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Abstract. In this paper we present a unified approach to obtain integral representation
formulas for describing the propagation of bending waves in infinite plates. The general
anisotropic case is included and both new and well-known formulas are obtained in special
cases (e.g. the classical Boussinesq formula). The formulas we have derived have been
compared with experimental data and the coincidence is very good in all cases.
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1. Introduction

This paper is a result of a cooperation between the departments of Experimental

Mechanics and Mathematics at Lule̊a University of Technology. The starting point
was the recent Ph.D. Theses [3] and [10] where, in particular, the classical Boussinesq

formula (see our Example 4.4) was important. In order to be able achieve better
understanding of the existing experimental data in more general cases we have here

in particular derived suitable integral representation formulas which cover also these
cases.

More precisely we have given in this paper a unified approach to obtain integral
representations for describing the propagation of bending waves in infinite plates.

We start by handling the most general case with an anisotropic plate with very
modest restrictions on the outer force. After that we consider various special cases

and get both new and well-known formulas. For example in the simplest case with
an isotropic plate when the outer force is a unit impulse in both the plane and the
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time variable we obtain the classical Boussinesq solution. Our starting point is to

use Fourier analysis and some exact formulas for the Fourier transform which are
very important for our investigation.

The formulas we have derived have been compared with experimental data and
the coincidence is very good in all cases, see Section 5 of this paper and also the

recent paper [4], which may be seen as a complement of this paper.

This paper is organized in the following way: In Section 2 a preliminary discussion

on the plate equation can be found. In Section 3 we have derived an integral rep-
resentation formula for a general anisotropic plate. However, this formula contains

a Fourier transform as a factor in the integrand. Fortunately, in some cases this
formula can be simplified in a very useful way (see our Remark 3.5 and Statement

3.6). In Section 4 we discuss the special case with an isotropic plate. Here we can
give a representation formula which does not contain any Fourier transform as a

factor in the integrand. In particular, this gives us a much better understanding of
the Boussinesq formula. Section 5 is reserved for the announced comparison of our

results with experimental data and for some concluding remarks. Finally, in order
not to disturb some of our discussions (in Sections 4 and 5) we have collected the

proofs of some crucial formulas in a separate Appendix (together with some necessary
theory concerning distributions and Fourier analysis).

2. A preliminary discussion of the plate equation

The general form of the standard (Kirchoff’s) plate equation for an anisotropic
plate is

(1)
D11

∂4w

∂x4
+ 4D16

∂4w

∂x3∂y
+ 2 (D12 + 2D66)

∂4w

∂x2∂y2
+ 4D26

∂4w

∂x∂y3
+D22

∂4w

∂y4

+ �h
∂2w

∂t2
= q(x, y, t),

where w = w(x, y, t), (x, y) ∈ �
2 is the deflection of the plate and t represents the

time. Dij are the principal stiffnesses, h the thickness of the plate, � the volume

density of the plate and q(x, y, t) the perpendicular load per unit area. Dij , � and h

are supposed to be constants. For an anisotropic plate there is no elastic symmetry.

In this model the resistance of the surrounding medium and the internal friction are
disregarded. A more detailed description of the model can be found in [3], [6].

For later purposes it is convenient to simplify equation (1)by making the scaling
transformations x = x

b and y = y
c where

D11
b4 =

D22
c4 = D (D is a given fixed
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constant). Then the equation (1) can be written

(2)

∂4w

∂x4
+ A1

∂4w

∂x3∂y
+A2

∂4w

∂x2∂y2
+A3

∂4w

∂x∂y3
+

∂4w

∂y4
+
1
a2

∂2w

∂t2
=

q(x, y, t)
D

,

(x, y) ∈ �2 , t > 0,

where a =
√

D
�h and 




A1 =
4D16

(D11)3/4(D22)1/4

A2 =
2(D12 + 2D66)
(D11D22)1/2

A3 =
4D26

(D11)1/4(D22)3/4
.

Note that here we have dropped the bars on x and y. A formal solution of equation

(2) and, thus, of (1) is derived in our statement 3.1.
We also consider the special case where D16 = D26 = 0, that is when we have a

plate with orthogonal anisotropy or simply an orthotropic plate. This special case
is of great interest in physics. See e.g. the recent Theses [3] and [10]. In this case

A1 = A3 = 0 and (2) can be written as

(3) ∆2w + ε
∂4w

∂x2∂y2
+
1
a2

∂2w

∂t2
=

q(x, y, t)
D

, (x, y) ∈ �2 , t > 0,

where 



ε = A2 − 2 = 2
(

D12 + 2D66√
D11D22

− 1
)

a =

√
D

�h

and, as usual, ∆2 = ∂4

∂x4 +2
∂4

∂x2∂y2 +
∂4

∂y4 denotes the biharmonic differential operator.

3. On an integral representation of the solution of (2)

Here we consider the special case when q(x, y, t) can be separated as

q(x, y, t) = f(t)p(x, y).

Moreover, p̂ denotes the Fourier transform of p, i.e.

p̂(ξ, η) =
∫∫

�
2

p(x, y)e−i(ξx+ηy) dxdy, (ξ, η) ∈ �2 .
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3.1. A formal solution of (2). The solution of the Cauchy-problem

(4)





∂4w

∂x4
+A1

∂4w

∂x3∂y
+A2

∂4w

∂x2∂y2
+A3

∂4w

∂x∂y3
+

∂4w

∂y4
+
1
a2

∂2w

∂t2

=
f(t)p(x, y)

D
, (x, y) ∈ �2 , t > 0

w
∣∣
t=0
= 0, (x, y) ∈ �2

wt

∣∣
t=0
= 0, (x, y) ∈ �2

can formally be written as the integral representation

w(x, y, t) =
a2

4�2D

t∫

0

f(τ) dτ
∫∫

�
2

p̂(ξ, η)
sinα(t− τ)

α
ei(ξx+ηy) dξ dη,

where α2 = a2
[
ξ4 +A1ξ

3η +A2ξ
2η2 +A3ξη

3 + η4
]
.

�����. The Fourier transformation of (4) yields

(5)





ŵtt + α2ŵ =
a2f(t)p̂(ξ, η)

D

ŵ
∣∣
t=0
= 0

ŵt |t=0 = 0

where
ŵ(ξ, η, t) =

∫∫

�2

w(x, y, t)e−i(ξx+ηy) dxdy.

It is well-known and easy to see that (5) has the unit impulse (δ(t)) response sinαt
α .

Therefore, by solving (5) by Green’s method, we find that ŵ can be represented as

a convolution:

(6) ŵ(ξ, η, t) =
a2p̂(ξ, η)

D

t∫

0

f(τ)
sinα(t − τ)

α
dτ.

By using the inverse Fourier transform and (6) we find that

w(x, y, t) =

(
1
2�

)2 ∫∫

�2

ŵ(ξ, η, t)ei(ξx+ηy) dξ dη

=
a2

4�2D

t∫

0

f(τ) dτ
∫∫

�
2

p̂(ξ, η)
sinα(t− τ)

α
ei(ξx+ηy) dξ dη,

and the proof is complete. �
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3.2. ������. From the above proof we see that the formal solution is even

pointwise correct at each point where the Fourier inversion formula holds (see
e.g. [15]).

3.3. ������. In applications it is sometimes convenient to introduce the polar

coordinates {
x = r cos θ

y = r sin θ
and

{
ξ = σ cosϕ

η = σ sinϕ

and rewrite the solution of (4) as
(7)

w(r, θ, t) =
a

4�2D

t∫

0

f(τ) dτ

2�∫

0

∞∫

0

p̂(σ, ϕ)
sin

[
aσ2(t− τ) · g(ϕ)

]

σ · g(ϕ) eiσr cos(ϕ−θ) dσ dϕ,

where

g(ϕ) =
[
1 +A1 cos3(ϕ) sin(ϕ) + (A2 − 2) cos2(ϕ) sin2(ϕ) + A3 cos(ϕ) sin

3(ϕ)
]1/2

.

3.4. 	
�����. Let p(x, y) = δ(x, y) and f(t) = Iδ(t), where δ as usual denotes
the Dirac delta function. This means that the outer force q(x, y, t) is a momentary

load at t = 0 which is concentrated at (0, 0). Then (4) has the solution

(8) w(x, y, t) =
Ia2

4�2D

∫∫

�
2

sinαt

α
ei(ξx+ηy) dξ dη.

�����. We note that the Fourier transform of δ(x, y) is δ̂ = δ̂(ξ, η) ≡ 1. Thus,
by the statement 3.1,

w(x, y, t) =
Ia2

4�2D

t∫

0

δ(τ) dτ
∫∫

�
2

sinα(t− τ)
α

ei(ξx+ηy) dξ dη

=
Ia2

4�2D

∫∫

�
2

( t∫

0

δ(τ)
sinα(t− τ)

α
ei(ξx+ηy) dτ

)
dξ dη

=
Ia2

4�2D

∫∫

�
2

sinαt

α
ei(ξx+ηy) dξ dη.

�
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3.5. ������. The solution w in (8) can be written in polar coordinates:

(9) w(r, θ, t) =
Ia

4�2D

2�∫

0

∞∫

0

sin
[
aσ2t · g(ϕ)

]

σ · g(ϕ) eiσr cos(ϕ−θ) dσ dϕ,

with

g(ϕ) =
[
1 +A1 cos3(ϕ) sin(ϕ) + (A2 − 2) cos2(ϕ) sin2(ϕ) + A3 cos(ϕ) sin

3(ϕ)
]1/2

.

In Remark A5 in Appendix we formally show that (9) can be rewritten in the form

(10) w(r, θ, t) =
Ia

8�D

2�∫

0


1
2
−
[
S

(√
2q
�

)]2
−
[
C

(√
2q
�

)]2
 1

g(ϕ)
dϕ,

where q = r2 cos2(ϕ−θ)
4at·g(ϕ) , S(x) =

x∫
0
sin �u2

2 du and C(x) =
x∫
0
cos �u

2

2 du (the Fresnel

integrals). This form (10) is much more suitable for numerical calculations, see [4].

3.6. The orthotropic case. A formal solution of the Cauchy-problem

(11)





∆2w + ε
∂4w

∂x2∂y2
+
1
a2

∂2w

∂t2
=

f(t)p(x, y)
D

(x, y) ∈ �2 , t > 0

w
∣∣
t=0
= 0, (x, y) ∈ �2

wt

∣∣
t=0
= 0, (x, y) ∈ �2

(
ε = A2 − 2 = 2

(
D12+2D66√

D11D22
− 1

)
and a =

√
D
�h

)
is

w(x, y, t) =
a2

4�2D

t∫

0

f(τ) dτ
∫∫

�
2

p̂(ξ, η)
sinα(t− τ)

α
ei(ξx+ηy) dξ dη,

where
α2 = a2

[(
ξ2 + η2

)2
+ εξ2η2

]
.

�����. Apply the statement 3.1 with A1 = A3 = 0. �

3.7. ������. The solution w for the orthotropic case can be written in polar
coordinates:

(12)

w(r, θ, t) =
Ia

8�D

2�∫

0


1
2
−
[
S

(√
2q
�

)]2
−
[
C

(√
2q
�

)]2
 1√

1 + ε
(
sin 2ϕ
2

)2 dϕ,

with q = r2 cos2(ϕ−θ)

4at·
√
1+ε( sin 2ϕ

2 )
2
.
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4. The isotropic case (ε = 0)

In this important special case (see e.g. Theses [3] and [10]) it is even possible to

obtain an integral representation of the solution of (11) which only contains p(u, v)
(instead of its Fourier transform). One key argument in our investigation is to

use some exact formulas for the Fourier transform. These formulas are most easily
understood and derived in the context of distributions, but in order not to disturb

our discussion here we present the details and proofs in a separate Appendix. We
are now ready to formulate our main result in this section.

4.1. A formal solution of the isotropic case. The solution of the Cauchy-
problem

(13)





∆2w +
1
a2

∂2w

∂t2
=

f(t)p(x, y)
D

(x, y) ∈ �2 , t > 0

w
∣∣
t=0
= 0, (x, y) ∈ �2

wt

∣∣
t=0
= 0, (x, y) ∈ �2

can formally be written as

(14) w(x, y, t) =
a

4�D

t∫

0

F (τ)
t− τ

dτ
∫∫

�
2

p(u, v) sin
(x− u)2 + (y − v)2

4a(t− τ)
du dv,

where F (t) =
t∫
0

f(u) du.

�����. Integration by parts gives

t∫

0

sinα (t− τ)
α

f(τ) dτ =

t∫

0

cosα (t− τ)F (τ) dτ.

Therefore, by using statement 3.6 with ε = 0, we find that

(15) w(x, y, t) =
a2

4�2D

t∫

0

F (τ) dτ
∫∫

�
2

p̂(ξ, η) cosα(t− τ)ei(ξx+ηy) dξ dη

where α = a(ξ2 + η2). Our key observation now is that

∫∫

�
2

sin k(u2 + v2)e−i(ξu+ηv) du dv =
�

k
cos

ξ2 + η2

4k
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for every k > 0 and all (ξ, η) ∈ �2 , see Lemma A2 in Appendix. By using this formula
with k = 1

4a(t−τ) we find that if g(u, v) = 1
4a(t−τ)� sin

u2+v2

4a(t−τ) then

ĝ(ξ, η) =
∫∫

�
2

1
4a(t− τ)�

sin
u2 + v2

4a(t− τ)
e−i(ξu+ηv) du dv = cosα(t− τ).

Moreover, according to the convolution theorem,

1
4�2

∫∫

�
2

p̂(ξ, η) cosα(t− τ)ei(ξx+ηy) dξ dη = F−1 {p̂(ξ, η) cosα(t− τ)}

= F−1 {p̂(ξ, η)ĝ(ξ, η)} = 1
4a(t− τ)�

∫∫

�
2

p(u, v) sin
(x− u)2 + (y − v)2

4a(t− τ)
du dv.

(F−1 denotes the Fourier inverse transform). We insert this expression into (15)
and obtain (14). The proof is complete. �

4.2. 	
�����. If a point load is applied to an isotropic (infinite) plate at (0, 0)
i.e. if p(u, v) = δ(u, v), then, according to the statement 4.1, the deflection w is equal

to

(16) w(x, y, t) =
a

4�D

t∫

0

F (τ)
t− τ

sin
x2 + y2

4a(t− τ)
dτ.

We can also prove the following useful result:

4.3. A generalized Boussinesq formula. The solution of the Cauchy-problem

(17)





∆2w +
1
a2

∂2w

∂t2
=

f(t)δ(x, y)
D

(x, y) ∈ �2 , t > 0

w
∣∣
t=0
= 0, (x, y) ∈ �2

wt

∣∣
t=0
= 0, (x, y) ∈ �2

is

w(x, y, t) =
a

4�D

( t∫

0

(
�

2
− Si

( r2

4a(t− τ)

))
f(τ) dτ

)
,

where Si(s) =
s∫
0

sinu
u du and r =

√
x2 + y2.
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�����. From Example 4.2 we know that

(18) w(x, y, t) =
a

4�D

t∫

0

F (τ)
t− τ

sin
x2 + y2

4a(t− τ)
dτ.

Now we put s = x2+y2

4a(t−τ) in (18) and find that

w(x, y, t) =
a

4�D

∞∫

x2+y2

4at

F
(
t− x2 + y2

4as

)sin s

s
ds =

[
r2 = x2 + y2

]

=
a

4�D

∞∫

r2
4at

F
(
t− r2

4as

)sin s

s
ds = [Integration by parts]

=
a

4�D

(
F (t)

�

2
−

∞∫

r2
4at

f
(
t− r2

4as

) r2

4as2
Si(s) ds

)
=

[
τ = t− r2

4as

]

=
a

4�D


�

2

t∫

0

f(τ) dτ −
t∫

0

f(τ) Si
( r2

4a(t− τ)

)
dτ




=
a

4�D




t∫

0

(
�

2
− Si

( r2

4a(t− τ)

))
f(τ) dτ


 .

The proof is complete. �

4.4. 	
�����. Let f(τ) = I δ(τ) in the statement 4.3. Then we obtain the

classical Boussinesq solution

(19) w(x, y, t) =
aI

4�D

(
�

2
− Si

( r2

4at

))
.

We remark that this formula has been rediscovered and/or applied in many connec-

tions, see e.g. [1], [3], [8], [10] and [13].
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5. Numerical calculations, experimental results and further remarks

First we present some examples. The numerical experiments agree very well with
experimental results (see Example 5.3).

5.1. 	
�����. (The isotropic case.)

In Figure 1 the deflection w(r, θ, t) is illustrated for a = 765ms−2, t = 40µs. We

have used both our formula (12, normalized)

(20) w(r, θ, t) =

Ia
8�D

2�∫
0

(
1
2 −

[
S

(√
2q
�

)]2
−
[
C

(√
2q
�

)]2)
1√

1+ε( sin 2ϕ
2 )

2
dϕ

Ia
8�D

2�∫
0

1√
1+ε( sin 2ϕ

2 )
2
dϕ

with ε = 0, q = r2 cos2(ϕ−θ)

4at
√
1+ε( sin 2ϕ

2 )
2
, θ = 0 (θ can be any number) and the Boussinesq

formula (19, normalized)

w(r, t) =

aI
4�D

(
�

2 − Si
(

r2

4at

))

aI
4�D

�

2

= 1− 2
�

Si
( r2

4at

)

and, as expected, the results are identical.

5.2. 	
�����. (An orthotropic case.)

In Figure 2 the deflection w(r, θ, t) in formula (20) is illustrated for a = 765ms−2,
t = 40µs, ε = −0.8, θ = 0 resp. θ = �

4 . In this case we of course get different curves

for different values of θ.

5.3. 	
�����. (An anisotropic case.)

Figure 3 shows a comparison between the theoretical formula (10) and experimen-
tal results. The plate in this case is a composite anisotropic plate with a thickness
of 4.1mm. The size is 0.298× 0.192m. Figures 3a and 3b show respectively a 3-D
map and a contour map 78 µs after the impact start. Figure 3c shows the inter-
ferogram of the same plate after 78 µs after the impact start. The bending waves

are created with a laserpulse as short as 25 ns. The focused spot is about 0.4mm
in diameter. That is, we can approximate the “impact” with a Dirac delta function

in time and space. The stiffnesses for the plate are D11 = 171Nm, D22 = 76Nm,
D12 + 2D66 = 127Nm, D16 = −16.9Nm and D26 = −5.0Nm. Furthermore, the
scaling factors are b = 1 and c =

(
D22
D11

)1/4
and the density � = 1957kg/m3.

A comparison between Figure 3b and 3c shows that the agreement is very good.
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Figure 3a

Figure 3b

5.4. ������. The Boussinesq formula (19) obviously has the following proper-
ties:

(a) lim
r→∞

w(r, t) = 0

(b) lim
t→0

w(r, t) = 0

(c) lim
t→∞

w(r, t) =
aI

8D

(d) w(0, t) =
aI

8D

(e) wt(r, t) =
aI sin( r2

4at )

4�Dt
, r2 = x2 + y2, t > 0.
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Figure 3c

The results (a)–(c) are expected for physical reasons. In (d) we ought to get w(0, t) =

0 but, on the other hand, in our derivation of the Boussinesq formula we have e.g. used
the inversion formula so we cannot expect to get agreement at each point.

Another formulation of the Cauchy problem of the isotropic case is

(21)





∆2w +
1
a2

∂2w

∂t2
= 0 (x, y) ∈ �2 , t > 0

w
∣∣
t=0
= 0 (x, y) ∈ �2

wt

∣∣
t=0
=

a2I

D
δ(x, y) (x, y) ∈ �2

where a =
√

D
�h . This is consistent with the law of impulse. In fact we have (mass×

change of velocity):
∫∫

�
2

�h(wt

∣∣
t=0

− 0) dxdy =
∫∫

�
2

�h
a2I

D
δ(x, y) dxdy = I

∫∫

�
2

δ(x, y) dxdy = I.

On the other hand, if an impulse is given to the plate by the force F (t) and the time
of impact is τ we have

∫

τ

F (t) dt =
∫

τ

(∫∫

�
2

Iδ(t)δ(x, y) dxdy

)
dt =

∫

τ

Iδ(t) dt = I.

Moreover, it is easy (with Maple or Mathematica) to verify that

w(x, y, t) =
aI

4�D

(
�

2
− Si

( r2

4at

))
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satisfies

∆2w +
1
a2

∂2w

∂t2
= 0, 0 < t, 0 < r,

w
∣∣
t=0
= 0 and

wt =
aI sin( r2

4at )

4�Dt
.

In fact we have now proved that (18) is a solution of (21) and (17) with f(t) = δ(t).

In addition, according to Lemma A4 in Appendix, we have that

aI sin( r2

4at )

4�Dt
→ a2I

D
δ(x, y) as t → 0,

and we have just proved that the Boussinesq solution (19) is a solution of (21) and,
thus, of (17) with f(t) = Iδ(t). Therefore also the formula (e) is reasonable and the
mathematical modelling seems to be very consistent.

5.5. ������. In this paper we have considered an infinite plate. For some
new results concerning the case with finite plates (more exactly, concerning the

biharmonic equation ∆2u = 0) we refer to the recent papers [11] and [2] and the
references given there. The results presented in this paper cannot be derived by

using the methods developed in [11] and [2].

A. Appendix

Here we let � denote the space of testfunctions in �2 , i.e. the space of all infinite
differentiable functions ϕ in �2 such that

sup
(x,y)∈�2

∣∣∣∣xα1yα2 ∂β1+β2ϕ

∂β1x∂β2y

∣∣∣∣ < ∞

for all α1, α2, β1, β2 ∈ �+. Moreover, the collection �′ of all continuous linear func-
tionals on � is called the space of temperated distributions.

A1. 	
�����. Let f ∈ Lp(�2 ), 1 � p < ∞, i.e. let

‖f‖Lp =

(∫∫

�2

|f(x, y)| dxdy
)1/p

< ∞.
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Then L = Lf , defined by

L(ϕ) = Lf(ϕ) =
∫∫

�2

f(x, y)ϕ(x, y) dxdy,

is a corresponding (“unique”) temperated distribution. Sometimes L(ϕ) is written

as L(ϕ) = 〈L, ϕ〉 (this way of writing is equipped with the natural duality between
the spaces � and �′).

A2. Lemma. Let g(x, y) = sin k(x2 + y2), k > 0. Then

ĝ(ξ, η) =
�

k
cos

ξ2 + η2

4k
in S′.

We have not found a proof of this formula in literature so for the reader’s conve-
nience we include such a proof.

����� of Lemma A2. First of all we will prove that if f(x, y) = ei(x
2+y2), then

(22) f̂(ξ, η) = i�e−i
ξ2+η2

4 in �′.

In order to prove this fact we first note that

df
dx
= 2ixf,

df
dy
= 2iyf and f, xf, yf ∈ �′.

For the Fourier transform f̂ of f we have

d̂f
dx
= iξf̂ and

d̂f
dy
= iηf̂

x̂f = i
df̂
dξ

and ŷf = i
df̂
dη

Hence −2 df̂dξ = iξf̂ , which has the solution f̂(ξ, η) = C1(η)e−i
ξ2

4 . In the same way

we find that f̂(ξ, η) = C2(ξ)e−i
η2

4 and therefore C1(η)e−i
ξ2

4 = C2(ξ)e−i
η2

4 . Thus

C1(η)ei
η2

4 = C2(ξ)ei
ξ2

4 = C and it follows that f̂(ξ, η) = Ce−i
ξ2+η2

4 . To determine

the constant C take as a testfunction ϕ(x, y) = 1
4�e

−x2+y2

4 which has the Fourier
transform ϕ̂(ξ, η) = e−(ξ

2+η2). Since, by definition,
〈
f̂ , ϕ

〉
= 〈f, ϕ̂〉 we must have

C

4�

∫∫

�2

e−i
ξ2+η2

4 e−
ξ2+η2

4 dξ dη =
∫∫

�2

ei(x
2+y2)e−(x

2+y2) dxdy.

227



Both integrals are absolute convergent. The integral on the left hand side is equal to

∫∫

�2

e−i
ξ2+η2

4 e−
ξ2+η2

4 dξ dη =
∫∫

�2

e−ξ2 1+i4 e−η2 1+i4 dξ dη

=

( ∞∫

−∞

e−ξ2 1+i4 dξ

)2
=
4�
1 + i

(see [16, p. 147]) and similarly the integral on the right hand side is equal to

∫∫

�2

ei(x
2+y2)e−(x

2+y2) dxdy =
�

1− i .

Thus C
4�
4�
1+i =

�

1−i so that C = i� which means that (22) is proved. Now by using

(22) and the following property of the Fourier transform:

F {f(ax, by)} = 1
|ab| f̂

( ξ

a
,
η

b

)

with a = b =
√

k and f(x, y) = ei(x
2+y2), we find that if h(x, y) = eik(x

2+y2), then

ĥ(ξ, η) =
i�
k
e−i

ξ2+η2

4k in �′.

Therefore, by comparing the imaginary parts in this relation, we obtain that

ĝ(ξ, η) = F ĥ(ξ, η) =
�

k
cos

ξ2 + η2

4k
in �′

and the proof is complete. �

A3. ������. As a reward from the above proof we obtain also that if g(x, y) =
cos k

(
x2 + y2

)
, k > 0, then

ĝ(ξ, η) =
�

k
sin

ξ2 + η2

4k
in �′.

In our discussion we have also used the following fact of independent interest:

A4. Lemma. Consider fk(x, y) = k
�
sin k(x2 + y2), k > 0. Then

fk(x, y)→ δ(x, y) in �′ as k →∞.
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�����. The key is to use the property that if

(23) fk → f in �′, then f̂k → f̂ in �′ as k →∞,

and the fact that, for all (x, y) ∈ �2 ,

(24) cos
x2 + y2

4k
→ 1 in �′ as k →∞.

The proof of (24) follows at once by using the dominated convergence theorem and

the obvious fact that

cos
x2 + y2

4k
→ 1 when k →∞ pointwise.

Therefore, according to Lemma A2,

F

{
k

�

sin k(x2 + y2)

}
= cos

ξ2 + η2

4k
→ 1 in �′ as k →∞.

Moreover, since
1̂ ≡ (2�)2δ(ξ, η)

we conclude, by using the inverse Fourier transform, and (24)

(2�)2
k

�

sin k(ξ2 + η2)→ (2�)2δ(ξ, η) in �′ as k →∞,

and the proof follows. �

A5. A derivation of formula (10) in Remark 3.6. Partial integration yields
that

I1 =:

∞∫

0

sinλx2 cosωx

x
dx = − 1

ω

∞∫

0

sinωx

(
2λ cosλx2 − sinλx2

x2

)
dx, λ > 0, ω > 0.

Moreover, according to [5, p. 395] we have

I2 = − 2λ
ω

∞∫

0

sinωx cosλx2 dx

= − 2λ
ω

√
�

2λ

[
sin

(
ω2

4λ

)
C

(
ω

2
√

λ

√
2
�

)
− cos

(
ω2

4λ

)
S

(
ω

2
√

λ

√
2
�

)]

= − 1√
q

√
�

2

[
sin(q)C

(√
2q
�

)
− cos(q)S

(√
2q
�

)]
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where q = ω2

4λ , S(x) =
x∫
0
sin �u2

2 du and C(x) =
x∫
0
cos �u2

2 du.

Let

(25) I3 =
1
ω

∞∫

0

sinωx
sinλx2

x2
dx.

I3 is dominated convergent and therefore we have

dI3
dλ
=
1
ω

∞∫

0

sinωx cosλx2 dx = {see e.g. [5]}

=
1
ω

√
�

2λ

[
sin

(
ω2

4λ

)
C

(
ω

2
√

λ

√
2
�

)
− cos

(
ω2

4λ

)
S

(
ω

2
√

λ

√
2
�

)]
.

Next we put q = ω2

4λ and note that

dI3
dq
=
dI3
dλ
dλ
dq

=
1
ω

√
�

2λ

[
sin

(
ω2

4λ

)
C

(
ω

2
√

λ

√
2
�

)
− cos

(
ω2

4λ

)
S

(
ω

2
√

λ

√
2
�

)](
− ω2

4q2

)

= − 1
2q3/2

√
�

2

[
sin(q)C

(√
2q
�

)
− cos(q)S

(√
2q
�

)]
.

Thus

(26)

I3(q) =

q∫

0

− 1
2s3/2

√
�

2

[
sin(s)C

(√
2s
�

)
− cos(s)S

(√
2s
�

)]
ds+ C0

= − �

2

[
S2

(√
2q
�

)
+ C2

(√
2q
�

)]

+
1√
q

√
�

2

[
sin(q)C

(√
2q
�

)
− cos(q)S

(√
2q
�

)]
+ C0.

To determine the constant C0 we let q → ∞ (⇔ λ → 0+). According to (26) and
(25) we have

0 = −�

2

[(
1
2

)2
+

(
1
2

)2]
+ C0 ⇐⇒ C0 =

�

4
.
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Now I1 = I2 + I3, which yields

(27) I1 =
�

2

[
1
2
− S2

(√
2q
�

)
− C2

(√
2q
�

)]
.

This formula also holds for ω � 0, since I1(−ω) = I1(ω) and lim
ω→0

I1 = �

4 =
∞∫
0

sinλx2

x dx. In order to prove (10) we only have to consider the real part of the

integral on the right hand side of (9), that is

I =

2�∫

0

∞∫

0

sin
[
aσ2t · g(ϕ)

]

σg(ϕ)
cos(σr cos(ϕ− θ)) dσ dϕ

=

2�∫

0

1
g(ϕ)

J dϕ,

where

J =

∞∫

0

sin
[
λσ2

]

σ
cos(ωσ) dσ, with

λ = at · g(ϕ) and ω = r cos(ϕ− θ).

According to (27) we have

I =
�

2

2�∫

0

1
g(ϕ)

[
1
2
− S2

(√
2q
�

)
− C2

(√
2q
�

)]
dϕ,

and the proof is complete.
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