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Abstract. Ordinary differential inclusions depending on small parameters are considered
such that the unperturbed inclusions are ordinary differential equations possessing manifolds
of periodic solutions. Sufficient conditions are determined for the persistence of some of
these periodic solutions after multivalued perturbations. Applications are given to dry
friction problems.
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1. Introduction

Consider a mass attached to a spring and putting horizontally on a moving ribbon
with a speed v0 sinωt. The resulting differential equation [2] has the form

(1.1) ẍ+ q(x) + µ sgn(ẋ+ v0 sinωt) = 0,

where sgn r = r
|r| , r �= 0 corresponds to the dry friction between the mass and

ribbon, q ∈ C2(�,�) represents the force of the spring and µ > 0, v0 > 0, ω > 0 are
constants. Since sgn r is discontinuous in r = 0, by taking the multivalued mapping

Sgn r =

{
sgn r for r �= 0
[−1, 1] for r = 0,

(1.1) is considered as a perturbed differential inclusion of the form

(1.2) ẋ = y, ẏ ∈ −q(x)− µ Sgn(y + v0 sinωt).
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By assuming the existence of a 2�/ω-periodic solution γ of ẍ + q(x) = 0, we are

interested in the persistence of a 2�/ω-periodic solution near γ of (1.2) for µ > 0
small.
Periodic and almost periodic solutions to dry friction problems are also investi-

gated in [4–7]. The numerical analysis is given in the papers [14–16] for a mechanical
model of a friction oscillator with simultaneous self- and external excitation. These

papers [14–16] present a nice introduction to the phenomenon of dry friction as well.
Finally let us note that equations similar to (1.1) also appear in electrical engineering

(see [1, Chap. III]), related problems are studied in control systems (see [21]) as well,
and dry friction problems were investigated already in [19], [20].

To deal with differential inclusions much more general than (1.2), in Section 3 we
consider systems of perturbed differential inclusions which take the form

(1.3) ẋ(t) ∈ f(x(t)) +
k∑

j=1

µjfj(x(t), µ, t) a.e. on �

with x ∈ �
n , µ ∈ �

k , µ = (µ1, . . . , µk). By a solution of any differential inclusion

we mean in this paper a function which is absolute continuous and satisfies the
differential inclusion almost everywhere. The inner product on �n is denoted by

〈·, ·〉. �, � are the sets of natural or integer numbers, respectively.
We make the following assumptions about (1.3):

(i) f ∈ C2(�n ,�n ) and fj : �n × �
k × � → 2�n \ ∅, j = 1, . . . , k are all upper-

semicontinuous [4, 17] with compact and convex values.
(ii) The unperturbed equation ẋ = f(x) has a manifold of 1-periodic solutions,

i.e. there is an open subset O ⊂ �
d−1 , d � 1 and a C2-mapping γ : O×� →

�
n such that γ(θ, t+ 1) = γ(θ, t) and γ(θ, ·) is a solution of ẋ = f(x).

(iii) fj(x, µ, t+ 1) = fj(x, µ, t) for j = 1, . . . , k.

We ask if any of these periodic solutions persists after perturbation (1.3). The
case when fj are all singlevalued and smooth is a classical problem and we refer the

reader to the paper [3] for more details. The purpose of this paper is to extend some
results of [3] to the multivalued case (1.3).

In Section 4, we consider the autonomous case of (1.3) when fj are all independent
of t. We also consider both a saddle-node and the Poincaré-Andronov bifurcations

of periodic solutions (see [11]) for the multivalued case of (1.3). Section 5 is devoted
to applications to dry friction perturbations and a multivalued van der Pol oscillator

is studied as well. A discussion about modelling dry frictions is given in Section 6
together with a hint at an extension of results of this paper to singularly perturbed

differential inclusions studied in [10]. In addition, a piecewise smoothly perturbed
problem is presented.
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Proofs of results of this paper are similar to [9, 10]. So we use the method of

Lyapunov-Schmidt decomposition, which is presented in Section 2 together with
the theory of generalized Leray-Schauder degree for multivalued mappings (see [4,
p. 181], [17, p. 21] and [18, p. 962]).

2. Preliminary results

Consider the non-homogeneous variational equation

ẋ = A(θ, t)x + h(t) a.e. on [0, 1],(2.1)

A(θ, t) = Dxf(γ(θ, t)), h ∈ L2 = L2([0, 1],�n ),

x ∈ Cp = {y ∈ C([0, 1],�n ) : y(0) = y(1)}

along with the homogeneous one

(2.2) ẋ = A(θ, t)x, x ∈ Cp.

Differentiation with respect to θ and t of γ̇(θ, t) = f(γ(θ, t)) yields respectively

∂

∂θi
γ̇(θ, t) = A(θ, t)

∂

∂θi
γ(θ, t), θ = (θ1, . . . , θd−1),

γ̈(θ, t) = A(θ, t)γ̇(θ, t).

Consequently, (2.2) has solutions ∂
∂θi
γ(θ, t), γ̇(θ, t), i = 1, . . . , d−1. We assume that

the following condition is satisfied:

(iv) The only 1-periodic solutions of ẋ = A(θ, ·)x are linear combinations of
∂

∂θi
γ(θ, t), γ̇(θ, t), i = 1, . . . , d−1. Moreover, ∂

∂θi
γ(θ, t), γ̇(θ, t), i = 1, . . . , d−1

are linearly independent.

Let U(θ, t) be the fundamental solution of ẋ = A(θ, t)x. Then of course ker(I −
U(θ, 1)) corresponds to the 1-periodic solutions of ẋ = A(θ, t)x, hence

(2.3) ker(I − U(θ, 1)) = span
{ ∂

∂θi
γ(θ, 0), γ̇(θ, 0), i = 1, . . . , d− 1

}
,

and im (I − U(θ, 1)) is a continuous vector bundle over O.
The adjoint equation to (2.2) has the form

(2.4) ẋ = −A(θ, t)∗x, x ∈ Cp.
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The fundamental solution of (2.4) is (U−1(θ, t))∗. A 1-periodic solution of (2.4) has

the form (U−1(θ, t))∗y, y ∈ �n and (U−1(θ, 1))∗y = y. We have

(U−1(θ, 1))∗y = y ⇐⇒ U(θ, 1)∗y = y.

Consequently,

ker(I − (U−1(θ, 1))∗) = ker(I − U(θ, 1)∗) =
(
im (I − U(θ, 1))

)⊥
.

Since by (2.3) im (I−U(θ, 1)) is a continuous vector bundle overO,
(
im (I−U(θ, 1))

)⊥

is also a continuous vector bundle over O. So there are linearly independent contin-
uous mappings vi(θ, t), i = 1, . . . , d, vi : O × � → �

n , vi(θ, t + 1) = vi(θ, t) and all
vi are solutions of (2.4). Then it is well-known [12] that (2.1) has a solution if and

only if
1∫

0

〈h(s), vi(θ, s)〉ds = 0, ∀ i = 1, . . . , d,

and moreover, this solution x is unique provided that it satisfies

1∫

0

〈x(s), ∂
∂θi

γ(θ, s)〉ds = 0, ∀ i = 1, . . . , d− 1,
1∫

0

〈x(s), γ̇(θ, s)〉ds = 0.

It is not hard to construct a projection Π(θ) : L2 → L2 such that Π depends contin-

uously on θ, ‖Π(θ)‖ is bounded on any bounded closed subset of O and

imΠ(θ) =
{
h ∈ L2 :

1∫

0

〈h(s), vi(θ, s)〉ds = 0, ∀ i = 1, . . . , d
}
.

Let K(θ) : L2 → Cp be the linear operator defined so that K(θ)h is the unique

solution of ẋ = A(θ, t)x+Π(θ)h, x ∈ Cp satisfying
1∫
0
〈x(s), ∂

∂θi
γ(θ, s)〉ds = 0, ∀ i =

1, . . . , d − 1,
1∫
0
〈x(s), γ̇(θ, s)〉ds = 0. Of course, K(θ) depends continuously on θ,

and K(θ) is a compact operator.
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3. Periodic solutions for non-autonomous case

Let us scale µ→ sµ for s ∈ � \ {0} and let us take the change of variables

(3.1) x(t+ α) = γ(θ, t) + sz(t), α ∈ �, s ∈ � \ {0}.

Then (1.3) has the form

(3.2) ż(t)−A(θ, t)z(t) ∈ g(z(t), θ, α, µ, s, t) a.e. on [0, 1],

where

g(x, θ, α, µ, s, t) =

{
v ∈ �n : v ∈ 1

s

[
f(sx+ γ(θ, t))− f(γ(θ, t))−A(θ, t)sx

]

+
k∑

j=1

µjfj(sx+ γ(θ, t), sµ, t+ α)

}
.

We note that g is defined only for s �= 0 in the above form, but it is naturally
extended to s = 0 by putting the term in the square brackets equal to zero. It is

clear that g : �n × O × � × �
k × � × � → 2�

n \ ∅ is upper-semicontinuous with
compact and convex values.

Using g we define a multivalued mapping

G : Cp ×O × � × �k × � → 2L2

by the formula

G(z, θ, α, µ, s) =
{
h ∈ L2 : h(t) ∈ g(z(t), θ, α, µ, s, t) a.e. on [0, 1]

}
,

so (3.2) is a multivalued equation for z of the form

(3.3) ż −A(θ, ·)z ∈ G(z, θ, α, µ, s).

According to [4, p. 29, Problem 10] and [17, p. 17, Propositions 3.3–3.4], each of

these sets G(z, θ, α, µ, s) is non-empty. Moreover, they are all closed, convex and
bounded in L2. Hence they are all weakly compact in L2 (see [22]).

Now we put (3.3) in the homotopy

(3.4) ż −A(θ, ·)z ∈ F (z, θ, α, µ, s, λ), λ ∈ [0, 1],

373



where

F (z, θ, α, µ, s, λ) =
{
h ∈ L2 : h(t) ∈ p(z(t), θ, α, µ, s, λ, t) a.e. on [0, 1]

}
,

and

p(x, θ, α, µ, s, λ, t) =

{
v ∈ �n : v ∈ λ

s

[
f(sx+ γ(θ, t))− f(γ(θ, t))−A(θ, t)sx

]

+ λ
k∑

j=1

µjfj(sx+ γ(θ, t), sµ, t+ α) + (1− λ)
k∑

j=1

µjfj(γ(θ, t), 0, t+ α)

}
.

Again p is extended to s = 0 like g above. We put

L(θ) : L2 → �
d , L(θ)h =

( 1∫

0

〈h(s), v1(θ, s)〉ds, . . . ,
1∫

0

〈h(s), vd(θ, s)〉ds
)
.

To solve (3.4), we decompose it by using the results of Section 2 in the following

way:

(3.5)

{
0 ∈ H(z, θ, α, µ, s, λ)
H(z, θ, α, µ, s, λ) =

{(
z − λK(θ)h, L(θ)h

)
: h ∈ F (z, θ, α, µ, s, λ)

}
.

We view H as a multivalued mapping

H : Cp ×O × � × �k × � × [0, 1]→ 2Cp×�d \ ∅.

It is again clear that the multivalued mapping

p : �n ×O × � × �
k × � × [0, 1]× � → 2�n \ ∅

is upper-semicontinuous with compact and convex values. Furthermore, ranges of H
are bounded provided that z, µ are bounded, s is small, θ is from compact subsets

of O and α ∈ �, λ ∈ [0, 1] are arbitrary.
By using standard arguments (see [4, Remarks 5.5.1], [17, p. 18, Proposition 3.6]

and [18, Proposition 1.7]), the mapping H is upper-semicontinuous with compact
convex values and maps bounded sets into relatively compact ones. Hence topological

degree methods like in [4, p. 154] and [17, p. 20] can be applied to (3.5).
Now we introduce a multivalued mapping

Mµ : O × � → 2�d \ ∅, Mµ(θ, α) =

{
L(θ)h : h ∈ L2, satisfying(3.6)

the relation h(t) ∈
k∑

j=1

µjfj(γ(θ, t), 0, t+ α) a.e. on [0, 1]

}
.
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The mapping Mµ is again upper-semicontinuous with compact convex values and

maps bounded sets into bounded ones. The boundedness is clear, so we show the
upper-semicontinuity. Let

µp → µ0, (θp, αp)→ (θ0, α0), hp ∈ L2, p ∈ �,

hp(t) ∈
k∑

j=1

µpjfj(γ(θp, t), 0, t+ αp) a.e. on [0, 1],

L(θp)hp →M0.

Since {hp}p
1 is bounded in L

2, we can assume that hp tends weakly to some h0 ∈ L2.
Then by applying the standard arguments (see the proof of [18, Proposition 1.4]),
we obtain

h0(t) ∈
k∑

j=1

µ0jfj(γ(θ0, t), 0, t+ α0) a.e. on [0, 1],

L(θ0)h0 =M0.

The upper-semicontinuity of Mµ is proved by [4, Proposition 1.2.(b)].

Let Sk−1 = {b ∈ �
k : |b| = 1} be the (k − 1)-dimensional sphere. Now we are

ready to prove the main results of this section.

Theorem 3.1. Let d > 1. Let there exist a non-empty open bounded set
B ⊂ O × � and µ0 ∈ Sk−1 such that

(i) 0 /∈Mµ0(∂B),
(ii) deg(Mµ0 ,B, 0) �= 0,

where deg is the topological degree in the sense of [4, pp. 154–155] and [17, p. 20].

Then there is a constant K > 0 and a region in �k for µ of the form

R =
{
sµ̃ : s and µ̃ are from open small connected neighborhoods

U1 and U2 ⊂ Sk−1 of 0 ∈ � and of µ0, respectively
}

such that for any µ ∈ R of the form µ = sµ̃, s ∈ U1, µ̃ ∈ U2, the differential inclusion
(1.3) possesses a 1-periodic solution xµ satisfying, according to (3.1),

sup
0�t�1

∣∣xµ(t)− γ(θµ, t− αµ)
∣∣ � Ks,

where αµ ∈ � and θµ ∈ O.
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�����. We need the following results.

Claim A. The above condition (i) implies for any A > 0 the existence of con-

stants δ > 0, 1 > s0 > 0 such that

|L(θ)h| � δ, ∀h ∈ F (z, θ, α, µ, s, λ)

for any |s| < s0, λ ∈ [0, 1], |z| � A, (θ, α) ∈ ∂B, |µ− µ0| � δ.

����� �� ����� 	. Assume the contrary. So there is an A > 0 and

sp → 0, λp → λ0, |zp| � A, µp → µ0, p ∈ �,
∂B � (θp, αp)→ (θ0, α0) ∈ ∂B, hp ∈ F (zp, θp, αp, µp, sp, λp)

such that

L(θp)hp → 0 as p→∞.

Since {hp}p
1 is bounded in L

2, we can assume that hp tends weakly to some h0 ∈ L2.
Then by applying the standard arguments (see the proof of [18, Proposition 1.4]),

we obtain

h0(t) ∈
k∑

j=1

µ0jfj(γ(θ0, t), 0, t+ α0) a.e. on [0, 1],

L(θ0)h0 = 0.

This contradicts (i) of this theorem. �

Claim B. There are open small connected neighborhoods U1 ⊂ �, U2 ⊂ Sk−1 of

0 and µ0, respectively, and a constant K1 > 0 such that

0 /∈ H(∂Ω, µ, s, λ)

for any s ∈ U1, µ ∈ U2, λ ∈ [0, 1], where

Ω =
{
(z, θ, α) ∈ Cp × �d : |z| < K1, (θ, α) ∈ B

}
.

����� �� ����� 
. By applying Claim A, the result follows from the con-
struction of H . �
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By Claim B for any s ∈ U1, µ ∈ U2 we obtain

deg
(
H(·, µ, s, 1),Ω, 0

)
= deg

(
H(·, µ0, 0, 0),Ω, 0

)
= deg(Mµ0 ,B, 0) �= 0.

Hence (3.5) has a solution in Ω for any s ∈ U1, µ ∈ U2 and λ = 1. This solution

gives a solution of (3.3) according to the definition of (3.5). �

Corollary 3.2. Let d = 1. Then Mµ depends only on α. If there are constants

a < b and µ0 ∈ Sk−1 such that

Mµ0(a) contains only positive (only negative) numbers

and Mµ0(b) contains only negative (only positive) ones,

then the conclusion of Theorem 3.1 holds.

�����. We apply Theorem 3.1 with B = (a, b). The assumption (i) of Theo-
rem 3.1 is clearly satisfied. To prove (ii), it is enough to consider the case (the other
one is similar) thatMµ0(a) contains positive andMµ0(b) negative numbers, and then

to take the homotopy

λMµ0(α) + (1− λ)
(a+ b
2

− α
)
.

The proof now follows directly from Theorem 3.1. �

����� 3.3. The restriction |µ0| = 1 is not essential, since Mµ in (3.6) is

homogeneous with respect to the variable µ.

����� 3.4. Let f(x) = Bx for a matrix B and let γ1, . . . , γd be the maxi-
mum number of linearly independent 1-periodic solutions of ẋ = Bx. Then we take

γ(θ, t) = θ1γ1 + . . . + θdγd and
∂γ
∂θi
, i = 1, . . . , d represent the maximum number of

linearly independent 1-periodic solutions of ẋ = Bx. Consequently (see the assump-

tion (iv)), we take now (3.1) with α = 0 and we also put α = 0 in (3.6). We note
that now O = �d and Mµ : �d → 2�d \ ∅. Then Theorem 3.1 is valid with such Mµ.
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4. Periodic solutions for autonomous case

In this section we study (1.3) when fj are all independent of t. So we consider the
differential inclusion

(4.1) ẋ(t) ∈ f(x(t)) +
k∑

j=1

µjfj(x(t), µ) a.e. on �

with x ∈ �n , µ ∈ �k , µ = (µ1, . . . , µk) and f , fj satisfying the assumptions (i), (ii)

and (iv). We scale µ→ sµ for s ∈ � \ {0} and take now, instead of (3.1), the change
of variables

(4.2) x((1 + sα)t) = γ(θ, t) + sz(t), α ∈ �, s ∈ � \ {0}.

Then (4.1) has the form

(4.3) ż(t)−A(θ, t)z(t) ∈ g̃(z(t), θ, α, µ, s, t) a.e. on [0, 1],

where

g̃(x, θ, α, µ, s, t) =

{
v ∈ �n : v ∈ 1

s

[
f(sx+ γ(θ, t))− f(γ(θ, t))−A(θ, t)sx

]

+ αf(γ(θ, t) + sx) + (1 + sα)
k∑

j=1

µjfj(sx+ γ(θ, t), sµ)

}
.

We see that (4.3) has a similar form like (3.2). Consequently, we can repeat the
approach of Section 3 to (4.3) and we arrive at the multivalued mapping (like (3.6))
of the form

Nµ : O × � → 2�d \ ∅, Nµ(θ, α) =
{
L(θ)h : h ∈ L2, satisfying(4.4)

the relation h(t) ∈ αγ̇(θ, t) +
k∑

j=1

µjfj(γ(θ, t), 0) a.e. on [0, 1]
}
.

The mapping Nµ is again upper-semicontinuous with compact convex values and

maps bounded sets into bounded ones.
The proofs of the following results are very similar to the proofs of Theorem 3.1

and Corollary 3.2, so we omit them.

Theorem 4.1. Let d > 1. Let there exist a non-empty open bounded set

B ⊂ O × � and µ0 ∈ Sk−1 such that

(i) 0 /∈ Nµ0(∂B),
(ii) deg(Nµ0 ,B, 0) �= 0.
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Then there is a constant K > 0 and a region in �k for µ of the form

R =
{
sµ̃ : s and µ̃ are from open small connected neighborhoods

U1 and U2 ⊂ Sk−1 of 0 ∈ � and of µ0, respectively
}

such that for any µ ∈ R of the form µ = sµ̃, s ∈ U1, µ̃ ∈ U2, the differential inclusion
(4.1) possesses a (1 + sαµ)-periodic solution xµ satisfying, according to (4.2),

sup
0�t�1+sαµ

∣∣xµ(t)− γ(θµ, t/(1 + sαµ))
∣∣ � Ks,

where αµ ∈ �, |αµ| � K and θµ ∈ O.

Corollary 4.2. Let d = 1. Then γ(θ, t) = γ(t) and the adjoint variational

equation (2.4) has a unique (up to scalar multiples) 1-periodic solution v(t). If

1∫

0

〈γ̇(s), v(s)〉ds �= 0,

then there is a constant K > 0 such that for any sufficiently small µ, the differential
inclusion (4.1) possesses a periodic solution xµ with the properties of Theorem 4.1.

����� 4.3. Corollary 4.2 is an extension of [12, p. 416, Theorem 2.4] for the

multivalued case (4.1).

To complete the subject of Corollary 4.2, we consider the case d = 1 and

1∫

0

〈γ̇(s), v(s)〉ds = 0,

where γ, v are from Corollary 4.2. Then we also put A(t) = Dxf(γ(t)). Now we deal

with a higher-order singularity of (4.1). To this end, we scale µ→ s2µ for s > 0 and
make the change of variables

(4.5) x((1 + sα)t) = γ(t) + sαu(t) + s2z(t), α ∈ �, s > 0,

where u ∈ Cp is the unique solution of u̇ − A(t)u = γ̇,
1∫
0
〈u(s), γ̇(s)〉ds = 0. Then

(4.1) has the form

(4.6) ż(t)−A(t)z(t) ∈ g(z(t), α, µ, s, t) a.e. on [0, 1],
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where

g(x, α, µ, s, t) =

{
v ∈ �n : v ∈ 1

s2

[
f(sαu(t) + s2x+ γ(t))− f(γ(t))

−A(t)(sαu(t) + s2x)
]
+
α

s

[
f(γ(t) + sαu(t) + s2x)− f(γ(t))

]

+ (1 + sα)
k∑

j=1

µjfj(sαu(t) + s2x+ γ(t), s2µ)

}
.

Again we can repeat the procedure of Section 3 for (4.6). The resulting multivalued
function is (like (3.6)) as follows:

(4.7)

Pµ(α) =

{ 1∫

0

〈h(s), v(s)〉ds : h ∈ L2, satisfying a.e. on [0, 1] the relation

h(t) ∈ α2
[1
2
D2xf(γ(t))(u(t), u(t)) +Dxf(γ(t))u(t)

]
+

k∑

j=1

µjfj(γ(t), 0)

}
.

The proof of the next result is very similar to the proof of Corollary 3.2, so we omit

it.

Theorem 4.4. Let

1∫

0

〈1
2
D2xf(γ(s))(u(s), u(s)) +Dxf(γ(s))u(s), v(s)

〉
ds > 0

and let there exist µ0 ∈ Sk−1 such that
1∫
0

〈
h(s), v(s)〉ds < 0 for any h ∈ L2 satisfying

h(t) ∈
k∑

j=1

µ0jfj(γ(t), 0) a.e. on [0, 1].

Then there is a constant K > 0 and a wedge-shaped region in �k for µ of the form

R =
{
s2µ̃ : s > 0 and µ̃ are from open small connected neighborhoods

U1 and U2 ⊂ Sk−1 of 0 ∈ � and of µ0, respectively
}

such that for any µ ∈ R of the form µ = s2µ̃, 0 < s ∈ U1, µ̃ ∈ U2, the differential

inclusion (4.1) possesses two (1+sα±,µ)-periodic solutions x±,µ satisfying, according

to (4.5),

sup
0�t�1+sα±,µ

∣∣x±,µ(t)− γ(t/(1 + sα±,µ))− sα±,µu(t/(1 + sα±,µ))
∣∣ � Ks2,
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where α+,µ > 0, α−,µ < 0 and |α±,µ| � K.

����� 4.5. Theorem 4.4 is an extension of a saddle-node bifurcation of peri-

odic solutions [11] to the multivalued case (4.1).

To conclude this section, we deal with the case d = 2 and n = 2. Hence (4.1) is a
planar differential inclusion satisfying the condition (i), and (ii), (iv) are replaced by

(v) There are numbers 0 < c < e and a C2-mapping γ : (c, e)×� → �
2 such that

γ(θ, t) has the minimum period θ in t and γ(θ, ·) is a solution of ẋ = f(x).
Since γ(θ, t+θ) = γ(θ, t) implies ∂

∂θγ(θ, t+θ)+ γ̇(θ, t) =
∂
∂θγ(θ, t), we see that the

linear equation u̇ = Dxf(γ(θ, t))u has the single (up to scalar multiples) θ-periodic

solution γ̇(θ, t).
We scale µ→ sµ for s ∈ � \ {0} and make the change of variables

(4.8) x(θt) = γ(θ, θt) + sz(t), s ∈ � \ {0}.

Then (4.1) has the form

(4.9) ż(t)− θA(θ, θt)z(t) ∈ p(z(t), θ, µ, s, t) a.e. on [0, 1],

where

p(x, θ, µ, s, t) =

{
v ∈ �2 : v ∈ θ

s

[
f(sx+ γ(θ, θt)) − f(γ(θ, θt))−A(θ, θt)sx

]

+ θ
k∑

j=1

µjfj(sx+ γ(θ, θt), sµ)

}
.

According to the considerations of Section 2, the condition (v) implies the existence
of a non-zero, continuous mapping v : (c, e)→ �

2 such that v(θ, t) is θ-periodic in t

and satisfies the adjoint equation v̇ = −A(θ, t)∗v. Then ẇ = −θA(θ, θt)∗w has the
unique (up to scalar multiples) 1-periodic solution w(θ, t) = v(θ, t/θ).

Consequently, we solve (4.9) in z ∈ Cp by regarding θ ∈ (c, e) as a parameter. So
for any fixed θ ∈ (c, e), we apply the procedure of Section 3 with d = 1, α = 0 and
the corresponding multivalued mapping (3.6) has now the form

Qµ(θ) =

{ 1∫

0

〈h(s), w(θ, s)〉ds : h ∈ L2,

h(t) ∈ θ
k∑

j=1

µjfj(γ(θ, θt), 0) a.e. on [0, 1]

}
.
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We note that

Qµ(θ) =

{ θ∫

0

〈h(s), v(θ, s)〉ds : h ∈ L2([0, θ],�2 ),(4.10)

h(t) ∈
k∑

j=1

µjfj(γ(θ, t), 0) a.e. on [0, θ]

}
.

����� 4.6. If ẋ = f(x) is a Hamiltonian system then (see [11])

v(θ, t) = (γ̇2(θ, t),−γ̇1(θ, t)),

where γ(θ, t) = (γ1(θ, t), γ2(θ, t)). Hence

θ∫

0

〈h(s), v(θ, s)〉ds =
θ∫

0

h(s) ∧ γ̇(θ, s) ds =
θ∫

0

h(s) ∧ f(γ(θ, s)) ds,

where ∧ is the wedge product [11, p. 187].

Summarizing, we obtain the following result.

Theorem 4.7. Let (i) and (v) be satisfied. If there are constants c < a < b < e

and µ0 ∈ Sk−1 such that

Qµ0(a) contains only positive (only negative) numbers

and Qµ0(b) contains only negative (only positive) ones,

then there is a constant K > 0 and a region in �k for µ of the form

R =
{
sµ̃ : s and µ̃ are from open small connected neighborhoods

U1 and U2 ⊂ Sk−1 of 0 ∈ � and of µ0, respectively
}

such that for any µ ∈ R of the form µ = sµ̃, s ∈ U1, µ̃ ∈ U2, the differential inclusion
(4.1) possesses a θµ-periodic solution xµ satisfying, according to (4.8),

sup
0�t�θµ

∣∣xµ(t)− γ(θµ, t)
∣∣ � Ks,

where θµ ∈ (c, e).
����� 4.8. Qµ(θ) in (4.10) is an extension of a classical Melnikov function [3]

to the multivalued case (4.1). Hence Theorem 4.7 is a generalization of the Poincaré-

Andronov bifurcation theorem.
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5. Applications to dry friction problems

We begin by considering the following simple version of (1.1):

(5.1) ẍ+ µ1τ(x) + µ2 sgn(ẋ + v0β(t)) = 0,

where τ ∈ C(�,�), β ∈ C(�,�) is 1-periodic and µ1,2 > 0, v0 > 0 are constants.
We rewrite (5.1) in the form of (1.3)

(5.2) ż = y, ẏ ∈ −µ1τ(z)− µ2 Sgn(y + v0β(t)) .

We see that f = 0, so we apply Remark 3.4. The 1-periodic solutions of the varia-

tional and adjoint equations

ż = y, ẏ = 0 and u̇ = 0, v̇ = −u, respectively

are constant ones (θ, 0) and (0, θ), θ ∈ �, respectively. So γ(θ, t) = (θ, 0) and

Π(θ)(h1, h2) =
(
h1, h2 −

1∫
0
h2(s) ds

)
. Hence the corresponding multivalued function

(3.6), according to Remark 3.4, has now the form

Mµ(θ) =

{ 1∫

0

h(s) ds : h ∈ L2,

h(t) ∈ −µ1τ(θ) − µ2 Sgn(v0β(t)) a.e. on [0, 1]

}
.(5.3)

Theorem 5.1. Let 0 � t1 < t2 < . . . < t2j < 1, j � 1 be the only zero points of
β. Let inf τ = Γ1 < 0 < Γ2 = sup τ . If µ1,2 > 0 are sufficiently small satisfying

µ1/µ2 > max
{
− Γ3
Γ1
,−Γ3
Γ2

}
, where(5.4)

Γ3 =

(
− 1 + 2

2j∑

i=1

(−1)iti
)
sgnβ

( t1 + t2
2

)
,

then (5.1) has a 1-periodic solution.

�����. By the assumptions of this theorem, (5.3) has the form

Mµ(θ) = −µ1τ(θ) − µ2

(
− 1 + 2

2j∑

i=1

(−1)iti
)
sgnβ

( t1 + t2
2

)
.

Now it is clear that there are a < b such that Mµ(a)Mµ(b) < 0. The proof is
completed by Corollary 3.2 and Remark 3.4. �
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����� 5.2. The condition (5.4) is important when either Γ3 > 0, Γ1 > −∞ or
Γ3 < 0, Γ2 < ∞; then we see that µ1 > 0 has to be relatively large with respect to
µ2 > 0. If j = 1 and t1 = 0, the equation Γ3 �= 0 means t2 �= 1/2, so then β changes
sign asymmetrically with respect to the middle point 1/2.

Similarly we study the problem

(5.5) ẍ+ µ1τ1(x, t) + µ2 sgn ẋ = 0,

where τ1 ∈ C(�×�,�) is 1-periodic in t and µ1,2 > 0 are constants. Then we obtain
in the same way as above that

Mµ(θ) =

[
− µ1

1∫

0

τ1(θ, s) ds− µ2,−µ1
1∫

0

τ1(θ, s) ds+ µ2

]
.

Consequently, we have the following result.

Theorem 5.3. Assume

inf
θ

1∫

0

τ1(θ, s) ds < 0 < sup
θ

1∫

0

τ1(θ, s) ds.

If µ1,2 > 0 are sufficiently small satisfying

µ2/µ1 < min

{
sup

θ

1∫

0

τ1(θ, s) ds,− inf
θ

1∫

0

τ1(θ, s) ds

}
,

then (5.5) has a 1-periodic solution.

����� 5.4. We see that again µ1 > 0 has to be relatively large with respect to
µ2 > 0 for the validity of the inequality of Theorem 5.3 provided that the right-hand

side of this inequality is a finite constant.

Now we study the general form of (1.2) by assuming:

(vi) There are numbers 0 < c < e and a C2-mapping γ : (c, e)×� → � such that

γ(θ, t) has the minimum period θ in t, γ̇(θ, 0) = 0 and γ(θ, ·) is a solution of
ẍ+ q(x) = 0.
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Hence (iv) holds with d = 1 and θ = 2�/ω, provided that c < 2�/ω < e. We apply

Corollary 3.2. Like in Remark 4.6, we have v1(t) = (γ̈(2�/ω, t),−γ̇(2�/ω, t)).

Lemma 5.5. γ̇(2�/ω, �/ω) = 0 and γ̇(2�/ω, t) �= 0 for any �/ω �= t ∈ (0, 2�/ω).

�����. Since γ̇(2�/ω, t) is periodic, there is a smallest t1, 0 < t1 � 2�/ω such
that γ̇(2�/ω, t1) = 0. Then y(t) = γ(2�/ω, 2t1 − t) is also a solution of ẍ+ q(x) = 0

such that y(t1) = γ(2�/ω, t1), ẏ(t1) = γ̇(2�/ω, t1). Hence γ(2�/ω, t) = γ(2�/ω, 2t1−
t). Similarly we have γ(2�/ω,−t) = γ(2�/ω, t). So γ(2�/ω, t) is 2t1 periodic, and

this gives 2t1 = 2�/ω. �

If v0 > 0 is sufficiently large then

γ̇(2�/ω, t) + v0 sinωt = 0⇐⇒ t = �j/ω, j ∈ �.

Moreover, for v0 > 0 sufficiently large the equation

γ̇(2�/ω, α) + v0 sinω(t+ α) = 0, 0 � α � 2�/ω

has precisely the solutions t1(α) + 2�j/ω, t2(α) + 2�j/ω, j ∈ �, where t1, t2 are
continuous functions such that t1(α) < t2(α), t1(0) = �/ω, t2(0) = 2�/ω, t1(�/ω) =

0, t2(�/ω) = �/ω, t1(α) is near �/ω − α and t2(α) is near 2�/ω − α. Now (3.6) has
the form

M1(α) : � → 2�, M1(α) =

{
−

1∫

0

〈h(s), γ̇(2�/ω, s)〉ds :

h ∈ L2, h(t) ∈ − Sgn
(
γ̇(2�/ω, t) + v0 sinω(t+ α)

)
a.e. on [0, 2�/ω]

}
.

According to the above results, for v0 > 0 sufficiently large,

γ̇(2�/ω, t) + v0 sinω(t+ α)

is positive on
(
t2(α), t1(α) + 2�/ω

)
and negative on

(
t1(α), t2(α)

)
.

Hence

M1(α) =

t1(α)+2�/ω∫

t2(α)

γ̇(2�/ω, s) ds−
t2(α)∫

t1(α)

γ̇(2�/ω, s) ds

= 2
(
γ(2�/ω, t1(α))− γ(2�/ω, t2(α))

)
.
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We have

M1(0) = 2
(
γ(2�/ω, t1(0))− γ(2�/ω, t2(0))

)
= 2
(
γ(2�/ω, �/ω)− γ(2�/ω, 2�/ω)

)

M1(�/ω) = 2
(
γ(2�/ω, t1(�/ω))− γ(2�/ω, t2(�/ω))

)

= 2
(
γ(2�/ω, 0)− γ(2�/ω, �/ω)

)
= −M1(0).

Since γ̇(2�/ω, �/ω) = γ̇(2�/ω, 0) = 0 and γ(2�/ω, t) has the minimum period 2�/ω,

then necessarily M1(�/ω) �= 0. This gives that M1(�/ω)M1(0) < 0. Consequently,
by taking a = 0, b = �/ω in Corollary 3.2, we obtain the following result.

Theorem 5.6. Let v0 > 0 be sufficiently large. If (vi) holds and c < 2�/ω < e,

then for any sufficiently small µ > 0, (1.2) has a 2�/ω-periodic solution near the

family γ(θ, t), θ ∈ (c, e) from (vi).

The following example is motivated by a clock-pendulum [13]. Consider the equa-
tion

(5.6) ẍ+ q(x) + µ sgnx · sgn ẋ = 0,

where (vi) holds. According to the proof of Lemma 5.5, γ̇(θ, t) = 0, 0 < t < θ if and
only if t = θ/2. It is clear that γ(θ, 0) �= γ(θ, θ/2). We assume in addition that
(vii) γ(θ, 0) > 0 and γ(θ, θ/2) < 0.

We apply Theorem 4.7 to (5.6). (vii) implies the existence of continuous mappings
t̃1(·), t̃2(·) : (c, e)→ (0,∞) such that 0 < t̃1(θ) < θ/2 < t̃2(θ) < θ and γ(θ, t), γ̇(θ, t)

have the signs (+,−), (−,−), (−,+), (+,+) on the intervals

(0, t̃1(θ)), (t̃1(θ), θ/2), (θ/2, t̃2(θ)), (t̃2(θ), θ), respectively.

We note that γ(θ, t̃1(θ)) = γ(θ, t̃2(θ)) = 0. Now it is not hard to see that v(θ, t) =(
γ̈(θ, t),−γ̇(θ, t)

)
and (4.10) for (5.6) has the form

Q1(θ) = −
t̃1(θ)∫

0

γ̇(θ, s) ds+

θ/2∫

t̃1(θ)

γ̇(θ, s) ds−
t̃2(θ)∫

θ/2

γ̇(θ, s) ds+

θ∫

t̃2(θ)

γ̇(θ, s) ds

= − γ(θ, t̃1(θ)) + γ(θ, 0) + γ(θ, θ/2)− γ(θ, t̃1(θ)) − γ(θ, t̃2(θ))

+ γ(θ, θ/2) + γ(θ, θ)− γ(θ, t̃2(θ)) = 2
(
γ(θ, 0) + γ(θ, θ/2)

)
.

Theorem 5.7. Let (vi) and (vii) be valid. If there are constants c < a < b < e

such that (
γ(a, 0) + γ(a, a/2)

)(
γ(b, 0) + γ(b, b/2)

)
< 0,
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then (5.6) has a periodic solution for any sufficiently small µ > 0.

�����. Since the assumptions of this theorem imply Q1(a)Q1(b) < 0, the proof
is completed by Theorem 4.7. �

����� 5.8. We note that max
[0,θ]

γ(θ, t) = γ(θ, 0) and min
[0,θ]

γ(θ, t) = γ(θ, θ/2).

Moreover, q̄(γ(θ, 0)) = q̄(γ(θ, θ/2)) for q̄(x) =
x∫
0
q(s) ds, so the inequality of Theorem

5.7 can be verified from the graph of q̄.

The next example can be regarded as a multivalued van der Pol oscillator (see [3])

of the form

(5.7) ẋ = y, ẏ ∈ −x+ µϕ(x)y,

where ϕ(x) =
[
ϕ1(x), ϕ2(x)

]
, µ > 0 and ϕ1,2 ∈ C(�,�), ϕ1(x) � ϕ2(x). We apply

Theorem 4.1. Now we have

γ(θ, t) = θ(cos t,− sin t), γ̇(θ, t) = −θ(sin t, cos t), θ > 0

v1(θ, t) = (cos t,− sin t), v2(θ, t) = (sin t, cos t).

Consequently, (4.4) now has the form

N1(θ, α) =

{(
−
2�∫

0

h(s) sin s ds,−2θα�+
2�∫

0

h(s) cos s ds

)
:

h ∈ L2([0, 2�],�), h(t) ∈
[
ϕ1(θ cos t), ϕ2(θ cos t)

]
(−θ sin t) a.e. on [0, 1]

}
.

If |α| is sufficiently large and θ > 0 is from a compact interval, then 0 /∈ N1(θ, α).
For this reason, it is enough to study the multivalued function

ψ(θ) =

[ 2�∫

0

ϕ1(θ cos s) sin
2 s ds,

2�∫

0

ϕ2(θ cos t) sin
2 s ds

]
.

Theorem 4.1 gives the following result.

Theorem 5.9. If there are constants 0 < θ1, 0 < θ2 such that

0 <

2�∫

0

ϕ1(θ1 cos s) sin
2 s ds,

2�∫

0

ϕ2(θ2 cos t) sin
2 s ds < 0,
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then (5.7) has a periodic solution for any sufficiently small µ > 0.

We conclude this section by considering coupled oscillators (see [14–16])

ẍ1 + q1(x1) + µ1 sgn(ẋ1 − ẋ2) = 0,(5.8)

ẍ2 + q2(x2) + µ2 sgn(ẋ2 − ẋ1) = µ3 sw t ,

where q1,2 ∈ C2(�,�), µ1,2,3 > 0 are parameters and

sw t =

{
1 for [2t] even

0 for [2t] odd.

Here [t] is the integer part of t. (5.8) may be related to (1.1), since the second equation

of (5.8) may represent the movement of the ribbon coupled with an interference of
the mass given by the relative velocity ẋ1− ẋ2. The term sw t is a switching. In this
interpretation of (5.8), the coupling is given by the dry friction. We assume that
there are constants 0 < c < 1 < e and mappings �1,2 : (c, e) × � → � such that �i

and ẍi + qi(xi) = 0, i = 1, 2 satisfy the conditions (vi) and (vii).
Define a multivalued mapping by

Sw t =





1 for [2t] even and 2t /∈ �
[0, 1] for 2t ∈ �
0 for [2t] odd and 2t /∈ �.

By rewriting (5.8) in the form

ẋ1 = y1, ẏ1 ∈ −q(x1)− µ1 Sgn(y1 − y2),(5.9)

ẋ2 = y2, ẏ2 ∈ −q(x2)− µ2 Sgn(y2 − y1) + µ3 Sw t,

(5.9) has the form of (1.3) and according to Remark 4.6, (ii) (iv) hold with

γ(θ, t) =
(
�1(1, t), �̇1(1, t), �2(1, t+ θ), �̇2(1, t+ θ)

)
,

v1(θ, t) =
(
�̈1(1, t),−�̇1(1, t), 0, 0

)
, v2(θ, t) =

(
0, 0, �̈2(1, t+ θ),−�̇2(1, t+ θ)

)
.

We apply Theorem 3.1 to (5.9). In this case, (3.6) reads

Mµ(θ, α) =

{(
−

1∫

0

h1(s)�̇1(1, s) ds,−
1∫

0

h2(s)�̇2(1, s+ θ) ds

)
: h1, h2 ∈ L2,

h1(t) ∈ −µ1 Sgn
(
�̇1(1, t)− �̇2(1, t+ θ)

)
a.e. on [0, 1],

h2(t) ∈ −µ2 Sgn
(
�̇2(1, t+ θ)− �̇1(1, t)

)
+ µ3 Sw (t+ α) a.e. on [0, 1]

}
.

388



We assume

(viii) There are continuous functions t̄1, t̄2 : [0, 1] → � such that t̄1(θ) < t̄2(θ),

t̄1(0) = 1/2, t̄2(0) = 1, t̄1(1/2) = 0, t̄2(1/2) = 1/2 and �̇1(1, t) − �̇2(1, t+ θ)
is positive or negative on (t̄1(θ), t̄2(θ)), (t̄2(θ), t̄1(θ) + 1), respectively.

Now we can simplify Mµ = (M1µ,M2µ) by using (viii) as follows:

M1µ(θ) = µ1

( t̄2(θ)∫

t̄1(θ)

�̇1(1, s) ds−
t̄1(θ)+1∫

t̄2(θ)

�̇1(1, s) ds

)

= 2µ1
(
�1(1, t̄2(θ))− �1(1, t̄1(θ))

)
,

M2µ(θ, α) = µ2

( t̄1(θ)+1∫

t̄2(θ)

�̇2(1, s+ θ) ds−
t̄2(θ)∫

t̄1(θ)

�̇2(1, s+ θ) ds

)

− µ3

(
�2(1,

1
2
+ θ − α

)
− �2(1, θ − α)

)

= 2µ2
(
�2(1, t̄1(θ) + θ)− �2(1, t̄2(θ) + θ)

)
− µ3

(
�2

(
1,
1
2
+ θ − α

)
− �2(1, θ − α)

)
.

We have
M1µ(0) = 2µ1

(
�1(1, 1)− �1(1, 1/2)

)
= −M1µ(1/2).

Since �̇1(1, 0) = �̇1(1, 1/2) = 0 and �1 has the minimum period 1, we have �1(1, 0) �=
�1(1, 1/2). Hence M1µ(0) �= 0 and M1µ(0)M1µ(1/2) < 0 provided that µ1 > 0.

Theorem 5.10. Let (viii) hold. If µ1,2,3 > 0 are sufficiently small such that

µ3 > 2µ2, then (5.8) has a 1-periodic solution.

�����. We apply Theorem 3.1 with the above Mµ and

B =
{
(θ, α) : θ ∈ (0, 1/2), θ < α <

1
2
+ θ
}
.

We put Mµ in the homotopy Mµ,λ =
(
M1µ,λ,M2µ,λ

)
given by

M1µ,λ(θ) = λM1µ(θ) + (1− λ)
(1
4
− θ
)
,

M2µ,λ = λM2µ(θ, α) + (1− λ)
(
θ − α+

1
4

)
.

Since max
[0,1]

�2(1, t) = �2(1, 0) and min
[0,1]

�2(1, t) = �2(1, 1/2), we see that µ1 > 0,

µ3 > 2µ2 > 0 implies 0 /∈Mµ,λ(∂B), λ ∈ [0, 1]. Hence

deg(Mµ,B, 0) = deg(Mµ,0,B, 0) = 1.

Now the result follows from Theorem 3.1. �
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6. Concluding remarks

����� 6.1. In this paper, the dry friction is modelled by a Coulomb law [8],

[13] which includes a statistic coefficient of friction µs and a dynamic coefficient of
friction µd. If µs = µd = µ, then the friction law may be written as ẋ→ µ sgn ẋ. On

the other hand, since usually µs > µd, the smooth approximation of sgn r given, for
instance, by

Φ(r) =
1
�

(
7 arctan 8sr − 5 arctan4sr

)
, s� 1

seems to be physically more relevant than the mathematically convenient approxi-
mation of the form

r → 2
�

arctan sr, s� 1.

The function Φ has two symmetric spikes at r = ±
√
6
8s of the values

±1
�

(
7 arctan

√
6− 5 arctan

√
6
2

)
.
= ±1.226, 134, 4.

Moreover, Φ(r) is quickly near 1 or −1 when r > 0 or r < 0, respectively, tends off 0.
Summarizing, we can take for any η � 0, ζ � 1, 0 < κ � 1 the multivalued function
Sgnη,ζ,κ r defined by

Sgnη,ζ,κ r =





−1 for r < −η,
[−ζ,−κ] for − η � r < 0,

[−ζ, ζ] for r = 0,

[κ, ζ] for 0 < r � η,

1 for r > η.

The term Sgnη,ζ,κ ẋ can be viewed as an extension for modelling dry friction includ-
ing static and dynamic frictions as well.

����� 6.2. The aim of this paper is to deal with multivalued perturbation
problems, but our method is clearly applied to piecewise smoothly perturbed prob-
lems. For instance, let us consider the problem

(6.1) ẍ+ µ1(x+)2 + µ2x− = µ3β(t),

where µ1,2,3 ∈ � are small parameters, β ∈ C(�,�) is 1-periodic and z+ =

max {0, z}, z− = min {0, z}. Then we have similarly as for (5.1) that (3.6) now
assumes the form

Mµ(θ) = −µ1(θ+)2 − µ2θ
− + µ3

1∫

0

β(s) ds.

390



By estimating the number of simple roots of Mµ, we obtain that if
1∫
0
β(s) ds �= 0

then (6.1) has a 1-periodic solution for any sufficiently small µ1,2,3 satisfying one of
the following conditions:

a) µ3
1∫
0
β(s) ds < 0 and either µ1 < 0 or µ2 > 0;

b) µ3
1∫
0
β(s) ds > 0 and either µ1 > 0 or µ2 < 0.

Moreover, if
1∫
0
β(s) ds �= 0 then (6.1) has at least two 1-periodic solutions for any

sufficiently small µ1,2,3 satisfying one of the following conditions:

c) µ3
1∫
0
β(s) ds < 0 and µ1 < 0, µ2 > 0;

d) µ3
1∫
0
β(s) ds > 0 and µ1 > 0, µ2 < 0.

����� 6.3. Finally we note that by combining the method of this paper with

that of [10], we can straightforwardly extend the results of this paper to singularly
perturbed differential inclusions of the form

ẋ(t) ∈ f(x(t), y(t)) + εh1(x(t), y(t), t) a.e. on �,

εẏ(t) ∈ g(x(t), y(t)) + εh2(x(t), y(t), t) a.e. on �(6.2)

with x ∈ �n , y ∈ �k , ε > 0 is small and the following assumptions are satisfied:

(I) f ∈ C2
(
�

n × �
k ,�n

)
, g ∈ C2

(
�

n × �
k ,�k

)
and h1 : �n × �

k → 2�n \ ∅,
h2 : �n × �

k → 2�k \ ∅ are upper-semicontinuous with compact and convex
values.

(II) g(·, 0) = 0, g(x, y) = A(x)y + o(|y|k) for A(x) ∈ L(�k ) satisfying

B(x)A(x)B−1(x) = (D1(x), D2(x)) ∀x ∈ �n ,

where B : �n → L(�k ), D1 : �n → L(�k1 ), D2 : �n → L(�k2 ) are C1-
smooth mappings, k = k1 + k2 and

〈D1(x)v, v〉k1 > a|v|2k1 , 〈D2(x)w,w〉k2 < −a|w|2k2
∀x ∈ �n , ∀ v ∈ �k1 , ∀w ∈ �k2 ,

where a > 0 is a constant. Here 〈·, ·〉i is an inner product on �i , i ∈ � with
the corresponding norm | · |i.
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(III) The reduced equation of (6.2) of the form ẋ = f(x, 0) has a manifold of

1-periodic solutions, i.e. there is an open subset O ⊂ �
d−1 , d � 1 and a

C2-mapping γ : O × � → �
n such that γ(θ, t + 1) = γ(θ, t) and γ(θ, ·) is a

solution of ẋ = f(x, 0).

(IV) The only 1-periodic solutions of ẋ = Dxf(γ(θ, t), 0)x are linear combina-
tions of ∂

∂θi
γ(θ, t), γ̇(θ, t), i = 1, . . . , d − 1. Moreover, ∂

∂θi
γ(θ, t), γ̇(θ, t),

i = 1, . . . , d− 1 are linearly independent.
(V) hi(x, y, t+ 1) = hi(x, y, t) for t ∈ � and i = 1, 2.
By assuming in addition the validity of a condition similar to (H) of [10], multival-

ued mappings like (3.6), (4.4) and (4.10) can be derived for both the non-autonomous

and autonomous versions of (6.2). For instance, the multivalued mapping corre-
sponding to (3.6) has the form

M : �d → 2�d \ ∅, M(θ, α) =
{
L(θ)h ds : h ∈ L2 satisfying a.e. on [0, 1]

the relation h(t) ∈ Dyf(γ(θ, t), 0)(C(θ, t, α)) + h1(γ(θ, t), 0, t+ α)
}
,

where C : O× [0, 1]×� → 2�k \∅ is an upper-semicontinuous mapping with compact
convex values such that C(O× [0, 1]× �) is bounded, C(θ, t, α+ 1) = C(θ, t, α) and
it satisfies the above mentioned condition similar to (H) of [10].
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