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Abstract. Non-linear singular integral equations are investigated in connection with some
basic applications in two-dimensional fluid mechanics. A general existence and uniqueness
analysis is proposed for non-linear singular integral equations defined on a Banach space.
Therefore, the non-linear equations are defined over a finite set of contours and the existence
of solutions is investigated for two different kinds of equations, the first and the second
kind. Moreover, the existence of solutions is further studied for non-linear singular integral
equations over a finite number of arbitrarily ordered arcs. An application to fluid mechanics
theory is finally given for the determination of the form of the profiles of a turbomachine
in two-dimensional flow of an incompressible fluid.
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1. Introduction

Many problems of mathematical physics, like elasticity, plasticity, viscoelasticity,
thermoelasticity and fluid mechanics, reduce to the solution of a non-linear singular

integral equation. Hence, there is interest in the solution of such non-linear integral
equations, since these are connected with a wide range of problems of an applied char-

acter. The theory of non-linear singular integral equations seems to be particularly
complicated if closely linked with applied mechanics problems.

Having in mind the implications for different problems of mathematical physics,
E.G. Ladopoulos [1]–[4] introduced linear finite-part singular integral equations.

This type of linear equations has been applied to many problems of elasticity, plas-
ticity, fracture mechanics and aerodynamics.
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In addition, E.G. Ladopoulos [5]–[9] investigated linear multidimensional sin-

gular integral equations, by introducing the Singular Integral Operators Method
(S.I.O.M.), which has been applied to many problems of structural and fluid me-
chanics theory.

Therefore, in the present report the theories obtained for linear singular integral
equations and linear multidimensional singular integral equations shall be extended

to non-linear ones.

On the other hand, some studies have been published, investigating non-linear
integral equations of simpler form, without any singularities. Among those who

studied nonlinear theories used in applied mechanics, we shall mention the following:
J. Andrews and J.M. Ball [10], S. S. Antman [11], [12], S. S. Antman and E.R. Car-

bone [13], J.M. Ball [14]–[16], H. Brezis [17], P.G. Ciarlet and P. Destuynder [18],
P.G. Ciarlet and J. Necas [19], [20], C.M. Dafermos [21], [22], C.M. Dafermos

and L. Hsiao [23], J. E. Dendy [24], Guo Zhong-Heng [25], H. Hattori [26], D. Hoff
and J. Smoller [27], W. J. Hrusa [28], R.C. MacCamy [29]–[31], B. Neta [32], [33],

R.W. Ogden [34], R. L. Pego [35], M. Slemrod [36] and O. J. Staffans [37].

In the present communication some existence and uniqueness theorems are estab-

lished for non-linear singular integral equations defined on Banach spaces. These
non-linear equations are first defined over finite sets of contours and the existence of

solutions is studied for two different kinds of non-linear singular integral equations,
the first and the second kind.

In addition, the existence of solutions is further established for non-linear singular

integral equations over a finite number of arbitrarily ordered arcs, by introducing a
Banach space and a special set defined in the space.

An application to fluid mechanics theory is finally given, consisting in the deter-
mination of the form of the lattice of profiles of turbomachines in two-dimensional

steady flow of an incompressible fluid. This two-dimensional fluid mechanics problem
reduces to the solution of a non-linear singular integral equation, by obtaining the

form of the profile of the turbomachine, supposing that the velocity on the surface
of the profile, the incident velocity, the velocity downstream of the lattice and the

lattice spacing are known.

2. Existence and uniqueness theorems for non-linear singular
integral equations over finite sets of contours

Definition 2.1. Consider a non-linear singular integral equation of the first kind

(2.1)
∫

L

M(t, x)
x− t

u(x) dx+ ξ

∫

L

K
[
t, x, u(x)

]

x− t
dx = f(t)
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where L is a finite set of smooth disconnected contours, x, t ∈ L, u(x) the unknown,

f(t), M(t, x) known functions Hölder-continuous in L, K
[
t, x, u(x)

]
a non-linear

kernel Hölder-continuous in L and ξ a real parameter.

Definition 2.2. We also consider a non-linear singular integral equation of the
second kind

(2.2) ξ

∫

L

K
[
t, x, u(x)

]

x− t
dx = u(t)

in which L is a finite set of smooth disconnected contours, x, t ∈ L, K
[
t, x, u(x)

]
a

non-linear kernel Hölder-continuous in L, u(x) the unknown and ξ a real parameter.

Definition 2.3. The singular kernel

(2.3)
M(t, x)
t− x

is said to be closed when the integral equation

(2.4)
∫

L

M(t, x)
t− x

u(t) dt = 0

has only the zero solution u = 0 in the set of functions satisfying Hölder’s conditions.

Theorem 2.1 (Schauder’s Fixed Point Theorem [38]). Let X be a closed,

compact and convex subset of a Banach space B. For an arbitrary continuous trans-

formation T : X → X there exists a point x ∈ X such that T (x) = x.

Theorem 2.2 (Privalov’s Theorem [39]. Let a complex function K(t, u) of
two variables be defined in a domain t ∈ L, u ∈ P , where L denotes a smooth

contour and P is a certain region or a line in the complex plane. If the function

K(t, u) satisfies Hölder’s condition with respect to both variables:

(2.5)
∣∣K(t, u)−K(t1, u1)

∣∣ < k
[
|t− t1|ν + |u − u1|µ

]
,

0 < ν < 1, 0 < µ � 1, then the Cauchy singular integral

(2.6) Φ(t, u) =
∫

L

K(t, u)
t− x

dt

satisfies the inequality

(2.7)
∣∣Φ(t, u)

∣∣ < �R +Dk
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and Hölder’s condition with respect to both variables:

(2.8)
∣∣Φ(t1, u1)− Φ(t, u)

∣∣ < Ck
[
|t− t1|ν + |u− u1|µ1

]

where µ1 is an arbitrary positive constant, µ1 < µ, R an upper bound of the function∣∣K(t, u)
∣∣, C a positive constant depending on the line L and the choice of µ1 and D

is an upper bound of the integral
∫

L
|t− x|ν−1 dt.

Theorem 2.3. Let us consider a non-linear singular integral equation of the first
kind (2.1) defined over a finite set of disconnected contours L. Moreover, consider

the kernel functionM(t, x)/(t−x) to be closed, and the constants |ξ|, Zf = sup
t∈L

∣∣f(t)
∣∣

and kf to be sufficiently small, where kf is the Hölder coefficient of the function f

in Hölder’s inequality, such that the following inequalities hold:

(1 + ka)h−1
[
|ξ|Nk + |ξ|�−2Nϕ + (c1Zf + c2kf )

]
� A(2.9)

CMA+ |ξ|h−1
[
λ+ 2|L|µ/2

]
+ 2|ξ|NkkNh−2|L|µ/2 + |ξ|Cb

+Bh−1kf |L|µ/2 + 2(c1Zf + c2kf )h−2kM |L|µ/2 � λ, 0 < µ � 1(2.10)

where

Nk = sup
∣∣K(t, x, u(x))

∣∣,(2.11)

Nϕ = sup
∫

L

∣∣Φ(t, x, u(x))
∣∣ dx, t ∈ L, |u| � A,(2.12)

A given positive number,

h = inf
∣∣M(t, t)

∣∣, t ∈ L,(2.13)

ka = sup
∫

L

∣∣G(θ, x)
∣∣ d�x,(2.14)

Φ(θ, x, u) =
∫

L

K(t, x, u)
(t− θ)(x− t)

dt(2.15)

with G(θ, x) a function dependent on the function

(2.16) F (θ, x)/M(θ, θ) : F (θ, x) =
∫

L

M(t, x) dt
(t− θ)(x − t)

,

and kM is the Hölder coefficient of the function M(t, x) in Hölder’s inequality, c1

and c2 are certain positive constants depending on the contour L, cM is a positive

constant depending on the function M , B a positive constant which depends on the
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contour L, λ an arbitrary constant, |L| the diameter of the set L and cb a positive

constant depending on the functions M , K and the contour L.

Then, the non-linear singular integral equation (2.1) possesses at least one solution
u∗(t) satisfying Hölder’s condition.

�����. By multiplying both sides of the non-linear singular integral equa-

tion (2.1) by 1/(t − θ), θ ∈ L, and integrating with respect to the variable t we
reduce (2.1) to its equivalent weakly-singular form

∫

L

dt
t− θ

[∫

L

M(t, x)
x− t

u(x) dx

]
+ ξ

∫

L

dt
t− θ

[ ∫

L

K
[
t, x, u(x)

]

x− t
dx

]
(2.17)

=
∫

L

f(t) dt
x− θ

, θ ∈ L.

Moreover, by applying the Poincaré-Betrand transformation formula to the inte-

grals on the left hand side of (2.17), we obtain the equation

−�2M(θ, θ)u(θ)− ξ�2K
[
θ, θ, u(θ)

]
+

∫

L

F (θ, x)u(x) dx(2.18)

+ ξ

∫

L

Φ
[
θ, x, u(x)

]
dx = fa(θ)

where

(2.19) fa(θ =
∫

L

f(t) dt
t− θ

and F (θ, x), Φ
[
θ, x, u(x)

]
are given by (2.16) and (2.15), respectively.

We have

(2.20)
1

(t− θ)(x − t)
=

1
x− θ

[ 1
t− θ

+
1

x− t

]
,

hence eqs (2.15) and (2.16) can be written as

(2.21) F (θ, x) =
δ(θ, x) − δ(x, x)

x− θ

and

(2.22) Φ(θ, x, u) =
R(θ, x, u)−R(x, x, u)

x− θ

where the functions δ(θ, x) and R(θ, x, u) are defined by the Cauchy singular integrals

(2.23) δ(θ, x) =
∫

L

M(t, x)
t− θ

dt
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and

(2.24) R(θ, x, u) =
∫

L

K(t, x, u)
t− θ

dt.

We will apply Schauder’s fixed point theorem (Theorem 2.1) to the integral equa-

tion (2.18). Assuming that M(θ, θ) �= 0, θ ∈ L, we can write (2.18) in the form

u(θ)− 1
�
2

∫

L

F (θ, x)
M(θ, θ)

u(x) dx = − ξ

M(θ, θ)
K

[
θ, θ, u(θ)

]
(2.25)

+
ξ

�
2

∫

L

Φ
[
θ, x, u(x)

]

M(θ, θ)
dx− fa(θ)

�
2M(θ, θ)

.

The kernel M(t, x)/(t− x) is closed and therefore, the homogeneous equation

(2.26) u(θ)− 1
�
2

∫

L

F (θ, x)
M(θ, θ)

u(x) dx = 0

possesses only the zero solution.
Moreover, on the basis of the theory of weakly singular integral equations, the

only solution of the integral equation

(2.27) u(θ)− 1
�
2

∫

L

F (θ, x)
M(θ, θ)

u(x) dx = q(θ)

has the form

(2.28) u(θ) = q(θ) +
∫

L

G(θ, x)q(x) dx

where G(θ, x) is a function dependent on the function F (θ, x)/M(θ, θ). Therefore,

the solution (2.28) satisfies the inequality

(2.29)
∣∣u(θ)

∣∣ � (1 + ka) sup |q|

where ka is given by (2.14). Thus, the function u(θ) satisfies the inequality

(2.30) u(θ) � 1 + ka

h

[
|ξ|Nk +

ξ

�
2
Nϕ + (c1Nf + c2kf )

]

where

(2.31) Nf = sup
∣∣f(t)

∣∣, t ∈ L

and Nk, Nϕ, h are given by (2.11), (2.12) and (2.13), respectively.
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Furthermore, the function u(θ) satisfies Hölder’s condition with exponent µ/2,

0 < µ � 1:

(2.32)
∣∣u(θ)− u(θ1)

∣∣ < ku|θ − θ1|µ/2.

Hence the integral equation (2.25) implies

ku � cM sup |u|+ |ξ|h−1
[
λ+ 2|L|µ/2

]
+ 2|ξ|NkkMh−2|L|µ/2(2.33)

+ |ξ|cb +Bh−1kf |L|µ/2 + 2(c1zf + c2kf )h−2kM |L|µ/2.

Therefore, from (2.30) and (2.33) we obtain the inequalities (2.9) and (2.10). Thus,

all conditions of Schauder’s Theorem are satisfied as the set of all points u(t) is
closed, convex and compact. Therefore, we can assert that there exists at least one

fixed point u∗(t) of the transformation (2.25), i.e. there exists a solution u∗(t) of the
non-linear singular integral equation (2.1) satisfying Hölder’s condition. �

Theorem 2.4. Consider the non-linear singular integral equation of the second
kind (2.2) defined over a finite set of disconnected contours L. Furthermore, assume

that the non-linear kernel K(t, x, u) satisfies Hölder’s condition of the form

∣∣K(t, x, u)−K(t1, x1, u1)
∣∣ < k

[
|t− t1|ν + |x− x1|µ + |u− u1|

]
,(2.34)

0 < µ < ν � 1, k > 0

and the parameter ξ satisfies the condition

(2.35) |ξ| � min
[ A

k(1 + τ)E + �P
,

τ

k(1 + τ)c

]

where E denotes the upper bound of the integral

(2.36)
∫

L

d�ν

|x− t|1−µ

and A is a given positive number, τ the Hölder coefficient of the function u(x) in

Hölder’s inequality, P the upper bound of the function
∣∣K(t, x, u)

∣∣ and c a positive

constant which depends on the contour L.

Then the non-linear singular integral equation of the second kind (2.2) possesses

at least one solution u∗(t) in the set of functions satisfying Hölder’s condition with
exponent µ.
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�����. Consider the transformation function ω(t) which transforms the non-

linear singular integral equation (2.2) as follows:

(2.37) ω(t) = ξ

∫

L

K
[
t, x, u(x)

]

x− t
dx.

Furthermore, we write (2.37) as

(2.38) ω(t) = ξ

∫

L

K
[
t, x, u(x)

]
−K

[
t, t, u(t)

]

x− t
dx+K

[
t, t, u(t)

] ∫

L

dx
x− t

.

Therefore, we obtain

(2.39)
∣∣ω(t)

∣∣ � |ξ|k(1 + τ)
∫

L

d�x

|x− t|1−µ
+ �|ξ|P

where P denotes the upper bound of the function
∣∣K(t, x, u)

∣∣.
By using Privalov’s Theorem (Theorem 2.2), we can prove that the function ω(t)

satisfies Hölder’s condition of the form

(2.40)
∣∣ω(t)− ω(t1)

∣∣ � k|ξ|(1 + τ)c|t− t1|µ

where c is a positive constant which depends on the contours L.

From (2.39) and (2.40) one obtains the following two inequalities:

(2.41) |ξ|k(1 + τ)E + �|ξ|P � A

and

(2.42) |ξ|k(1 + τ)c � τ

in which A is a given positive number and E the upper bound of the integral (2.36).
Thus, by using (2.41) and (2.42) we obtain the inequality (2.35) which has to be

satisfied by the parameter ξ.

Hence all conditions of Schauder’s Theorem are satisfied as the set of all points
ω(t) is closed, convex and compact and therefore there exists at least one fixed point

u∗(t) of the transformation (2.37). Thus, there exists at least one function u∗(t)
which is a solution of the non-linear singular integral equation (2.2) for sufficiently

small |ξ|. �

352



3. Existence and uniqueness theorems for non-linear singular

integral equations over a system of arcs

Consider a set of points L = �1+ �2+ . . .+ �n in the complex plane, consisting of a

finite number of arbitrarily ordered arcs �1, �2, . . . , �n. Furthermore, the end-points
c1, c2, . . . , cq of these arcs are also ordered arbitrarily but independently of the order

of arcs.

Definition 3.1. Let us define the class Hµ
α as the set of all complex functions

u(t) defined at each point t of the set L, or the set L′ = L −
q∑

ν=1
cν satisfying the

inequality

(3.1)
∣∣u(t)

∣∣ <
A

q∏
i=1

|t− ci|a
, t ∈ L′, A = constant

and the generalized Hölder condition

(3.2)
∣∣u(t)− u(t1)

∣∣ <
A|t− t1|µ[

|t− cν ||t1 − cν1 |
]α+µ

for each pair of points t, t1 lying inside the same arbitrary arc � =
�

cνcν1 , while the

point t1 is on the arc
�
tcν . Moreover, let the real parameters a and µ, fixed for the

given class, satisfy the conditions

(3.3) 0 � a < 1, 0 < µ < 1, α+ µ < 1

where the constant A may take any positive values.

Definition 3.2. Consider the function space F consisting of complex functions
u, defined and continuous in the open set L′ and satisfying the inequality

(3.4) sup
t∈L′

[ q∏

i=1

∣∣t− ci

∣∣α+µ∣∣u(t)
∣∣
]

< ∞.

The norm of the point u is defined as follows:

(3.5) ‖u‖ = sup
t∈L′

[ q∏

i=1

|t− ci|α+µ
∣∣u(t)

∣∣
]
.

The space F is linear, metric, normed and complete and thus, a Banach space.
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Definition 3.3. In the space F let us define the set S of all functions u for which

(3.6)
q∏

i=1

|t− ci|α
∣∣u(t)

∣∣ � D1

and

(3.7)
[
|t− cν ||t1 − cν1 |

]α+µ∣∣u(t)− u(t1)
∣∣ � D2|t− t1|µ

where t1, t2 is an arbitrary pair of points lying on the same arbitrary arc
�

cνcν1 and

t1 ∈
�

tcν1 , D1 and D2 are arbitrary positive numbers. Furthermore, the functions u

of the set S belong to the class Hµ
α .

Theorem 3.1. Consider the non-linear singular integral equation of the second
kind (2.2) where ξ = 1, defined over a system of arcs L. Moreover, suppose that the

non-linear function K(t, x, u) satisfies the condition

(3.8)
∣∣K(t, x, u)

∣∣ < B1|u|+
B2

q∏
i=1
(x− ci)a

and the generalized Hölder-Lipschitz condition

(3.9)
∣∣K(t, x, u)−K(t1, x1, u1)

∣∣ < B3|u− u1|+B4
|t− t1|µ1 + |x− x1|µ[
|x− cν ||x1 − cν1 |

]α+µ

where B1, B2, B3 and B4 are given positive constants and the positive exponents α,

µ, µ1 satisfy the inequalities

(3.10) α+ µ < 1, 0 < µ < µ1 � 1

and x ∈ �
cνcν1 , x1 ∈

�
xcν1 , t1, t2 ∈ �e (e = 1, 2, . . . , n).

Furthermore, the constants B1 and B3 are sufficiently small so that the following

conditions hold:

(3.11) G1B1 < 1, G2B3 < 1

and

(3.12) G1B1 +G2B3 + (G3G4 −G1G2)B1B3 < 1

where G1, G3 are positive constants depending only on the arcs �1, �2, . . . , �n and

G2, G4 are positive constants.
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Then in the class Hµ
α there exists at least one solution u∗(t) of the non-linear

singular integral equation of the second kind (2.2) for the system of arcs.

�����. The existence of the solution of the non-linear singular integral equation
(2.2) will be proved by Schauder’s topological method.

Let us transform the set S defined by Definition 3.3 according to the formula

(3.13) ω(t) =
∫

L

K
[
t, x, u(x)

]

x− t
dx

which assignes to each point u of the set S a certain point ω of the space F , defined

by Definition 3.2.

Furthermore, because of the inequalities (3.6) and (3.8), for each point u of the

set S one has

(3.14)
∣∣∣K

[
t, x, u(x)

]∣∣∣ < B1
∣∣u(x)

∣∣+ B2
q∏

i=1
|t− ci|a

<
B1D1 +B2

q∏
i=1

|t− ci|a
.

Moreover, because of the inequalities (3.7) and (3.9) the non-linear kernel K
[
t, x,

u(x)
]
satisfies the generalized Hölder condition for the points of the set S

(3.15)
∣∣∣K

[
t, x, u(x)

]
−K

[
t1, x1, u(x1)

]∣∣∣ <
(B3D2 +B4)

[
|t− t1|µ + |x− x1|µ

]
[
|x− cν ||x1 − cν1 |

]α+µ .

Therefore, by using the inequality (3.15), it is easily proved that the transformed
function (3.13), continuous in the open set L′, satisfies the formula

(3.16)
∣∣ω(t)

∣∣ <
G1(B1D1 +B2) +G3(B3D2 +B4)

q∏
i=1

|t− ci|α

where G1, G3 are positive constants depending only on the arcs �1, �2, . . . , �n. Hence,
the point ω belongs to the space F .

Furthermore, the transformed function ω satisfies Hölder’s condition

(3.17)
∣∣ω(t)− ω(t1)

∣∣ <
G4(B1D1 +B2) +G2(B3D2 +B4)[

|t− cν ||t1 − cν1 |
]α+µ |t− t1|µ

where G2, G4 are positive constants, t ∈
�

cνcν1 , t1 ∈
�

tcν1 . The transformed function
ω belongs to the class Hµ

α , as the functions u of the set S.
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Hence, comparing the inequalities (3.16) and (3.17) with (3.6) and (3.7), we con-

clude that the set S∗ of all the transformed points ω is a subset of the set S, provided
that the constants of the problem satisfy the inequalities

(3.18) G1(B1D1 +B2) +G3(B3D2 +B4) � D1

and

(3.19) G4(B1D1 +B2) +G2(B3D2 +B4) � D2.

Therefore, if the two constants D1 and D2 satisfy the inequalities

(3.20) D1 > G1B2 +G3B4

and

(3.21) D2 > G4B2 +G2B4

then the conditions (3.18) and (3.19) are satisfied, provided the positive constants
B1 and B3 are sufficiently small.

Moreover, in order for the inequalities (3.18) and (3.19) to be satisfied, the con-
ditions (3.11) have to hold. If the constants D1 and D2 are further regarded as

rectangular coordinates in the plane, then the set of the points (D1, D2) satisfying
the condition (3.18) is a half-plane lying below the straight line with the equation

(3.22) D2 =
1−G1B1

G3B3
D1 −

G1B2 +G3B4
G3B3

.

Also, the set of the points (D1, D2) satisfying the condition (3.19) is a half-plane
lying above the straight line with the equation

(3.23) D2 =
G4B1
1−G2B3

D1 +
G4B2 +G2B4
1−G2B3

.

Therefore, a necessary and sufficient condition for the existence of a set points

(D1, D2) possessing positive coordinates and satisfying the inequalities (3.18) and
(3.19) is

(3.24)
1−G1B1

G3B3
>

G4B2
1−G2B3

or the equivalent condition (3.12).
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Furthermore, the transformation of the set S by the relation (3.13) is continuous

in the space F and the set S′ transformed from the set S by the relation (3.13) is
relatively compact. Hence, in the set S there exists at least one point u∗(t) fixed
with respect to the transformation (3.13). Or, in other words, there exists, in the

class Hµ
α , at least one solution u∗(t) of the non-linear singular integral equation (2.2),

which completes the assertion of Theorem 3.1.

The existence of solutions of the non-linear singular integral equation (2.2) defined
over a system of arcs L can be also proved by the method of successive approxima-

tions, by using the following theorem of Banach-Cacciopoli, when more restrictive
assumptions are imposed on the non-linear kernel K

[
t, x, u(x)

]
. �

Theorem 3.2 [Banach-Cacciopoli [40], [41]). If in a complete metric space
an operation P associates with every two points f and g, points P̂ (f) and P̂ (g) of

this space, the distances of which satisfy the inequality

(3.25) δ
[
P̂ (f), P̂ (g)

]
� βδ(f, g)

the positive constant β being smaller than unity and independent of the pair f and

g, then there exists a unique point u of the space which satisfies the equation

(3.26) u = P̂ (u),

i.e. a fixed point with respect to the operation P̂ .

Theorem 3.3. Let a complex valued function u(ζ, θ; t, x) of the real variables ζ,

θ and complex parameters t, x, be defined in the domain

(3.27) |ζ + iθ| � D, t ∈ L, x ∈ L

where L is a system of smooth arcs, and let the following Hölder-Lipschitz conditions

be satisfied for the partial derivatives of u:

∣∣uζ(ζ, θ, t, x) − uζ(ζ1, θ1, t1, x1)
∣∣(3.28)

� k
[
|ζ − ζ1|+ |θ − θ1|+ |t− t1|ν + |x− x1|µ

]
,

∣∣uθ(ζ, θ, t, x) − uθ(ζ1, θ1, t1, x1)
∣∣(3.29)

� k
[
|ζ − ζ1|+ |θ − θ1|+ |t− t1|ν + |x− x1|µ

]

where 0 < µ < ν � 1. Then the equality

u(ζ∗, θ∗, t, x)− u(ζ, θ, t, x) = (ζ∗ − ζ)E1(ζ, ζ∗, θ, θ∗, t, x)(3.30)

+ (θ∗ − θ)E2(ζ, ζ∗, θ, θ∗, t, x)
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holds. Moreover, the complex functions E1 and E2 determined in the domain

(3.31) |ζ + iθ| � D, |ζ∗ + iθ∗| � D, t, x ∈ L

satisfy the Hölder-Lipschitz condition

∣∣Ec(ζ, ζ∗, θ, θ∗, t, x)− Ec(ζ′, ζ∗
′, θ′, θ∗′, t′, x′)

∣∣(3.32)

� k
[
|ζ − ζ′|+ |ζ∗ − ζ∗′|+ |θ − θ′|+ |θ∗ − θ∗′|+ |t− t′|ν + |x− x′|µ

]
.

�����. The proof of the present theorem follows from the integral representa-

tion of the difference between two arbitrary values of the complex valued function
u(ζ, θ, t, x):

u(ζ∗, θ∗, t, x)− u(ζ, θ, t, x) = (ζ∗ − ζ)
∫ 1

0
uζ

[
ζ + y(ζ∗ − ζ), θ∗, t, x

]
dy(3.33)

+ (θ∗ − θ)
∫ 1

0
uθ

[
ζ, θ + y(θ∗ − θ), t, x

]
dy.

�

Theorem 3.4. Consider the non-linear singular integral equation (2.2) with ξ =
1, and a system of arcs L defined in the class Hµ

∗ , where Hµ
∗ denotes the set of all

functions of the class Hµ
a for which a takes all values such that 0 < a < 1

2 (1 − µ).
The non-linear kernel K

[
t, x, u(x)

]
of (2.2) is defined in the open domain

(3.34) t, x ∈ L′, u = ζ + iθ ∈ �

where � denotes the plane of the complex variable, and satisfies the inequality

(3.35)
∣∣K(t, x, u)

∣∣ < k1|u|+ k′1

and the Hölder-Lipschitz condition

(3.36)
∣∣K(t, x, u)−K(t1, x1, u1)

∣∣ < k2
[
|t− t1|µ1 + |x− x1|µ + |u− u1|

]
.

Furthermore, the real part K(Re) and the imaginary part K(Im) of the non-linear

kernel K,

(3.37) K(t, x, u) = K(Re)(t, x, ζ, θ) + iK(Im)(t, x, ζ, θ)
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have partial derivatives with respect to the variables ζ and θ, which satisfy the

Hölder-Lipschitz conditions

∣∣K(e)ζ (t, x, ζ, θ) −K
(e)
ζ (t1, x1, ζ1, θ1)

∣∣ < k3
[
|t− t1|µ1 + |x− x1|µ(3.38)

+ |ζ − ζ1|+ |θ − θ1|
]
,

∣∣K(e)θ (t, x, ζ, θ) −K
(e)
θ (t1, x1, ζ1, θ1)

∣∣ < k3
[
|t− t1|µ1 + |x− x1|µ(3.39)

+ |ζ − ζ1|+ |θ − θ1|
]
,

with 0 < µ < µ1 � 1, and the symbol e must be replaced by either Re or Im.
The constants k1, k2 and k3 are sufficiently small and such that the following

inequalities hold:

A0k1 +A∗1k2 + (A
∗
0A1 −A0A

∗
1)k1k2 < 1(3.40)

A0k1 < 1, A∗1k2 < 1(3.41)

G = max
{[
(A0 +A1)k2 + 4(2D2 + 1)k3(A

∗
0 +A∗1)

]
, 4(A∗0 +A∗1)k4

}
< 1(3.42)

where k4 is the least upper bound of the absolute values of the derivatives of the

functions K(Re) and K(Im) with respect to the variables ζ and θ, A0, A∗0, A1, A
∗
1 and

D2 are positive constants.

Then there exists a unique solution of the non-linear singular integral equation

(2.2) in the class Hµ
∗ , which is at each interior point t of the set L′ the limit of the

sequence

(3.43) u0(t), u1(t), . . . , un(t)

which is defined by means of the recursive relation

(3.44) un+1(t) =
∫

L

K
[
t, x, un(x)

]

x− t
dx.

�����. By using the method of successive approximations, we prove the exis-
tence of the sequence (3.43). Hence, let us assume that u0(t) belongs to the class Hµ

a ,

i.e. satisfies the inequalities (3.6) and (3.7). Therefore, all functions of the sequence
(3.43) are defined in the class Hµ

a if the constants k1 and k2 satisfy the inequalities

A0k1(D1 +A2) +A0k2(D2 +A3) � D1,(3.45)

A1k1(D1 +A2) +A1k2(D2 +A3) � D2
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where

A2 = sup
t∈L

[ q∏

i=1

|t− ci|a
]
,(3.46)

A3 = max sup
t,t1∈L

[ q∏

i=1

|t− cν | |t1 − cν1 |
]a+µ

.

Thus, by making use of the arbitrary choice of the positive constants D1 and D2

we can show that the inequalities (3.40) and (3.41) are necessary and sufficient for
the existence of positive values D1 and D2 for which the inequalities (3.45) hold.

Also, we can easily see from the above that the inequalities (3.35) and (3.36) are
sufficient for the existence of the sequence (3.43).

Moreover, in order to prove the convergence of the sequence of successive approx-
imations we shall proceed by the following method. For the proof we use the more

restrictive assumptions (3.38) and (3.39), the numerical series
∞∑

n=0
F [un+1 − un] of

the upper bounds of the products

(3.47) sup
t∈L′

[ q∏

i=1

|t− ci|a
∣∣un+1(t)− un(t)

∣∣
]
= F

[
un+1(t)− un(t)

]

and the series
∞∑

n=0
H∗[un+1(t)− un(t)

]
which are determined by the relation

(3.48) H∗[u(t)
]
= max

γ
sup

t,t1∈ �
cνcν1

{[
|t− cν ||t1 − cν1 |

]2a+µ

∣∣u(t)u(t1)
∣∣

|t− t1|µ
}

where �γ =
�

cνcν1 and t1 ∈
�

tcν1 .
Hence, in order to prove the convergence of the above series, we shall use Theo-

rem 3.3. Therefore, let us write

(3.49) un+1(t)− un(t) =
∫

L

λn(t, x)
x− t

dx

with

(3.50) λn(t, x) = K
[
t, x, un(t)

]
−K

[
t, x, un−1(x)

]
.

Furthermore, let us define the generalized Hölder coefficient of the function of two
variables by

(3.51) H∗[λn(t, x)
]
= max

γ,γ∗
sup

t,t1∈�γ

x,x1∈�γ∗

{[
|x−cν||x1−cν1 |

]2a+µ

∣∣λn(t, x) − λn(t1, x1)
∣∣

|t− t1|µ1 + |x− x1|µ
}

where �γ =
�

cνcν1 and x1 ∈ �
xcν1 .
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Hence, by using Theorem 3.3, we obtain the inequality

(3.52) H∗[λn(t, x)
]

� 4k4H∗[un(t)− un−1(t)
]
+ 4(2D2 + 1)k3F

[
un(t)− un−1(t)

]
.

Moreover, by using the relation

(3.53) F ∗
[
λn(t, x)

]
= sup

t,x∈L

{ q∏

i=1

|x− ci|a
∣∣λn(t, x)

∣∣
}

we obtain

(3.54) F ∗
[
λn(t, x)

]
� k2F [un − un−1]

and finally we conclude

F [un+1 − un] � A1F
∗[λn(t, x)

]
+A∗1H

∗[λn(t, x)
]
,(3.55)

H∗[un+1 − un] � A2F
∗[λn(t, x)

]
+A∗2H

∗[λn(t, x)
]
.(3.56)

Therefore, by using (3.51) and (3.52) we obtain

F
[
un+1(t)− un(t)

]
�

[
A0k2 + 4(2D2 + 1)A

∗
0k3

]
F

[
un(t)− un−1(t)

]
(3.57)

+ 4A∗0k4H
∗[un(t)− un−1(t)

]
,

H∗[un+1(t)− un(t)
]

�
[
A1k2 + 4(2D2 + 1)A∗k3

]
F

[
un(t)− un−1(t)

]
(3.58)

+ 4A∗k4H∗[un(t)− un−1(t)
]
.

Now (3.57) and (3.58) imply that the numerical series

(3.59)
∞∑

n=0

F
[
un+1(t)− un(t)

]
,

∞∑

n=0

H∗[un+1(t)− un(t)
]

converge provided the constants k2, k3 and k4 are sufficiently small.
Hence, by summing both sides of (3.57) and (3.58) we obtain

F
[
un+1(t)− un(t)

]
+H∗[un+1(t)− un(t)

]
(3.60)

� G
{
F

[
un(t)− un−1(t)

]
+H∗[un(t)− un−1(t)

]}

where G is given by (3.42).

Thus, the functional series
∞∑

n=0

[
un+1(t)−un(t)

]
is absolutely and uniformly conver-

gent in L and in accordance with theorem 3.2 (Banach-Cacciopoli) the limit function

(3.61) u(t) = lim
n→∞

un(t)

exists and u(t) is the required unique solution of the non-linear singular integral
equation (2.2). �
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4. An application to fluid mechanics theory

As an application of the theory of non-linear singular integral equations we will

determine the form of the profiles of a turbomachine. Consider the lattice of profiles
of turbomachines in two-dimensional steady flow of an incompressible fluid. Let v

denote the velocity on the surface of the profile, v1eiω1 the inlet velocity, v2eiω2 the
outlet velocity of the lattice and a the lattice spacing (see Fig. 1).

x

α

ν1eiω1
ν2eiω2

ω1 ω2

Ψ�
Fig. 1: A lattice of profiles of turbomachines in steady flow of an incompressible

fluid.

The complex fluid velocity due to a lattice of profiles in two-dimensional, irrota-

tional, incompressible flow satisfies the equation [42]

(4.1) u(z) = u∗ − 1
2ai

∫

Γ

u(ξ) dξ

tan
[
�(ξ−z)

a

]

in which

(4.2) u∗ =
v1eiω1 + v2eiω2

2

where Γ is the contour of the profile with length L, z /∈ L. We apply Plemelj formulae
[1], [43], [44], when z → ξ∗ ∈ Γ:

(4.3) u(ξ∗) = 2u∗ − 1
ai

∫

Γ

u(ξ) dξ

tan
[
�(ξ−ξ∗)

a

] .
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Furthermore, the expression tan
[
�(ξ−ξ∗)

a

]
in (4.3) can be approximated by the for-

mula [45]

(4.4) 1/ tan
[
�(ξ − ξ∗)

a

]
=

a

�

[
1

ξ − ξ∗
+

∞∑

n=1

[ 1
ξ − ξ∗ − na

+
1

ξ − ξ∗ + na

]]
.

On the other hand, the points ξ∗±na are outside the contour Γ, and therefore we

have

(4.5)
∫

Γ

dξ
ξ − (ξ∗ ± na)

= 0.

Hence, from (4.5) we obtain

(4.6)
1
ai

∫

Γ

dξ

tan
[
�(ξ−ξ∗)

a

] = 1.

By combining (4.1) and (4.6) one has

(4.7) u(ξ∗) = u∗ − 1
2ai

∫

Γ

u(ξ)− u(ξ∗)

tan
[
�(ξ−ξ∗)

a

] dξ.

Moreover, the contour Γ has to be a streamline, and therefore the following condition
must be satisfied:

(4.8)
u(ξ)
v(λ)

=
dλ
dξ

Relation (4.8) can be also written as follows:

(4.9) u(ξ) =
v(λ)
δ(λ)

with

(4.10) δ(λ) = dξ/ dλ

Hence, from (4.9) one has

(4.11) ξ(λ) − ξ(λ∗) =
∫ λ

λ∗
δ(λ) dλ.
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Moreover, if we write Lλ instead of λ, then (4.7) reduces to the non-linear singular

integral equation

(4.12) Aδ ≡ u∗δ(λ∗)− L

2ai

∫ 1

0

[
v(λ)δ(λ∗)− δ(λ)v(λ∗)

]

tan
[
�L
a

(
ξ(λ) − ξ(λ∗)

)] dλ = v(λ∗)

in which L is determined by the relation

(4.13) L =
a(v1 cosω1 − v2 cosω2)∫ 1

0 v(λ) dλ

and the following conditions have to be satisfied for the function δ:

∫ 1

0
δ(λ) dλ = 0,(4.14)
∣∣δ(λ)

∣∣ = 1,
δ(0) = δ(1).

The existence of solutions of this non-linear singular integral equation was proved

by the theorems of the previous sections.
In order to solve numerically the non-linear singular integral equation (4.12), we

shall use the non-linear programming method. Therefore, equation (4.12) is approx-
imated by the formula

(4.15) δn(λ) =
n∑

h=−n

ch exp[2ih�λ].

Hence, we require the values of ch in order to minimize the function

(4.16) B(P ) =
∫ 1

0

∣∣Aδn − v(λ∗)
∣∣2 dλ+

∫ 1

0

(
|δn(λ)| − 1

)2
dλ

with

P = P (c(1)h , c
(2)
h ),(4.17)

ch = c
(1)
h + c

(2)
h .(4.18)

Finally, the initial values of ch are easily obtained, when an initial profile is given.

Otherwise, we have to solve a more general minimization problem by using some
general algorithms.
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5. Conclusions

An analysis of non-linear singular integral equations has been presented by investi-
gating some basic theorems. These concern the existence of solutions for the general

case when the non-linear singular integral equations are defined on Banach spaces.

Some basic results have been obtained when the non-linear singular integral equa-

tions of the first and the second kind are defined over finite sets of contours. More-
over, the existence and uniqueness of solutions have been studied when the non-linear

singular integral equations of the second kind are defined over a finite number of ar-
bitrarily ordered arcs.

The theory of non-linear singular integral equations presented in this report is an
extension of the theory of linear finite-part singular integral equations and linear

multidimensional singular integral equations developed by E.G. Ladopoulos [1]–[9].

The non-linear singular integral equations are widely used in many problems of
mathematical physics and especially in problems on an applied character. In the

present communication a two-dimensional fluid mechanics application has been de-
scribed, by considering the form of the lattice of profiles of turbomachines in the

two-dimensional flow of an incompressible fluid, this problem being reduced to the
solution of a non-linear singular integral equation.
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