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ONE-DIMENSIONAL THERMOVISCO-ELASTOPLASTICITY
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Abstract. In this paper, we develop a thermodynamically consistent description of the
uniaxial behavior of thermovisco-elastoplastic materials for which the total stress σ con-
tains, in addition to elastic, viscous and thermic contributions, a plastic component σp of
the form σp(x, t) = P [ε, θ(x, t)](x, t). Here ε and θ are the fields of strain and absolute
temperature, respectively, and {P [·, θ]}θ>0 denotes a family of (rate-independent) hystere-
sis operators of Prandtl-Ishlinskii type, parametrized by the absolute temperature. The
system of momentum and energy balance equations governing the space-time evolution of
the material forms a system of two highly nonlinearly coupled partial differential equations
involving partial derivatives of hysteretic nonlinearities at different places. It is shown that
an initial-boundary value problem for this system admits a unique global strong solution
which depends continuously on the data.

Keywords: thermoplasticity, viscoelasticity, hysteresis, Prandtl-Ishlinskii operator, PDEs
with hysteresis, thermodynamical consistency
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0. Introduction

For many materials the stress-strain (σ-ε) relations measured in uniaxial load-
deformation experiments strongly depend on the absolute (Kelvin) temperature θ

and, at the same time, exhibit a strong plastic behavior witnessed by the occurrence
of rate-independent hysteresis loops. Figure 1 shows a typical diagram, where the

elasticity modulus and the yield limit depend on temperature.
Among the materials exhibiting temperature-dependent, but rate-independent

hysteretic effects are shape memory alloys (see, for instance, Chapter 5 in [BS])
and even, although to a smaller extent, quite ordinary steels.

If the σ-ε relation exhibits a hysteresis, it can no longer be expressed in terms of
simple single-valued functions since the latter are certainly not able to give a correct
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account of the inherent memory structures that are responsible for the complicated

loopings in the interior of experimentally observed hysteresis loops.

0 ε

σ θ = θ1

θ = θ2

�
Figure 1. Strain-stress diagrams at constant temperatures θ1 �= θ2.

To avoid these difficulties, a different approach to thermoelastoplastic hysteresis

based on the notion of hysteresis operators introduced by the Russian group around
M.A. Krasnosel’skii in the seventies (see [KP]) has been proposed by the authors

in [KS]. In this approach, the temperature-dependent plastic stress σp has been
assumed in the form of an operator equation with a temperature-dependent hysteretic

constitutive operator P of Prandtl-Ishlinskii type, namely

(0.1) σp = P [ε, θ] :=
∫ ∞

0
ϕ(r, θ)sr[ε] dr.

In this connection, sr denotes the so-called stop operator or the elastic-plastic element
with threshold r > 0 (to be defined in the next section), and ϕ(·, θ) � 0 is a density
function with respect to r > 0, parametrized by the absolute temperature θ.
The advantage of this approach is that an operator equation like (0.1) is suited

much better than a simple functional relation to keep track of the memory effects
imprinted on the material in the past history; in fact, the output at any time t ∈ [0, T ]
may depend on the whole evolution of the input in the time interval [0, t]. Observe
that the requirement of rate-independence implies that P cannot be expressed in
terms of an integral operator of convolution type, i.e. we are not dealing with a
model with fading memory.

For the isothermal case, i.e. if P is independent of θ, a one-dimensional approach
to elastoplasticity using rate-independent hysteresis operators has been carried out

earlier by P. Krejčí in a series of papers (cf. e.g. [K1, K2, K]); the (simpler) case of
viscoplasticity has been treated in [BS1]. In these cases, the space-time evolution is

governed by the equation of motion which takes the form

(0.2)
(
� utt −

(
P [ux]

)
x
− µuxxt

)
(x, t) = f(x, t),
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where �, µ � 0 and u denote mass density, viscosity coefficient and displacement,
respectively.
In the non-isothermal case the equation of motion has to be complemented by

a field equation representing the balance law of internal energy, and the second

principle of thermodynamics in the form of the Clausius-Duhem inequality must be
obeyed. It is, however, not obvious how the correct expressions for thermodynamic

state functions like the densities of free energy, internal energy and entropy, should
look like for a constitutive law like (0.1). In [KS], a corresponding construction has

been carried out. It turned out that in a setting like ours, where the relation between
the strain and the plastic stress is given in an operator form, it is quite natural to

consider the densities of free energy, internal energy and entropy as operators rather
than as functions.

The aim of this paper is to extend the investigations of [KS] to other situations.
More precisely, while in [KS] we have studied the case when the total stress σ is

composed of a plastic stress σp of the form (0.1) and a so-called couple stress, we
consider here the situation when σ comprises, in addition to the plastic stress (0.1),

(nonlinear) elastic, (linear) viscous, and (linear) thermic contributions σe, σv and
σd, respectively; that is, we assume a constitutive law of the form

(0.3) σ = σp + σe + σv + σd,

with σp given as in (0.1).
It should be mentioned at this place that hysteretic relations usually can not

be described in an explicit form and, as a rule, enjoy only very restricted smooth-

ness properties. Therefore, the classical techniques of one-dimensional thermovisco-
elasticity developed for cases in which the stress-strain relation is given through a

simple (possibly nonconvex, but differentiable) function (we only refer to the funda-
mental papers [D, DH]) do not apply, and new techniques tailored to deal with the

specific behavior of hysteretic nonlinearities have to be employed.
The paper is organized as follows. In Section 1, the field equations governing

the space-time evolution in thermovisco-elastoplastic materials with the constitutive
law (0.3) are derived. We obtain a system of nonlinearly coupled partial differen-

tial equations involving partial derivatives of hysteretic nonlinearities at different
places, even in derivatives of highest order. Section 2 brings the statement of the

initial-boundary value problem under investigation, and the general existence and
uniqueness result is formulated. In Section 3, we employ space discretization to con-

struct approximations to the solution for which global a priori estimates are shown
in Section 4. Section 5 contains the proof of existence using compactness arguments

and a passage-to-the-limit procedure. In the final Section 6, stability with respect
to the data of the system and uniqueness are established.
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1. Derivation of the model

The stop operator sr : W 1,1(0, T )→W 1,1(0, T ) in the equation (0.1) is defined as
the solution operator σr = sr[ε] of the variational inequality

(1.1) |σr(t)| � r, (ε̇− σ̇r)(σr − σ̃) � 0 a.e., ∀σ̃ ∈ [−r, r],

with an initial condition

(1.2) σr(0) = sign(ε(0))min {r, |ε(0)|}

which describes the strain-stress law of Prandtl’s model for elastic-perfectly plastic

materials with a unit elasticity modulus and yield point r.
The density function ϕ in (0.1) is assumed to be given. It can be identified from

the isothermal initial loading curves σ = Φ(ε, θ) obtained experimentally by letting
ε monotonically increase for each fixed temperature θ starting from the origin. The

corresponding formula reads (see [K])

(1.3) Φ(ε, θ) =
∫ ε

0

∫ ∞

s

ϕ(r, θ) dr ds.

We consider here only the case when ϕ is nonnegative, i.e. the initial loading curves

at each constant temperature are concave and nondecreasing as in Figure 1.
The operator sr has the following properties (for a proof, see [BS], [K]).

Proposition 1.1. Let r > 0 be given. Then
(i) For every ε ∈W 1,1(0, T ), we have

(1.4)

(
d
dt

sr[ε]

)2
= ε̇
d
dt

sr[ε] a.e. in ]0, T [ .

(ii) For every ε1, ε2 ∈W 1,1(0, T ), we have

1
2
d
dt
(sr[ε1]− sr[ε2])

2 � (ε̇1 − ε̇2)(sr[ε1]− sr[ε2]) a.e. in ]0, T [ ,(1.5)
∫ T

0

∣∣∣∣
d
dt
(sr[ε1]− sr[ε2])

∣∣∣∣ (t) dt � |ε1(0)− ε2(0)|+ 2
∫ T

0
|ε̇1 − ε̇2| (t) dt,(1.6)

|(sr[ε1]− sr[ε2])(t)| � 2 max
0�τ�t

|ε1(τ)− ε2(τ)| ∀t ∈ [0, T ].(1.7)

(iii) For every r, q > 0 and ε ∈ W 1,1(0, T ), we have

(1.8) |(sr[ε]− sq[ε])(t)| � |r − q| ∀t ∈ [0, T ].
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The inequalities (1.6), (1.7) entail that the stop operator sr is Lipschitz continuous

in W 1,1(0, T ) and admits a Lipschitz continuous extension onto C([0, T ]). Moreover,
we immediately see by definition that sr is a causal operator, that is, we have the
implication

(1.9) ε1(τ) = ε2(τ) ∀τ ∈ [0, t] ⇒ sr[ε1](t) = sr[ε2](t)

for every t ∈ [0, T ], which means that the output values at time t depend only on
the past values of the input. This enables us to consider sr as a family of operators

acting in the spaces C([0, t]) for all t ∈ ]0, T ].
Inequality (1.5) immediately yields

Corollary 1.2. For all ε, ε1, ε2 ∈ W 1,1(0, T ) we have

sr[ε]

(
ε̇− d
dt

sr[ε]

)
� 0 a.e. in ]0, T [ ,(1.10)

|(sr[ε1]− sr[ε2])(t)| � |ε1(0)− ε2(0)|+
∫ t

0
|ε̇1 − ε̇2|(τ) dτ ∀t ∈ [0, T ].(1.11)

In this paper we consider the one-dimensional equation of motion

(1.12) �utt = σx + f,

where � > 0 is a constant referential density, u is the displacement, σ is the total

unaxial stress and f is the volume force density.
We assume that σ can be decomposed into the sum

(1.13) σ = σp + σe + σv + σd,

where

(1.14) σe = γ(ε)

with a given nondecreasing Lipschitz continuous function γ : �1 → �
1 , γ(0) = 0, is

the (nonlinear) kinematic hardening component,

(1.15) σv = µε̇

with a constant µ > 0 is the viscous component,

(1.16) σd = −βθ
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with a constant β ∈ �1 is the thermic dilation component and σp is the thermoplastic

component given by (0.1). Equation (1.13) can be interpreted rheologically as a
parallel combination of the above components (see [LC]). The stop operator sr is
assumed to act on functions of x and t according to the formula

(1.17) sr[ε](x, t) := sr[ε(x, ·)](t),

i.e. x plays the role of a parameter. The equation of motion (1.12) has to be coupled
with the energy balance equation

(1.18) Ut = σεt − qx + g,

where U is the total internal energy, q is the heat flux and g is the heat source

density. The model is thermodynamically consistent provided the temperature θ
and the entropy S satisfy the inequalities

θ > 0,(1.19)

St � g

θ
−
( q
θ

)
x

(Clausius-Duhem),(1.20)

in an appropriate sense.

In [KS] we derived the following expressions for the thermoplastic parts of the
internal energy Up and the entropy Sp in operator form corresponding to the con-

stitutive law (0.1):

Up = V [ε, θ] := 1
2

∫ ∞

0
(ϕ(r, θ) − θϕθ(r, θ))s2r [ε] dr,(1.21)

Sp = S[ε, θ] := −1
2

∫ ∞

0
ϕθ(r, θ)s2r [ε] dr.(1.22)

In accordance with (1.13), (1.21), (1.22) we put

U := CV θ + V [ε, θ] + Γ(ε) + V0,(1.23)

S := CV log θ + S[ε, θ] + βε,(1.24)

where CV > 0, the purely caloric part of the specific heat, is a constant, V0 > 0 is a

constant which is chosen in order to ensure that U � 0 according to Hypothesis 2.2
below, and Γ(ε) :=

∫ ε

0 γ(s) ds. For the heat flux we assume Fourier’s law

(1.25) q = −κθx
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with a constant heat conduction coefficient κ > 0. We complete the system (1.12),

(1.18) with the small deformation hypothesis

(1.26) ε = ux

and rewrite it in the form

�utt − (γ(ux) + P [ux, θ] + µuxt − βθ)x = f,(1.27)

(CV θ + V [ux, θ])t − κθxx = (P [ux, θ] + µuxt − βθ) uxt + g.(1.28)

In fact, the model can be interpreted in the framework of classical thermodynamics

using a continuous family of internal parameters. In the above setting, the memory
state at point x and time t is described by the function

(1.29) r �−→ sr[ε](x, t),

i.e. the internal parameter function takes values in an infinite-dimensional subset of
the metric space

(1.30) Λ =
{
λ ∈ W 1,∞(0,∞) ; |λ′(r)| � 1 a.e. in ]0,∞[

}

according to (1.8). The operator notation we introduced in [KS] and use here is

much more elegant, indeed.

2. Statement of the problem

We consider a model problem for a system of the form (1.27), (1.28), namely

(2.1) utt − γ(ux)x − (P [ux, θ])x − µuxxt + βθx = f(θ, x, t),

(2.2) (CV θ + V [ux, θ])t − θxx = P [ux, θ]uxt + µu2xt − βθuxt + g(θ, x, t),

for x ∈ ]0, 1[, t ∈ [0, T ], where T > 0, µ > 0, CV > 0, β ∈ �
1 are fixed constants,

γ : �1 → �
1 , f, g : ]0,∞[× ]0, 1[× [0, T ]→ �

1 are given functions, and P , V are the
operators defined by (0.1), (1.21) with a given distribution function ϕ : (]0,∞[)2 →
[0,∞[ satisfying Hypothesis 2.2 below.
In other words, we assume in (1.27), (1.28) that the volume force and heat source

densities are given functions of x and t which may also depend on the instantaneous
value of θ, and we rescale the units in such a way that � ≡ κ ≡ 1. The system

179



(2.1), (2.2) is coupled with boundary and initial conditions which are chosen in the

following simple form:

(2.3) u(0, t) = u(1, t) = θx(0, t) = θx(1, t) = 0,

(2.4) u(x, 0) = u0(x), ut(x, 0) = u
1(x), θ(x, 0) = θ0(x).

The data are assumed to satisfy the following hypotheses.

Hypothesis 2.1.

(i) u0, u1 ∈ W 2,2(0, 1) ∩
◦
W 1,2(0, 1), θ0 ∈ W 1,2(0, 1), and there exists a constant

δ > 0 such that

(2.5) θ0(x) � δ ∀x ∈ [0, 1].

(ii) γ : �1 → �
1 is an absolutely continuous function, γ(0) = 0, and there exists a

constant γ0 > 0 such that

(2.6) 0 � dγ(ε)
dε

� γ0 a.e. in �1 .

(iii) The functions f , g are measurable, f(·, x, t), g(·, x, t) are absolutely continuous
in [0,∞[ for a.e. (x, t) ∈ ]0, 1[× ]0, T [. Moreover, there exist a constant K > 0
and functions f0, g0 ∈ L2(]0, 1[× ]0, T [) such that

g(0, x, t) = g0(x, t) � 0 a.e.,(2.7)

|f(θ, x, t)| + |ft(θ, x, t)| � f0(x, t) a.e.,(2.8)

|fθ(θ, x, t)|+ |gθ(θ, x, t)| � K a.e.(2.9)

Hypothesis 2.2. The function ϕ : (]0,∞[)2 → [0,∞[ is measurable, ϕ(r, ·),
ϕθ(r, ·) are absolutely continuous for a.e. r > 0, and there exist constants L > 0,
V0 > 0 such that for a.e. θ > 0 the following inequalities hold:

∫ ∞

0
ϕ(r, θ) dr � L,(2.10)

∫ ∞

0
|ϕθ(r, θ)|r dr � L,(2.11)

∫ ∞

0
θ|ϕθθ(r, θ)|r2 dr � CV ,(2.12)
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where CV is the constant introduced in (1.23),

(2.13)
1
2

∫ ∞

0
|ϕ(r, θ) − θϕθ(r, θ)| (1 + r2) dr � V0.

������� 2.3. A typical function ϕ satisfying Hypothesis 2.2 can be chosen as

(2.14) ϕ(r, θ) = E(θ)c(r − r̄(θ)),

where c ∈ D(]−m,m[) is a mollifier such that

(2.15)
∫ m

−m

c(s) ds = 1, c � 0,

with a (small) constant m > 0, and E, r̄ are given functions such that E(θ) � L,
m � r̄(θ) � R, for some constant R � m, with (1 + θ)

(
|E′(θ)|+ |r̄′(θ)|

)
bounded

and θ
(
|E′′(θ)| + |r̄′′(θ)| +E′2(θ) + r̄

′2(θ)
)
small, uniformly with respect to θ.

We now state the main result of this paper.

Theorem 2.4. Let Hypotheses 2.1, 2.2 hold. Then there exists a unique solution
(u, θ) to the problem (2.1)–(2.4) such that

utt, uxx, uxxt, θx ∈ L∞(0, T ;L2(0, 1)),(2.16)

uxtt, θt, θxx ∈ L2(]0, 1[× ]0, T [),(2.17)

θ, u, ux, ut, uxt ∈ C([0, 1]× [0, T ]),(2.18)

there exists a constant c0 > 0 depending only on the given data such that for all
t ∈ [0, T ] and x ∈ [0, 1] we have

(2.19) θ(x, t) � δe−c0t > 0,

and (2.1)–(2.4) are satisfied almost everywhere.

We first check that the model is thermodynamically consistent according to (1.19),
(1.20).

Corollary 2.5. The solution from Theorem 2.4 satisfies the Clausius-Duhem in-
equality (1.20) with S defined by (1.24), (1.22) almost everywhere in ]0, 1[× ]0, T [.
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��		
 	
 �	�	����� 2.5. For a.e. x and t we have

θSt + θ
(q
θ

)
x
− g(2.20)

= CV θt + θ (S[ux, θ])t + βθuxt − θxx − g +
1
θ
θ2x

= − (V [ux, θ])t + θ (S[ux, θ])t + P [ux, θ]uxt + µu
2
xt +

1
θ
θ2x

=
∫ ∞

0
ϕ(r, θ)sr[ux](ux − sr[ux])t dr + µu2xt +

1
θ
θ2x

and the assertion follows from (1.10). �

The existence result in Theorem 2.4 is proved via compactness methods based on a

space-discrete approximation scheme. We use a stepwise estimation technique which
will be explained in the next two sections. It depends substantially on the following

properties of the hysteresis operators P and V .

Proposition 2.6. Let Hypothesis 2.2 hold. Then the operators P ,V are causal
and have the following properties.

(i) For every ε, θ ∈W 1,1(0, T ), θ > 0, we have

|P [ε, θ](t)| � V0, |V [ε, θ](t)| � V0,(2.21) ∣∣∣∣
d
dt
P [ε, θ](t)

∣∣∣∣ � L
(
|ε̇(t)|+ |θ̇(t)|

)
a.e. in ]0, T [ .(2.22)

(ii) For every ε, ε2, θ1, θ2 ∈ W 1,1(0, T ), θ1 > 0, θ2 > 0 and for every t ∈ [0, T ], we
have

|P [ε1, θ1]− P [ε2, θ2]| (t)(2.23)

� L

(
|θ1 − θ2|(t) + |ε1 − ε2|(0) +

∫ t

0
|ε̇1 − ε̇2|(τ) dτ

)
,

|V [ε1, θ1]− V [ε2, θ2]| (t)(2.24)

� CV

2
|θ1 − θ2|(t) + V0

(
|ε1 − ε2|(0) +

∫ t

0
|ε̇1 − ε̇2|(τ) dτ

)
,

|P [ε1, θ1]− P [ε2, θ2]| (t) � L

(
|θ1 − θ2|(t) + 2 max

0�τ�t
|ε1 − ε2|(τ)

)
,(2.25)

|V [ε1, θ1]− V [ε2, θ2]| (t) � CV

2
|θ1 − θ2|(t) + 2V0 max

0�τ�t
|ε1 − ε2|(τ).(2.26)
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��		
. The causality is obvious. To prove part (ii), we just note that

∣∣P [ε1, θ1]− P [ε2, θ2]
∣∣(2.27)

�
∫ ∞

0
|ϕ(r, θ1)− ϕ(r, θ2)||sr[ε1]| dr +

∫ ∞

0
ϕ(r, θ2)|sr[ε1]− sr[ε2]| dr,

∣∣V [ε1, θ1]− V [ε2, θ2]
∣∣(2.28)

� 1
2

∫ ∞

0
|ϕ(r, θ1)− θ1ϕθ(r, θ1)− ϕ(r, θ2) + θ2ϕθ(r, θ2)|s2r [ε1] dr

+
1
2

∫ ∞

0
|ϕ(r, θ2)− θ2ϕθ(r, θ2)|

∣∣s2r[ε1]− s2r[ε2]
∣∣ dr,

and the inequalities (2.23)–(2.26) follow from the hypotheses (2.10)–(2.13) and the
inequalities (1.7), (1.11). In addition, by definition we have

(2.29) |sr[ε](t)| � r ∀ε, ∀t,

and from (1.4) it follows that

(2.30)

∣∣∣∣
d
dt

sr[ε](t)

∣∣∣∣ � |ε̇(t)| a.e. ∀ε.

A straightforward argument yields (2.22) and the second inequality of (2.21). The

proof of Proposition 2.6 will be complete if we check that Hypothesis 2.2 implies

(2.31)
∫ ∞

0
rϕ(r, θ) dr � V0 ∀θ > 0.

To this end, we introduce the function

(2.32) ψ(r, θ) :=
r

θ
ϕ(r, θ).

By (2.10), (2.11), (2.13) we have for all θ > 0

∫ ∞

0

1
r
ψ(r, θ) dr � L

θ
,(2.33)

∫ ∞

0
|ψ(r, θ) + θψθ(r, θ)| dr � L,(2.34)

∫ ∞

0
|ψθ(r, θ)| dr � V0

θ2
,(2.35)

and the triangle inequality yields that

(2.36)
∫ ∞

0
ψ(r, θ) dr � L+

V0
θ
.
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The functions ψ(·, θ) thus belong to L1(0,∞) for each value of the parameter θ > 0.
Moreover, for θ2 > θ1 > 0 it follows from (2.35) that

(2.37)
∫ ∞

0
|ψ(r, θ1)− ψ(r, θ2)| dr �

∫ ∞

0

∫ θ2

θ1

|ψθ(r, θ)| dθ dr � V0

(
1
θ1
− 1
θ2

)
.

Since the space L1(0,∞) is complete, there exists a function ψ∞ ∈ L1(0,∞) such
that

(2.38) lim
θ→∞

∫ ∞

0
|ψ(r, θ) − ψ∞(r)| dr = 0.

Passing to the limit in (2.37) as θ2 →∞ we obtain

(2.39)
∫ ∞

0
|ψ(r, θ)− ψ∞(r)| dr � V0

θ
∀θ > 0.

On the other hand, for every R > 0 and θ > 0 we have

(2.40)
∫ R

0
ψ∞(r) dr � R

∫ R

0

1
r
ψ(r, θ) dr +

∫ R

0
|ψ(r, θ)− ψ∞(r)| dr.

Hence (2.33), (2.39) yield that ψ∞ = 0 a.e.; inequality (2.31) now follows immediately

from (2.39), (2.32). �

3. Space discretization

Let n > 1 be a given integer. We replace (2.1)–(2.4) by the following system of

ODEs for unknown functions u1, . . . , un−1, θ1, . . . , θn:

ük = n(σk+1 − σk) + fk(θk, t), k = 1, . . . , n− 1,(3.1)
d
dt
(CV θk + V [εk, θk]) = n2(θk+1 − 2θk + θk−1)(3.2)

+ (P [εk, θk] + µε̇k − βθk) ε̇k + gk(θk, t), k = 1, . . . , n,

εk = n(uk − uk−1), k = 1, . . . , n,(3.3)

σk = γ(εk) + P [εk, θk] + µε̇k − βθk, k = 1, . . . , n,(3.4)

u0 = un = 0, θ0 = θ1, θn+1 = θn,(3.5)

fk(θ, t) = n
∫ k

n

k−1
n

f(θ, x, t) dx, gk(θ, t) = n
∫ k

n

k−1
n

g(θ, x, t) dx,(3.6)

k = 1, . . . , n,

uk(0) = u
0

(
k

n

)
, u̇k(0) = u

1

(
k

n

)
, θk(0) = θ

0

(
k

n

)
,(3.7)

k = 1, . . . , n.
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It can be proved in a standard way that the system (3.1)–(3.7) admits a unique

local solution; indeed, it suffices to put vk := u̇k and to rewrite (3.1), (3.2) as integral
equations,

vk(t) = u1
(
k

n

)
+
∫ t

0
(n(σk+1 − σk) + fk(θk, ·))(τ) dτ,(3.8)

uk(t) = u0
(
k

n

)
+
∫ t

0
vk(τ) dτ,(3.9)

θk(t) = θ0
(
k

n

)
+
1
CV
(V [εk, θk](0)− V [εk, θk](t))(3.10)

+
∫ t

0

1
CV

[
n2(θk+1 − 2θk + θk−1)

+ (P [εk, θk] + µn(vk − vk−1)− βθk)n(vk − vk−1) + gk(θk, ·)
]
(τ) dτ.

The system (3.8)–(3.10) is of the form

(3.11) W (t) =W (0) +A(W )(t) −A(W )(0) +
∫ t

0
B(W, ·)(τ) dτ,

whereW is a vector function with components {vk, uk, θk ; k = 1, . . . , n}, A is an op-
erator in C([0, t];�3n ) for every t ∈ ]0, T [ with components {0, . . . , 0︸ ︷︷ ︸

2n

,− 1
CV
V [εk, θk](t);

k = 1, . . . , n}, and the operator B is given by the expressions under the integral signs
in (3.8)–(3.10). We endow the space �3n with the norm |||W ||| =

n∑
k=1
(|θk|+ 8nV0

CV
|uk|+

|vk|). Then we have, by Proposition 2.6,

(3.12) |||A(W1)(t)−A(W2)(t)||| �
1
2
max

τ∈[0,t]
|||W1(τ) −W2(τ)|||

for every W1, W2 ∈ C([0, t];�3n ). The operator B is Lipschitz in C([0, τ ];�3n ) for
every τ ∈ [0, t] by Proposition 2.6 and Hypothesis 2.1. In a standard way we conclude
from the Contraction Mapping Principle that equation (3.11) (and therefore also
system (3.1)–(3.7)) admits a unique classical solution in an interval [0, Tn]. Taking

a smaller Tn > 0 if necessary, we may assume that

(3.13) θk(t) > 0 for all t ∈ [0, Tn], k = 1, . . . , n,

due to hypothesis (2.5).
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In the interval [0, Tn] the solution u1, . . . , un−1, θ1, . . . , θn of (3.1)–(3.7) satisfies

the following estimates.

Theorem 3.1. There exists a constantC which depends only on T , on the number

(3.14) M := ‖u0‖W 2,2 + ‖u1‖W 2,2 + ‖θ0‖W 1,2 + ‖f0‖L2 + ‖g0‖L2 ,

and on the constants CV , β, µ, K, L, V0 and γ0, such that for all t ∈ [0, Tn] we have

1
n

n∑

k=1

(
u̇2k + ü

2
k + ε

2
k + ε̇

2
k + θ

2
k + n

2(θk+1 − θk)2
)
(t) � C,(3.15)

n

n−1∑

k=1

(
(εk+1 − εk)2 + (ε̇k+1 − ε̇k)2

)
(t) � C,(3.16)

1
n

n∑

k=1

∫ t

0
(ε̈2k + θ̇

2
k)(τ) dτ � C,(3.17)

n3
n−1∑

k=1

∫ t

0
(θk+1 − 2θk + θk−1)2(τ) dτ � C.(3.18)

We devote the next section to the proof of Theorem 3.1 which requires several
consecutive steps (Lemmas 4.1–4.10 below). For this purpose it is convenient to

rewrite equation (3.2) in the form

θ̇k

(
CV − 1

2

∫ ∞

0
θkϕθθ(r, θk)s2r[εk] dr

)
(3.19)

= n2 (θk+1 − 2θk + θk−1) + θk

(∫ ∞

0
ϕθ(r, θk)sr[εk](sr[εk])t dr − βε̇k

)

+
∫ ∞

0
ϕ(r, θk)sr[εk](εk − sr[εk])t dr + µε̇2k + gk(θk, t).

Theorem 3.1 has the following consequence.

Corollary 3.2. The solution (u1, . . . , un−1, θ1, . . . , θn) of (3.1)–(3.7) can be ex-
tended to [0, T ], the estimates (3.15)–(3.18) hold for all t ∈ [0, T ], and there exists a
constant c0 > 0, independent of γ and n, such that

(3.20) θk(t) � δe−c0t for k = 1, . . . , n, t ∈ [0, T ].

The proof of Corollary 3.2 is based on the following “discrete maximum principle”.
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Lemma 3.3. Let w1, . . . , wn be absolutely continuous functions satisfying the

system

bk(t)ẇk(t)−A(wk+1 − 2wk + wk−1)(t) + ak(t)wk(t) = rk(t)(3.21)

for a.e. t ∈ ]0, T [ ,
w0 = w1, wn+1 = wn,(3.22)

bk(t) � B, |ak(t)| � C, rk(t) � 0 a.e. in ]0, T [ ,(3.23)

wk(0) � δ,(3.24)

for all k = 1, . . . , n, where A � 0, B > 0, C > 0, δ > 0 are given constants and ak,

bk, rk are measurable functions. Then

(3.25) wk(t) � δe−
C
B t for all t ∈ [0, T ], k = 1, . . . , n.

��		
 	
 ���� 3.3. For a fixed C∗ > C
B put pk(t) := wk(t)eC

∗t. Then,
a.e. in ]0, T [, the functions pk for k = 1, . . . , n solve the system

(3.26) bk(t)ṗk(t)−A(pk+1 − 2pk + pk−1)(t) = (C∗bk(t)− ak(t))pk(t) + rk(t)eC
∗t.

Assume that there exist η ∈ ]0, δ[, k ∈ {1, . . . , n} and t ∈ [0, T ] such that pk(t) < δ−η.
Moreover, put

(3.27) t̄ = sup {t ∈ [0, T ] ; pj(τ) � δ − η ∀j ∈ {1, . . . , n}, ∀τ ∈ [0, t]} .

We fix some j such that pj(t̄) = δ − η and � > 0 such that

(3.28) A |pk(t̄)− pk(t)| �
B

8

(
C∗ − C

B

)
(δ − η), k = 1, . . . , n, ∀t ∈ [t̄− �, t̄].

Then we have

0 �
(
A

�

∫ t̄

t̄−�

dt
bj(t)

)
(pj+1(t̄)− 2pj(t̄) + pj−1(t̄))

� 4A
�B

∫ t̄

t̄−�

max
k
|pk(t̄)− pk(t)| dt+

A

�

∫ t̄

t̄−�

1
bj(t)

(pj+1(t)− 2pj(t) + pj−1(t)) dt

� 1
2

(
C∗ − C

B

)
(δ − η) +

1
�

∫ t̄

t̄−�

(
ṗj(t)−

(
C∗ − aj(t)

bj(t)

)
pj(t)−

rj(t)
bj(t)

eC
∗t

)
dt

� −1
2

(
C∗ − C

B

)
(δ − η) < 0,

which is a contradiction. We therefore have wk(t) � δe−C∗t for all C∗ > C
B and

t ∈ [0, T ], and the assertion easily follows. �
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��		
 	
 �	�	����� 3.2. Equation (3.19) is of the form (3.21) with A = n2,

rk(t) = µε̇
2
k +

∫ ∞

0
ϕ(r, θk)sr[εk](εk − sr[εk])t dr + gk(θk, t) +Kθk,

ak(t) = K + βε̇k −
∫ ∞

0
ϕθ(r, θk)sr[εk] (sr[εk])t dr,

bk(t) = CV − 1
2

∫ ∞

0
θkϕθθ(r, θk)s2r [εk] dr.

By hypothesis (2.12) we have bk(t) � 1
2CV > 0. Using the elementary inequality

|ε̇j(t)|2 �
(
|ε̇k(t)|+

n−1∑

i=1

|ε̇i+1 − ε̇i| (t)
)2

for j, k ∈ {1, . . . , n}, we obtain from (3.15), (3.16) that

max
1�j�n

|ε̇j(t)|2 � 2
n

n∑

k=1

ε̇2k(t) + 2n
n−1∑

k=1

(ε̇k+1 − ε̇k)2(t) � 4C,

hence |ak(t)| � K + 4C(β + L) a.e. for all k by Hypothesis 2.2. We further have

gk(θk, t) +Kθk = n
∫ k

n

k−1
n

(g(θk, x, t) +Kθk) dx � 0

by hypotheses (2.8), (2.9) provided θk > 0, and from (1.10) it follows that rk(t) � 0
a.e. for all k. By Lemma 3.3, for all t ∈ [0, Tn] and k = 1, . . . , n we have θk(t) � δe−c0t

for some c0. This and the estimates (3.15)–(3.18) imply that the solution εk, θk of

(3.1)–(3.7) can be extended onto the whole interval [0, T ], and Corollary 3.2 is proved.
�

4. Estimates

In a series of lemmas below we derive the estimates (3.15)–(3.18). Throughout

this section we denote by C, Ci positive constants that depend only on CV , β, γ0,
µ, K, L, V0, T and the constant M defined by (3.14). We start with two discrete

versions of Nirenberg’s inequality.

Lemma 4.1. For each α ∈ ]0, 1[ there exists a constant Cα such that for every

n ∈ � and every sequence z1, . . . , zn of positive numbers we have

(4.1)

max
1�j�n

zj � Cα

[
1
n

n∑

k=1

zk +

(
n

n∑

k=1

(zk+1 − zk)(z
−α
k − z−α

k+1)

) 1
2−α
(
1
n

n∑

k=1

zk

) 1
2−α

]
.
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��		
. Let a sequence z1, . . . , zn be given, and let j be such that zj � zk for

all k = 1, . . . , n. Then we have for all k

(4.2) z
1−α

2
j � z

1−α
2

k +
n−1∑

i=1

∣∣∣z1−
α
2

i+1 − z
1−α

2
i

∣∣∣ ,

whence

(4.3) zj � 2 α
2−α

(
zk +

(n−1∑

i=1

∣∣∣z1−
α
2

i+1 − z
1−α

2
i

∣∣∣
) 2
2−α

)
.

Using the elementary inequality

(4.4)
(
a1−

α
2 − b1−

α
2
)2 � Kα(a+ b)(a− b)(b−α − a−α) for every a, b > 0,

where

(4.5) Kα := sup
s>0

(1 + s)α((1 + s)1−
α
2 − 1)2

s(2 + s)((1 + s)α − 1) <∞,

we obtain from (4.3), after summing over k, that
(4.6)

zj � 2 α
2−α

(
1
n

n∑

k=1

zk +

(
K1/2α

n−1∑

i=1

(zi+1 − zi)
1
2 (z−α

i − z−α
i+1)

1
2 (zi + zi+1)

1
2

) 2
2−α

)
,

and (4.1) follows from the discrete Hölder inequality. �

Lemma 4.2. For every sequence z1, . . . , zn of real numbers we have

(4.7) max
1�j�n

z2j � 1
n

n∑

k=1

z2k + 2

(
1
n

n∑

k=1

z2k

) 1
2
(
n

n−1∑

k=1

(zk+1 − zk)2
) 1
2

.

��		
. We proceed as in Lemma 4.1, where (4.2) is replaced by z2j � z2k +
n−1∑
i=1

|z2i+1 − z2i |. �

In the following Lemmas 4.3–4.10 we derive upper bounds for the solution

(u1, . . . , un−1, θ1, . . . , θn) of the system (3.1)–(3.7).

Lemma 4.3. There exists a constant C1 > 0 such that for every t ∈ [0, Tn] we
have

(4.8)
1
n

n∑

k=1

(
θk + u̇2k + Γ(εk)

)
(t) � C1.
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��		
. Multiply (3.1) by u̇k and sum over k = 1, . . . , n − 1. This yields, for
t ∈ ]0, Tn[,

(4.9)
1
n

n∑

k=1

(üku̇k + σε̇k − fk(θk, ·)u̇k) (t) = 0.

Summing (3.2) over k = 1, . . . , n and adding the result to (4.9), we obtain

1
n

d
dt

n∑

k=1

(
CV θk + V [εk, θk] +

1
2
u̇2k + Γ(εk)

)
(t)(4.10)

=
1
n

n∑

k=1

(gk(θk, ·) + fk(θk, ·)u̇k) (t),

where

|gk(θk, t)| � n

∫ k
n

k−1
n

|g(θk, x, t)| dx � Kθk(t) + n
∫ k

n

k−1
n

g0(x, t) dx,(4.11)

|fk(θk, t)| � n

∫ k
n

k−1
n

f0(x, t) dx.(4.12)

Furthermore,

1
n

n∑

k=1

θk(0) �
∫ 1

0

(
θ0(x) +

1
n
|θ0x(x)|

)
dx,(4.13)

1
n

n∑

k=1

u̇2k(0) �
∫ 1

0

(
|u1(x)|2 + 2

n
|u1(x)||u1x(x)|

)
dx,(4.14)

1
n

n∑

k=1

Γ(εk)(0) � γ0
2n

n∑

k=1

ε2k(0) �
γ0
2

∫ 1

0
|u0x(x)|2 dx,(4.15)

and we obtain (4.8) from (4.10)–(4.15) and Gronwall’s lemma. �
The following estimate which goes back to Dafermos [D, DH] is crucial for the

proof of Theorem 3.1. We fix an auxiliary parameter α and assume

(4.16) α ∈
]
0,
1
3

]
.

Lemma 4.4. There exists a constant C2 > 0 such that for all t ∈ [0, Tn] we have

1
n

n∑

k=1

∫ t

0

(
n2(θk+1 − θk)

(
θ−α

k − θ−α
k+1

)
+ θ−α

k ε̇2k
)
(τ) dτ � C2,(4.17)

1
n

n∑

k=1

∫ t

0
θ3−α

k (τ) dτ � C2.(4.18)
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��		
. Multiply the equation (3.19) by −θ−α
k . Introducing a function

(4.19) ψ−α(r, θ̄) =
∫ θ̄

0
θ1−αϕθθ(r, θ) dθ

for r, θ̄ > 0, we obtain, using (1.10), (2.30), (2.7), (2.9) and (2.11),

d
dt

(
− CV

1− α
θ1−α

k +
1
2

∫ ∞

0
ψ−α(r, θk)s2r[εk] dr

)
(4.20)

+ µε̇2kθ
−α
k + n2 (θk+1 − 2θk + θk−1) θ

−α
k

= − θ−α
k

(
gk(θk, t) +

∫ ∞

0
ϕ(r, θk)sr[εk] (εk − sr[εk])t dr

)

+ βθ1−α
k ε̇k − (1− α)

∫ θk

0

∫ ∞

0
θ−αϕθ(r, θ)sr[εk](sr[εk])t dr dθ

� (|β|+ L) θ1−α
k |ε̇k|+Kθ1−α

k .

By hypothesis (2.12), we have

(4.21)
∣∣∣
∫ ∞

0
ψ−α(r, θk)s

2
r[εk] dr

∣∣∣ �
∫ θk

0
θ−α

∫ ∞

0
θ |ϕθθ(r, θ)| r2 dr dθ � CV

1− α
θ1−α

k

and, by Lemma 4.3 and Hölder’s inequality,

(4.22)
1
n

n∑

k=1

θ1−α
k (t) � C1−α

1 ∀t ∈ [0, Tn].

Summing and integrating (4.20), we obtain, using (4.21), (4.22),

1
n

n∑

k=1

∫ t

0

(
µθ−α

k ε̇2k + n
2(θk+1 − θk)(θ

−α
k − θ−α

k+1)
)
(τ) dτ(4.23)

� C

(
1 +
1
n

n∑

k=1

∫ t

0

(
θ1−α

k |ε̇k|
)
(τ) dτ

)
.

From Hölder’s inequality it follows that
(4.24)

1
n

n∑

k=1

∫ t

0

(
θ1−α

k |ε̇k|
)
(τ) dτ �

(
1
n

n∑

k=1

∫ t

0
θ2−α

k (τ) dτ

) 1
2
(
1
n

n∑

k=1

∫ t

0

(
θ−α

k ε̇2k
)
(τ) dτ

) 1
2

.
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On the other hand, for an arbitrary p ∈ ]0, 2− α] we estimate, using Lemmas 4.1

and 4.3,

1
n

n∑

k=1

∫ t

0
θp+1

k (τ) dτ � max
0�τ�t

(
1
n

n∑

k=1

θk(τ) dτ

)∫ t

0
max

j
θp

j (τ) dτ(4.25)

� C

(
1 + n

n−1∑

k=1

∫ t

0
(θk+1 − θk)(θ

−α
k − θ−α

k+1)(τ) dτ

) p
2−α

.

Inequality (4.17) now follows from (4.23), (4.24), (4.25) for p = 1 − α, and from

Young’s inequality. The estimate (4.18) is then obtained from (4.25) for p = 2− α.
�

Lemma 4.5. There exists a constant C3 > 0 such that for all t ∈ [0, Tn] we have

(4.26)
1
n

n∑

k=1

(
u̇2k(t) + Γ(εk(t)) +

∫ t

0
ε̇2k(τ) dτ

)
� C3.

��		
. Integrating (4.9) from 0 to t and using (2.21), (4.8) and (4.12)–(4.15),

we find

1
n

n∑

k=1

(
1
2
u̇2k(t) + Γ(εk(t)) + µ

∫ t

0
ε̇2k(τ) dτ

)
(4.27)

� C

(
1 +
1
n

n∑

k=1

∫ t

0
(1 + θk)|ε̇k|(τ) dτ

)

� C

(
1 +
1
n

n∑

k=1

∫ t

0

(
|ε̇k|+ θ1+

α
2

k (θ
−α
2

k |ε̇k|)
)
(τ) dτ

)
,

and (4.26) follows from Hölder’s inequality, (4.17) and (4.18). �

Lemma 4.6. There exists a constant C4 > 0 such that for every t ∈ [0, Tn] we

have

1
n

n∑

k=1

ε̇2k(t) + n
n−1∑

k=1

∫ t

0
(ε̇k+1 − ε̇k)2(τ) dτ(4.28)

� C4

(
1 + n

n−1∑

k=1

∫ t

0
|θk+1 − θk|2(τ) dτ

)
.
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��		
. Multiply (3.1) by ε̇k − ε̇k+1 and sum over k = 1, . . . , n− 1. Then

1
n

n∑

k=1

ε̈kε̇k + nµ
n−1∑

k=1

(ε̇k+1 − ε̇k)2(4.29)

= n
n−1∑

k=1

(
γ(εk+1)− γ(εk) + P [εk+1, θk+1]

− P [εk, θk]− β(θk+1 − θk) +
1
n
fk(θk, t)

)
(ε̇k − ε̇k+1).

We have

1
n

n∑

k=1

ε̇2k(0) = n
n∑

k=1

(∫ k
n

k−1
n

u1x(x) dx

)2
�
∫ 1

0
|u1x|2 dx,(4.30)

n

n−1∑

k=1

(εk+1 − εk)
2(0) = n3

n−1∑

k=1

(∫ k
n

k−1
n

∫ x+ 1n

x

u0xx(ξ) dξ dx

)2
(4.31)

� n

∫ 1− 1
n

0

∫ x+ 1n

x

|u0xx(ξ)|2 dξ dx �
∫ 1

0
|u0xx(ξ)|2 dξ,

where the last inequality follows from Fubini’s theorem. Furthermore,
[
n

n−1∑

k=1

(εk+1 − εk)2(t)

] 1
2

(4.32)

�
[
n

n−1∑

k=1

(
|εk+1 − εk|(0) +

∫ t

0
|ε̇k+1 − ε̇k|(τ) dτ

)2] 1
2

�
(
n

n−1∑

k=1

(εk+1 − εk)2(0)

) 1
2

+

(
tn

n−1∑

k=1

∫ t

0
(ε̇k+1 − ε̇k)2(τ) dτ

) 1
2

.

Integrating (4.29) from 0 to t and using (2.6), (4.30)–(4.32), (2.23), (3.6), (2.8) and

Hölder’s inequality, we obtain

1
n

n∑

k=1

ε̇2k(t) + n
n−1∑

k=1

∫ t

0
(ε̇k+1 − ε̇k)2(τ) dτ(4.33)

� C

(
1 + n

n−1∑

k=1

∫ t

0

[
(θk+1 − θk)2(τ) +

∫ τ

0
(ε̇k+1 − ε̇k)2(s) ds

]
dτ

)
.

The functions w(t) := n
n−1∑
k=1

∫ t

0 (ε̇k+1 − ε̇k)2(τ) dτ and A(t) := 1 + n
n−1∑
k=1

∫ t

0 (θk+1 −
θk)2(τ) dτ are nonnegative, nondecreasing, and satisfy the inequality

(4.34) w(t) � C

(
A(t) +

∫ t

0
w(τ) dτ

)
, t ∈ [0, Tn],
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which implies

(4.35)
∫ t

0
w(τ) dτ � CA(t)

(
eCt − 1

)
� CA(t)eCT .

The assertion now follows from (4.33) and (4.35). �

Lemma 4.7. There exists a constant C5 > 0 such that for every t ∈ [0, Tn] we

have

(4.36)
1
n

n∑

k=1

θ2k(t) + n
n−1∑

k=1

∫ t

0
(θk+1 − θk)2(τ) dτ � C5,

(4.37)
1
n

n∑

k=1

(
ε2k(t) + ε̇

2
k(t)

)
+n

n−1∑

k=1

[
(εk+1 − εk)2(t) +

∫ t

0
(ε̇k+1 − ε̇k)2(τ) dτ

]
� C5,

(4.38)
1
n

n∑

k=1

∫ t

0
(ε̇4k + θ

4
k)(τ) dτ � C5.

��		
. Multiply (3.19) by θk and put

(4.39) ψ1(r, θ̄) :=
∫ θ̄

0
θ2ϕθθ(r, θ) dθ for r, θ̄ > 0

according to (4.19). Then

1
2
d
dt

(
CV θ

2
k −

∫ ∞

0
ψ1(r, θk)s2r [εk] dr

)
− n2(θk+1 − 2θk + θk−1)θk(4.40)

= θk

(
µε̇2k +

∫ ∞

0
ϕ(r, θk)sr[εk](εk − sr[εk])t dr + gk(θk, t)

)

− βθ2k ε̇k +
∫ ∞

0
(θ2kϕθ(r, θk)− ψ1(r, θk))sr [εk](sr[εk]t) dr,

where Hypothesis 2.2 yields that

∣∣θ2kϕθ(r, θk)− ψ1(r, θk)
∣∣ = 2

∣∣∣∣
∫ θk

0
θϕθ(r, θ) dθ

∣∣∣∣ � θ2kmax
θ
|ϕθ(r, θ)| ,(4.41)

∣∣∣∣
∫ ∞

0
ψ1(r, θk)s2r[εk] dr

∣∣∣∣ �
∫ θk

0

∫ ∞

0
θ2 |ϕθθ(r, θ)| r2 dr dθ � CV

2
θ2k.(4.42)

Similarly as in (4.14) we have

(4.43)
1
n

n∑

k=1

θ2k(0) �
∫ 1

0

(
|θ0(x)|2 + 2

n
|θ0(x)||θ0x(x)|

)
dx.
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Summing (4.40) over k = 1, . . . , n, and integrating from 0 to t, we obtain from (4.41),

(4.42), (2.11), (2.31), (2.7), (2.9), (3.6) and (2.30) that

1
n

n∑

k=1

θ2k(t) + n
n−1∑

k=1

∫ t

0
(θk+1 − θk)

2(τ) dτ(4.44)

� C

(
1 +
1
n

n∑

k=1

∫ t

0

(
(1 + θ2k)(1 + |ε̇k|) + θkε̇

2
k

)
(τ) dτ

)
.

We now apply Hölder’s inequality to the right-hand side of (4.44). We have

1
n

n∑

k=1

∫ t

0
(θkε̇

2
k)(τ) dτ �

(
1
n

n∑

k=1

∫ t

0
θ2k(τ) dτ

) 1
2
(
1
n

n∑

k=1

∫ t

0
ε̇4k(τ) dτ

) 1
2

,(4.45)

1
n

n∑

k=1

∫ t

0
(θ2k|ε̇k|)(τ) dτ �

(
1
n

n∑

k=1

∫ t

0
θ
8
3
k (τ) dτ

) 3
4
(
1
n

n∑

k=1

∫ t

0
ε̇4k(τ) dτ

) 1
4

,(4.46)

whence, by Lemma 4.4,

(4.47)
1
n

n∑

k=1

∫ t

0
θ2k(t) + n

n−1∑

k=1

∫ t

0
(θk+1 − θk)2(τ) dτ � C

(
1 +
1
n

n∑

k=1

∫ t

0
ε̇4k(τ) dτ

) 1
2

.

Moreover,

(4.48)
1
n

n∑

k=1

∫ t

0
ε̇4k(τ) dτ � max

τ

(
1
n

n∑

k=1

ε̇2k(τ)

)
·
∫ t

0
max

j
ε̇2j(τ) dτ,

where, by Lemmas 4.2 and 4.5,

∫ t

0
max

j
ε̇2j(τ) dτ � 1

n

n∑

k=1

∫ t

0
ε̇2k(τ) dτ(4.49)

+ 2

(
1
n

n∑

k=1

∫ t

0
ε̇2k(τ) dτ

) 1
2
(
n

n−1∑

k=1

∫ t

0
(ε̇k+1 − ε̇k)2(τ) dτ

) 1
2

� C

(
1 + n

n−1∑

k=1

∫ t

0
(ε̇k+1 − ε̇k)2(τ) dτ

) 1
2

.

Combining (4.47)–(4.49) with (4.27), we obtain for all t ∈ [0, Tn] that

(4.50)

1
n

n∑

k=1

θ2k(t) + n
n−1∑

k=1

∫ t

0
(θk+1 − θk)2(τ) dτ � C

(
1 + n

n−1∑

k=1

∫ t

0
(θk+1 − θk)2(τ) dτ

) 3
4

.
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Thus, (4.36) follows from Young’s inequality, (4.37) is then a consequence of

(4.28), (4.36), (4.32) and of the obvious inequality 1
n

n∑
k=1

ε2k(t) �
∫ 1
0 |u0x|2 dx +

C
n max0�τ�t

n∑
k=1

ε̇2k(τ) analogous to (4.32). Estimate (4.38) is obtained using the argu-

ment of (4.48). �

Lemma 4.8. There exists a constant C6 > 0 such that for all t ∈ [0, Tn] we have

(4.51)
1
n

n∑

k=1

∫ t

0
θ̇2k(τ) dτ + n

n−1∑

k=1

(θk+1 − θk)2(t) � C6,

(4.52) n3
n−1∑

k=1

∫ t

0
(θk+1 − 2θk + θk−1)2(τ) dτ � C6.

��		
. Multiplying (3.19) by θ̇k, we infer from Hypotheses 2.1 and 2.2 that

CV

2n

n∑

k=1

θ̇2k(t) +
n

2
d
dt

n−1∑

k=1

(θk+1 − θk)2(t)(4.53)

� C

n

n∑

k=1

|θ̇k(t)|
(
1 + θ2k(t) + ε̇

2
k(t) + n

∫ k
n

k−1
n

g0(x, t) dx

)
.

Integrating (4.53) with respect to t and using the inequality

(4.54) n

n−1∑

k=1

(θk+1 − θk)
2(0) �

∫ 1

0
|θ0x(x)|2 dx,

we obtain (4.51) from (4.38). Inequality (4.52) is an immediate consequence of (4.51)
and equation (3.19). �

Lemma 4.9. There exists a constant C7 > 0 such that for all t ∈ [0, Tn] we have

(4.55)
1
n

n∑

k=1

(
ü2k(t) +

∫ t

0
ε̈2k(τ) dτ

)
� C7.

��		
. The right-hand side of (3.1) is absolutely continuous. Differentiating

with respect to t and multiplying by ük(t), we obtain for a.e. t that

(4.56)
1
n

n∑

k=1

(
1
2
d
dt
ü2k + σ̇ε̈

)
(t) =

1
n

n∑

k=1

ük

(
∂fk

∂t
+ θ̇k

∂fk

∂θ

)
(θk(t), t).
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Hence, by hypotheses (2.8) and (2.9) and by inequality (2.22), we find that for all t

1
2n
d
dt

n∑

k=1

ü2k(t) + µn
n∑

k=1

ε̈2k(t)(4.57)

� C

n

n∑

k=1

[
|ε̈k|(1 + |θ̇k|+ |ε̇k|) + |ük|

(
|θ̇k|+

∣∣∣∣
∂fk

∂t

∣∣∣∣
)]
(t),

where

(4.58)
1
n

n∑

k=1

∫ t

0

∣∣∣∣
∂fk

∂t
(θk(τ), τ)

∣∣∣∣
2

dτ �
∫ t

0

∫ 1

0
f20 (x, τ) dxdτ.

For the initial value ük(0) we obtain from equation (3.1) and inequality (2.23) the
estimate

1
n

n−1∑

k=1

ü2k(0) � Cn

n−1∑

k=1

(
(εk+1 − εk)

2(0) + (ε̇k+1 − ε̇k)
2(0)

+ (θk+1 − θk)2(0)
)
+
2
n

n−1∑

k=1

f2k (θk(0), 0),(4.59)

where

(4.60)
1
n

n−1∑

k=1

f2k (θk(0), 0) �
n∑

k=1

∫ k
n

k−1
n

f2(θk(0), x, 0) dx.

For a.e. x ∈ ]0, 1[, t, s ∈ [0, T ] and θ > 0, we infer from hypothesis (2.8) that

(4.61) f2(θ, x, t) � f20 (x, s) + 2
∫ t

s

f20 (x, τ) dτ,

whence

(4.62) max
t,θ

f2(θ, x, t) � C

∫ T

0
f20 (x, τ) dτ a.e. in ]0, 1[ .

The estimate

(4.63) n

n−1∑

k=1

(ε̇k+1 − ε̇k)2(0) �
∫ 1

0
|u1xx(x)|2 dx,

which is similar to (4.31), now yields that

(4.64)
1
n

n−1∑

k=1

ü2k(0) � C.

Integrating (4.57) from 0 to t, we easily obtain (4.55) from (4.58), (4.64) and Lemmas
4.7 and 4.8. �
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Lemma 4.10. There exists a constant C8 > 0 such that for all t ∈ [0, Tn] we have

(4.65) n
n−1∑

k=1

(ε̇k+1 − ε̇k)
2 (t) � C8.

��		
. Using again equation (3.1) and inequalities (3.23), (4.62), we obtain for
t ∈ [0, Tn] that

n

n−1∑

k=1

(ε̇k+1 − ε̇k)
2 (t) � C

(
1 +
1
n

n−1∑

k=1

(
ü2k(t) + n

2(εk+1 − εk)
2(t)(4.66)

+ n2(θk+1 − θk)2(t) +
∫ t

0
(ε̇k+1 − ε̇k)2(τ) dτ

))
.

The assertion now follows from Lemmas 4.7 to 4.9 and a Gronwall-type argument.
�

To conclude this section, we just notice that Theorem 3.1 is proved by Lemmas

4.5–4.10.

5. Existence

In this section we will construct a sequence {u(n), θ(n)} of approximate solutions
to the system (2.1)–(2.4) and use the compactness method to prove that a limit point
of this sequence solves (2.1)–(2.4) in the sense of Theorem 2.4.

Let n ∈ � be given, and let u1, . . . , un−1, θ1, . . . , θn satisfy the system (3.1)–(3.7).
For t ∈ [0, T ], x ∈

[
k−1

n , k
n

[
, k = 1, . . . , n, we define functions (continuously extended

to x = 1)

θ(n)(x, t) =
1
2
(θk + θk−1) + n

(
x− k − 1

n

)
(θk − θk−1)(5.1)

+
n2

2

(
x− k − 1

n

)2
(θk+1 − 2θk + θk−1),

θ̃(n)(x, t) = θk,(5.2)

u(n)(x, t) = uk−1 + n

(
x− k − 1

n

)
(uk − uk−1),(5.3)

ũ(n)(x, t) = uk,(5.4)

ε(n)(x, t) = εk + n

(
x− k − 1

n

)
(εk+1 − εk),(5.5)

ε̃(n)(x, t) = εk,(5.6)

σ(n)(x, t) = σk,(5.7)
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where we have put un+1 := −un−1 so that εn+1 = εn.

By Theorem 3.1 and Corollary 3.2 there exists a constant C > 0, independent of
n, such that (‖ · ‖ denotes the norm of L2(0, 1))

‖θ(n)(t)‖2 + ‖θ(n)x (t)‖2 + ‖ε(n)t (t)‖2 + ‖ε(n)xt (t)‖2 + ‖u(n)t (t)‖2(5.8)

+ ‖u(n)tt (t)‖2 + ‖ε(n)(t)‖2 + ‖ε(n)x (t)‖2 � C ∀t ∈ [0, T ],

(5.9)
∫ T

0

(
‖ε(n)tt ‖2 + ‖θ(n)t ‖2 + ‖θ(n)xx ‖2

)
(t) dt � C.

We further have for every x and t that

∣∣∣ũ(n)(x, t)− u(n)(x, t)
∣∣∣
2

� 1
n2

n∑

k=1

ε2k(t) � C

n
,(5.10)

∣∣∣ε̃(n)(x, t) − ε(n)(x, t)
∣∣∣
2

�
n−1∑

k=1

(εk+1 − εk)
2(t) =

1
n
‖ε(n)x (t)‖2 � C

n
,(5.11)

∣∣∣θ̃(n)(x, t)− θ(n)(x, t)
∣∣∣
2

�
n∑

k=1

(θk+1 − θk)2(t) �
C

n
,(5.12)

∣∣∣ε̃(n)t (x, t) − ε
(n)
t (x, t)

∣∣∣
2

�
n−1∑

k=1

(ε̇k+1 − ε̇k)2(t) � C

n
,(5.13)

∫ T

0

∣∣∣ũ(n)tt (x, t)− u
(n)
tt (x, t)

∣∣∣
2
dt � 1

n2

n∑

k=1

∫ T

0
ε̈2k(t) dt � C

n
,(5.14)

u(n)x = ε̃(n).(5.15)

From the estimates (5.8)–(5.9) we conclude that there exist subsequences (still

indexed by (n), for the sake of simplicity) and functions u, ε, θ such that

θ(n)xx → θxx, θ
(n)
t → θt, ε

(n)
tt → εtt, all weakly in L2(]0, 1[× ]0, T [),(5.16)

ε
(n)
xt → εxt, ε

(n)
x → εx, ε

(n)
t → εt, u

(n)
tt → utt, θ

(n)
x → θx,(5.17)

all weakly* in L∞(0, T ;L2(0, 1)),

ux = ε,(5.18)

and, by compact embedding,

ε
(n)
t → εt, ε

(n) → ε, u
(n)
t → ut, u

(n) → u, θ(n) → θ,(5.19)

all in C([0, 1]× [0, T ]) uniformly.
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The functions u(n), θ(n) fulfil the boundary conditions (2.3). The convergence (5.16),

(5.19) implies that conditions (2.3), (2.4) holds also for the limit functions.

To prove the existence result, it remains to check that the system (2.1), (2.2) is

satisfied almost everywhere.

Let w ∈
◦
W 1,2(0, 1), z ∈ L2(0, 1) and η ∈ D(]0, T [) be arbitrary test functions.

Then the system (3.1)–(3.4) can be rewritten in the form

∫ T

0
η(t)

∫ 1

0

[(
ũ
(n)
tt (x, t)− f(θ̃(n)(x, t), x, t)

)
w(x) + σ(n)(x, t)w′(x)

]
dxdt(5.20)

= An :=
∫ T

0
η(t)

n∑

k=1

∫ k
n

k−1
n

(
w

(
k

n

)
− w(x)

) (
f(θk, x, t)− ük

)
dxdt,

∫ 1

0
z(x)

∫ T

0

[(
CV θ̃

(n) + V [u(n)x , θ̃(n)]
)
η′(t) +

(
κθ(n)xx + µ(u

(n)
xt )

2(5.21)

+ P [u(n)x , θ̃(n)]u(n)xt − βθ̃(n)u
(n)
xt + g

(
θ̃(n)(x, t), x, t

))
η(t)

]
dt dx

= Bn :=
∫ T

0
η(t)n

n∑

k=1

∫ k
n

k−1
n

g(θk, x, t)
∫ k

n

k−1
n

(z(x)− z(ξ)) dξ dxdt,

σn = γ(u(n)x ) + P [u(n)x , θ̃(n)] + µu(n)xt − βθ̃(n).(5.22)

The right-hand sides of (5.20), (5.21), respectively, can be estimated as follows.

|An| �
∫ T

0
|η(t)|

n∑

k=1

(∫ k
n

k−1
n

|w′(x)| dx
∫ k

n

k−1
n

(f0(x, t) + |ük|) dx
)
dt(5.23)

�
∫ T

0
|η(t)|

( n∑

k=1

(∫ k
n

k−1
n

|w′(x)| dx
)2)1/2

·

·
( n∑

k=1

(∫ k
n

k−1
n

(f0(x, t) + |ük|) dx
)2)1/2

dt

� 1
n
‖w′‖

∫ T

0
|η(t)|

( n∑

k=1

∫ k
n

k−1
n

(f0(x, t) + |ük|)2 dx
)1/2

dt

� 1
n
‖w′‖

∫ T

0
|η(t)|

((
1
n

n∑

k=1

ü2k

)1/2
+

(∫ 1

0
f20 (x, t) dx

)1/2)
dt

� C

n
‖w′‖‖η‖L2(0,T ),
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|Bn| � n

∫ T

0
|η(t)|

n∑

k=1

∫ k
n

k−1
n

(θk + g0(x, t))
∫ k

n

k−1
n

|z(x)− z(ζ)| dζ dxdt(5.24)

� n

∫ T

0
|η(t)|

( n∑

k=1

∫ k
n

k−1
n

(θk + g0(x, t))
2 dx

)1/2
·

·
( n∑

k=1

∫ k
n

k−1
n

(∫ k
n

k−1
n

|z(x)− z(ζ)| dζ
)2
dx

)1/2
dt

� Z1/2n

∫ T

0
|η(t)|

((
1
n

n∑

k=1

θ2k

)1/2
+

(∫ 1

0
g20(x, t) dx

)1/2)

� CZ1/2n ‖η‖L2(0,T ),

where

(5.25) Zn := n
n∑

k=1

∫ k
n

k−1
n

∫ k
n

k−1
n

|z(x)− z(ζ)|2 dζ dx.

Let us extend the function z by zero outside the interval [0, 1]. Then

(5.26)

Zn � n

n∑

k=1

∫ k
n

k−1
n

∫ x+ 1n

x− 1
n

|z(x)− z(ζ)|2 dζ dx = n
∫ 1

n

− 1
n

∫ 1

0
|z(x)− z(x+ s)|2 dxds.

By the Mean Continuity Theorem we have lim
s→0

∫ 1
0 |z(x)− z(x+ s)|2 dx = 0, hence

(5.27) lim
n→∞

Zn = lim
n→∞

Bn = 0.

Using the convergence results (5.10)–(5.19), (5.23), (5.27) and Proposition 2.6 (ii),

we can pass to the limit as n→∞ in (5.20)–(5.22) obtaining

(5.28) utt − σx − f(θ, x, t) = 0 a.e.,

(5.29) (CV θ + V [ux, θ])t − κθxx = µu2xt + P [ux, θ]uxt − βθuxt + g(θ, x, t) a.e.,

(5.30) σ = γ(ux) + P [ux, θ] + µuxt − βθ.

Hence (u, θ) is a solution to (2.1), (2.2) satisfying the assertions of Theorem 2.4.

Indeed, inequality (2.19) follows from Corollary 3.2 and the uniform convergence
θ̃(n) −→ θ.
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6. Uniqueness and continuous dependence

The proof of Theorem 2.4 will be complete if we prove that the problem (2.1)–(2.4)

admits at most one solution. In fact, we can prove more, namely

Theorem 6.1. Let Hypotheses 2.1(ii), 2.2 hold, let (u0, u1, θ0, f, g), (u′0, u′1,
θ′0, f ′, g′) be two sets of given functions satisfying Hypothesis 2.1, and let (u, θ),
(u′, θ′) be solutions of (2.1)–(2.4) corresponding to these data, respectively, which

satisfy (2.16)–(2.19). Assume moreover that there exist a constant K̃ > 0 and func-
tions df , dg ∈ L2(]0, 1[× ]0, T [) such that

|f(θ1, x, t)− f ′(θ2, x, t)| � K̃|θ1 − θ2|+ df (x, t),(6.1)

|g(θ1, x, t)− g′(θ2, x, t)| � K̃|θ1 − θ2|+ dg(x, t),(6.2)

holds for all θ1, θ2 ∈ �+ and a.e. (x, t) ∈ ]0, 1[× ]0, T [.
Then there exists a constant C depending only on the constant C in Theorem 3.1

(i.e. on the size of the data in their respective spaces) such that for all t ∈ [0, T ] the
differences u = u− u′, θ̄ = θ − θ′, satisfy

‖ut(t)‖2 +
∫ t

0

(
‖θ̄‖2 + ‖uxt‖2

)
(τ) dτ(6.3)

� C

(
‖ut(0)‖2 + ‖ux(0)‖2 + ‖θ̄(0)‖2 +

∫ t

0

∫ 1

0
(d2f + d

2
g) dxdt

)
.

��		
. It follows from equation (2.1) that
(6.4)
utt−µuxxt = βθ̄x+(P [ux, θ]−P [u′x, θ′])x+(γ(ux)− γ(u′x))x+ f(θ, x, t)− f ′(θ′, x, t)

a.e. in ]0, 1[ × ]0, T [. Multiplying (6.4) by ut and integrating over [0, 1], we obtain,

using (6.1) and (2.19),

1
2
d
dt

∫ 1

0
u2t dx+ µ

∫ 1

0
u2xt dx(6.5)

� K1

∫ 1

0

[
|θ̄||uxt|+ (|θ̄|+ df )|ut|

+

(
|ux(0)|+

∫ t

0
|uxt|(τ) dτ

)
|uxt|

]
dx a.e.,

where K1 > 0 is a constant. Consequently,

(6.6)
d
dt

∫ 1

0
u2t dx+

∫ 1

0
u2xt dx � K2

∫ 1

0

(
θ̄2+|ux(0)|2+d2f+

(∫ t

0
|uxt(τ)| dτ

)2)
dx
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for a.e. t with a constant K2 > 0. Similarly, integrating (2.2) over [0, t], we obtain

(
CV θ̄ + V [ux, θ]− V [u′x, θ′]

)
(x, t)− κ

∫ t

0
θ̄xx dτ(6.7)

=
(
CV θ̄ + V [ux, θ]− V [u′x, θ′]

)
(x, 0)

+
∫ t

0

[
µ(u2xt − u′

2
xt) + P [ux, θ]uxt − P [u′x, θ′]u′xt

− β(θuxt − θ′u′xt) + g(θ, x, τ)− g′(θ′, x, τ)
]
dτ.

The functions uxt, u′xt, θ, θ
′, P [ux, θ], P [u′x, θ′], are uniformly bounded by a constant

depending only on the constant C from Theorem 3.1. Moreover, using (2.24), we
can estimate

(6.8) |V [ux, θ]− V [u′x, θ′]| (x, t) � CV

2
|θ̄(x, t)| + V0

(
|ux(x, 0)|+

∫ t

0
|uxt(x, τ)| dτ

)
.

Multiplying (6.7) by θ̄(x, t) and integrating over [0, 1], we therefore obtain, using
(2.23),

CV

∫ 1

0
θ̄2 dx+

κ

2
d
dt

∫ 1

0

(∫ t

0
θ̄x dτ

)2
dx(6.9)

� CV

2

∫ 1

0
θ̄2 dx

+K3

∫ 1

0
|θ̄|
[
|θ̄(x, 0)|+ |u(x, 0)|+

∫ t

0
(|uxt|+ |θ̄|+ dg) dτ

]
dx

with a constant K3 > 0 depending on C. Moreover, from Schwarz’s inequality it
follows that

CV

∫ 1

0
θ̄2 dx+ κ

d
dt

∫ 1

0

(∫ t

0
θ̄x dτ

)2
dx(6.10)

� K4

∫ 1

0

(
|θ̄(x, 0)|2 + |u(x, 0)|2 +

(∫ t

0
(|uxt|+ |θ̄|+ dg) dτ

)2)
dx,

for a suitable constant K4 > 0. An appropriate linear combination of (6.6) and
(6.10) then yields

‖θ̄(t)‖2 + ‖uxt(t)‖2 +
d
dt

(
‖ut(t)‖2 +

∥∥∥∥
∫ t

0
θ̄x dτ

∥∥∥∥
2
)

(6.11)

� K5

(
‖θ̄(0)‖2 + ‖ux(0)‖2 +

∫ 1

0
d2f (x, t) dx

+ t
∫ t

0

(
‖uxt‖2 + ‖θ‖2 +

∫ 1

0
d2g(x, τ) dx

)
dτ

)
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for a constant K5 > 0. Inequality (6.11) is of the form

(6.12) ẇ(t) � a(t) + b(t)w(t),

where

w(t) = ‖ut(t)‖2 + ‖
∫ t

0
θ̄x dτ‖ +

∫ t

0

(
‖θ̄‖2 + ‖uxt‖2

)
dτ,(6.13)

a(t) = K5

(
‖θ̄(0)‖2 + ‖uxt(0)‖2 +

∫ 1

0
d2f (x, t) dx+ t

∫ t

0

∫ 1

0
d2g(x, τ) dxdτ

)
,(6.14)

b(t) = K5t,(6.15)

which entails

(6.16) w(t) � eB(t)w(0) +
∫ t

0
eB(t)−B(τ)a(τ) dτ,

where B(t) =
∫ t

0 b(τ) dτ =
1
2K5t

2.

Inequality (6.3) then immediately follows with a constant C depending on K5
and T . �
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