hx(n ( a))]2 and that C ( a ) ,* ( a ) € H2(H(a)). 
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Prom equation (5.2), multiplying by z ( a ) G H2(n(a)), integrating, applying the 
Green-Gauss theorem and using classical computations in Von Karman theory, we 
get the expressions 

(5.4) aa(C ( a ) ,z ( a )) + / i ( a )^a(Ga(C ( a )) ,Pa(C ( a )^ ( a ))) = / / ( a ) * ( a ) dtt, 
Jfi(«) 

where aa is the symmetric bilinear and semicoercive form 

a(C (a ) ,* (a )) = £ ( a ) / (1 - vla)KluZlu + i / ( a )AC ( a )Az ( a )dn. 
Jfi(«) 

Here i/(a) < ± is the Poisson ratio of the a-th lamina, Pa: [H2(n ( a ))]2 -> [L2(n ( a ))]4 

is the completely continuous and quadratic function defined by 

Pa(C,̂ ) = {C? )^ )}, 

Ga: / I 2 (n ( a ) ) —> [L2(n ( a ))]4 is the completely continuous and quadratic function 

defined by 

Ga(C(a)) = £ ( a V a ) ) + |Pa(C ( a \C ( a ) ) , 

Ra(.,.): [L2(n ( a ))]4 x [L2(n ( a ))]4 -> R is the continuous, symmetric and coercive 
bilinear form defined by 

Ra(M, N) := / CijыMцNы díï, 
jn(°) 

where M and N are 2 x 2 tensors, and ix(a)(C(a)) is the plane displacement cor
responding to the vertical deflection and merely determined as the solution of the 
variational equality 

Ra(e^ + |Pa(C (a ) ,C (a )),e(t; (a ) - tx(a))) = 0, Vv(a) G [Hl(il^]2. 

See [25-28] for more details. 

Let us now define the operators Aa: H2(n(a)) -» H2(n(a))* and Ca: H2(n(a)) -> 
H2(n(a>)* such that 

aa(&\zW) = (Aa((«\zM)a 

and 

^ ( a )--«(Ga(C ( 0 )),Pa(C ( a ) ,« ( 0 ))) = (o«C (a ) ,2 (a ))a-

It is known that 

(5.5) i4a: H2(n(a)) -> if2(n ( a))* is bounded symmetric linear and semicoercive; 
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(5.6) Ker(Aa) is the space of polynomials of degree ^ 1; 

(5.7) Ca: H2(fi(a)) -> H2(n(a))* is completely continuous and nonnegative, i.e. 

(Cax(a\x^)a > 0, Vx(a) G H2(ft(a)); 

(5.8) if g(a) G Ker(Aa) then 

(Carc (a),G (a))a = 0, Vz(a) G H2(ft(a)). 

Now we put F(a) = G(a) + I7(a), where G(a) G L2(ft(a)) is given, for instance the 

transversal load applied on the a-th lamina, and (I7(1),i?(2)) G L2(fi(1)) x L2(fi(2)) 

is a known function of (C(1^C(2^) introduced in order to formulate the stress in the 

interlaminar binding layer ft' or to consider the presence of obstacles. We will assume 

a set-valued reaction-displacement law of the form 

(5.9) -R=-(RW,RW)eNc(0, 

where C •= (C(1^C(2^) ar-d C denotes a nonempty closed subset of the product space 

X:=H1(n(1))xH1(n(2)) 

for which the corresponding duality product is defined by 

<.,.> = < . , .> l + <. , .>2 

and the corresponding norm by 

11-11 ~ H-Htf1^1*) + H*l l /J 1 ( -^ ( 2 ) )* 

Formula (5.9) implies that 

(5.10) (it,/i) ^ 0 , VheTc(0-

Let G G X* be defined by 

2 r 
(G,z) = Y / G^z^dÜ, 

ŽҐiJ°м 

and let us define the operators A: X -> X* and C: X -» X* by the formulae 

<AC^> = <^C ( 1 ) ^ ( 1 ) > + <^C ( 2 ) ^ ( 2 ) >, 
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and 

(TC,z) = (C1C ( 1 )^ ( 1 ) ) + (o2C(2),t;(2)). 

From (5.4) and (5.10) we obtain the problem 

(5.11) Find C € C such that 

(A( + T<;-G,z)VzeTc((). 

N 

If C := (J Cj where each set Cj is assumed to be nonempty convex and closed and 
3 = 1 

r N
 I 

if int < P| Cj > fl Ker(A) 7-= 0 then C is star-shaped with respect to a ball B(UQ, g) 
1 j=i > 

with UQ G KerA Thus assumptions (H^) and (hi) of Theorem 3.2 are satisfied. By 
properties (5.7) and (5.8), it is clear that T is bounded pseudomonotone and satisfies 

(TCC-uo)^o, vceX. 

By properties (5.5) and (5.6), it is clear that assumptions (i) and (ii) are also satisfied, 
and thus we get the solvability of problem (5.11) for each G G L2(Q^) x L2(fi(2)) 
satisfying the inequality 

2 r 
(5.12) V / G ( a V a ) dfl < 0, Vg G Coo n Kev(A) \ {0}. 

6 . O N THE GENERALIZED SlGNORINI-LIKE PROBLEM IN ELASTICITY 

Let fl be a body identified with a bounded open connected subset of IR3 referred 
to a coordinate system {0,xi,X2,x3}. We assume that the surface of the body is 
regular (i.e. T is a hypersurface of class C m (m ^ 1) and Q is located on one side 
of T). It is assumed that H is subjected to a density force F. Surface tractions t 
are applied to a portion E of T. The body fl is assumed to be fixed along an open 
subset Tu of T (possibly empty). We suppose that Tu n E = 0. 

Let a = {(?ij} be the stress tensor and let n = {n t} be the outward unit normal 
vector on T. We denote by S = {Si} the stress vector on T, i.e. Si = Cij • nj. 

Let u denote the displacement field of the body. We consider the case of in
finitesimal deformations of the body and suppose that the body is characterized by 
a Cauchy elastic law, i.e. cr̂ - = Cijki • £ij where e = {eij(u)} is the strain tensor and 
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C = {Cijki(x)} is the linear-elasticity tensor. The elasticity tensor C e [L°°(ft)]81 is 
supposed to satisfy the classical symmetry properties 

Cijki(x) = Ckiij(x) = Cjiki(x), 

and the ellipticity property 

Cijki(x)CijCki ^ c • & • & (c > 0) 

for a.e. x e ft, and for all 3 x 3 symmetric matrices £• 

We suppose that a nonempty measurable part ft' (/x(ft') > 0) of the body ft is 
constrained to lie inside a closed convex box ( J e l l We assume that ft' C Q. The 
displacement field u satisfies the following system of equations: 

(6.1) -ddij/dxj =Fi + R{ in ft, 

(6.2) Si = U on S, 

(6.3) x + u(x) eQ,Vxe ft', 

(6.4) u = 0 on IV, 

where the reaction force R is introduced in order to describe the action of the con
straints on the body. We assume also that T = E U TJJ U E, where fji(E) = 0 (/J, 
denotes the 3-dimensional Lebesgue measure). Moreover, we put 

Fi(x, u(x)) = fi(x) - d(x, u), 

where fi denotes a body force density which does not depend of the displacement. 

The displacement of a particle x e ft after deformation becomes x + u(x) so that 

(6.3) ensures that part ft' of the body lies in Q. 

Let X be the Hilbert space defined by 

X :={ve[H1(n)]3:v = 0 on IV}. 

(The boundary condition v = 0 on Tu is considered in the usual trace sense.) In 
order to formulate a frictionless contact between the body and the box, we introduce 
the abstract multivalued law 

-ReNc(u), 

where C is the closed convex subset of X defined by 

C \= {v e X: x + v(x) e Q, a.e. on ft'}. 
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Then, as a weak formulation of system (6.1)-(6.4) we consider the variational 
inequality 

(6.5) u G C: a(u,v -u) + (Bu,v - u) ^ (f,v -u), Vv G C, 

where a(u, v) is the bilinear continuous symmetric form 

a(u,v)= I Cijhkeij(u)ehk(v)dQ, 
JQ , 

B: X -» X* is the nonlinear operator defined by 

(Bu,v) = / Gi(.x,Ui)t;i dffc 
Jft 

and (v, /) is the linear continuous form 

( " , / ) = / /ťi>.-díl + / ÍÍ^Í ds 
Jíí JE 

with / G [L2(ft)]3 and t G [L 2 (S)] 3 . 
Formulation (6.5) is obtained by using classical distributional tools. We refer the 

reader to [21] and [33] for more details. 
Let A: X —> X* be the bounded linear and symmetric operator defined by 

(Au,v) = a(u,v), Vu,v G X. 

It is known that if u(Tu) > 0 then A is coercive. However, if TrT = 0 then A is only 
semicoercive and 

KerA = {v e X: v(x) =aAx + b, a,b G R3}, 

where A denotes the vector product. 

Case 1, Suppose that Gi obeys a potential law, i.e. there exists a functional 

$ i : ft x IR -> R such that $i(x,.) G C1^, R) for all x G ft and 

Gi(x,.) = -V$i(x,.). 

If $i(x,.) is convex for all x G ft, then the corresponding operator B is monotone 
and hemicontinuous [34], By using Theorem 3.1, Theorem 3.2 and Remark 3.2 (ii) 
together with Proposition A.l, we get the following result. 
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Proposition 6.1. i) if p,(Tv) > 0 then problem (6.5) has at least one solution 
for each f G X*. ii) ifTv = 0 and 0 G Ker(B) then problem (6.5) has at least one 
solution for each f € X* satisfying the inequality 

(f,e) < 0, Vee{veX: v(x) =aAx + be Qoo a.e. on ft', a, b 6 1R3}. 

C a s e 2. Suppose that G* is a Caratheodory function satisfying assumptions 

(F{') and (F$'). Then as a consequence of Theorem 3.3 and Theorem 3.4, we get 

the following result. 

Proposition 6.2. if fi(Tu) > 0 then problem (6.5) has at 1east one solution for 

each f G X*, and ii) ifTu = 0, then problem (6.5) has at ieast one solution for each 

f G X* satisfying the inequality 

T [ (f^)QO(x)-e^dx+ [ (/Ia>ra.eW(b>(j,e) 
o=iJn+<a>(e) Jn-(«)(c) 

Ve G {v G X: v(x) = a A z + bG<2oo -a.e. on ft', a,b 6 U3}. 

R e m a r k 5.L i) Using our approach, we have obtained new existence results 

for hemivariational inequalities and variational inequalities, ii) we have proved the 

solvability of semicoercive problems as long as a compatibility condition on the right 

hand term / is satisfied. Such compatibility conditions can be seen as generalized 

Lazer-Landesman conditions [19]. 

ANNEX: O N THE BOX-SET 

Let f^a) (a -= 1 , . . . , N) be a nonempty open subset of lRn (n G N, n ^ 1) and let 

ft' be a measurable subset such that //(ft') > 0 and ft' C ft(a), Va = 1 , . . . , TV. Let 

Q be a nonempty subset of (Rn. We assume that Q ' c Q . 

The following proposition holds true: 

Proposition A . l . Let X be a real Banach space such that X is continuously 

embedded in Lp(n^) x . . . x Lp(rtN>>) (p > 1) and let C be defined by 

C := {u Є X: x + u(x) Є <Ҙ, a.e. on í ľ} . 

then 
i) O G C; 
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ii) Coo C {v G X I v(x) G Qoo, a.e. on ft'}; 

iii) if Q is closed convex then C is closed convex and 

C^ = {v G X I v(x) G Qoo, a.e. on SI'}. 

P r o o f , i) Trivial, ii) Let v G Coo- There exist {tn \ n G N} and {vn \ n G N} 
such that vn -> v,tn -+ oo and tn -vn e C, that is 

(A.l) x + tn- vn(x) G Q, a.e. on ft'. 

Since X <-• L^ft^1 ') x . . . x L ^ f t ^ ) continuously, there exists a subsequence (again 
denoted by vn) such that vn

a)(x) -> v(°)(a;) a.e. on ft<a'. This together with (A.l) 
implies that v(x) G Qoo for a.e. x G ft', ii) It is clear that C is closed and convex. 
Therefore Coo can also be written as 

f)(C-z)/», 
p>0 

where z is any element of C. Let v G X be such that v(x) G Qoo a.e. on ft'. Then 
we obtain 

x + Xv(x) G Q a.e. on ft', VA > 0. 

Taking a sequence An —>> -f-oo, we find that x + Xnv G C and thus i; G Coo- ---
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