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Abstract. Phase-field systems as mathematical models for phase transitions have drawn a
considerable attention in recent years. However, while they are suitable for capturing many
of the experimentally observed phenomena, they are only of restricted value in modelling
hysteresis effects occurring during phase transition processes. To overcome this shortcom-
ing of existing phase-field theories, the authors have recently proposed a new approach
to phase-field models which is based on the mathematical theory of hysteresis operators
developed in the past fifteen years. Well-posedness and thermodynamic consistency were
proved for a phase-field system with hysteresis which is closely related to the model ad-
vanced by Caginalp in a series of papers. In this note the more difficult case of a phase-field
system of Penrose-Fife type with hysteresis is investigated. Under slightly more restric-
tive assumptions than in the Caginalp case it is shown that the system is well-posed and
thermodynamically consistent.

Keywords: Phase-field systems, phase transitions, hysteresis operators, well-posedness of
parabolic systems, thermodynamic consistency, Penrose-Fife model
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1. Introduction

The theory of hysteresis operators developed in the past fifteen years (let us at least

refer to the monographs [13], [19], [25], [4], [14] devoted to this subject) has proved
to be a powerful tool for solving mathematical problems in various branches of appli-

cations such as solid mechanics, material fatigue, ferromagnetism, phase transitions,
and many others. In this paper we propose an approach using hysteresis operators

in classical phase-field models for phase transitions and their generalizations.
For the reader’s convenience, let us recall the motivation that we have explained al-

ready in the previous paper [15]. In nature, many phase transitions are accompanied
by hysteresis effects (rather, they are driving mechanisms behind their occurrence).
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On the other hand, the nonconvex free energy functionals (typically, double-well

potentials) usually considered in phase-field models may induce hysteresis effects by
themselves (cf., for instance, Chapter 4 in [4]); however, they are by far too simplistic
to give a correct account of the complicated loopings due to the storage and deletion

of internal memory that are observed in thermoplastic materials or ferromagnets.
An additional motivation comes from the fact that hysteresis operators also arise

quite naturally already in simple classical phase-field models. To demonstrate this,
let us consider the well-known model for melting and solidification which is usually

referred to as the relaxed Stefan problem with undercooling and overheating (see [9],
[23], [24], for instance).

To fix things, suppose that the phase transition takes place in an open and bounded
container Ω ⊂ �

N during the time period [0, T ], where T > 0 is the final time.

Then the mathematical problem consists in finding real-valued functions θ = θ(x, t)
(absolute temperature) and χ = χ(x, t) (phase fraction, the order parameter of the

phase transition) in Ω× ]0, T [. The function χ is allowed to take values only in the
interval [0, 1], where χ = 1 corresponds to the liquid phase, χ = 0 to the solid phase

and χ ∈ ]0, 1[ to the mushy region. The evolution of the system is governed by the
balance of internal energy

(1.1) Ut = − div q + ψ,

where U = U(θ, χ) is the internal energy, q is the heat flux which we assume here to

obey Fourier’s law

(1.2) q = −κ∇θ

with a constant heat conduction coefficient κ > 0 and ψ is the heat source density,

and by the melting/solidification law

(1.3) µ̂(χ, θ)χt ∈ −∂χF (θ, χ),

where F = F (θ, χ) is the free energy, ∂χ is the partial subdifferential with respect to
χ and µ̂ : [0, 1]× ]0,∞[→ ]0,∞[ is the relaxation coefficient. In order to ensure the
thermodynamical consistency of the model, we have to require that

(1.4) θ(x, t) > 0 a.e. in Ω× ]0, T [ ,

and that the Clausius-Duhem inequality St � − div
(q
θ

)
+
ψ

θ
holds, which in view

of (1.1), (1.2) and (1.4) is certainly the case if only

(1.5) Ut � θSt a.e.,
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where S :=
1
θ
(U − F ) denotes the entropy.

A standard choice [9] for F is given by

(1.6) F := F0(θ) + λ(χ) + θI(χ)−
L

θc
(θ − θc)χ,

(1.7) U := cV θ + λ(χ) + Lχ,

where

(1.8) F0(θ) := cV θ(1− log θ),

(1.9) λ(χ) := αχ(1 − χ).

Here I is the indicator function of the interval [0, 1] and L (latent heat), θc (melting
temperature), cV (specific heat) and α < L (limit of undercooling/overheating) are

positive constants (see Fig. 1). Note that the graph Γθ(χ) := θ
(
I(χ) − Lχ/θc

)
+

Lχ + αχ(1 − χ) is just the “double-obstacle potential” considered in a number of

recent papers. We refer the reader to [2], [3], [8], [12].

0 χ

F

1
�
θ < θc

(
1− α

L

)

0 χ

F

1�
θ = θc

0 χ

F

1�
θc < θ < θc

(
1 + α

L

)

Figure 1: Free energy F at different temperatures θ.

The differential inclusion (1.3) then reads

(1.10) µ̂(χ, θ)χt + λ′(χ)−
L

θc
(θ − θc) ∈ −∂χI(χ),
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or, equivalently (see Fig. 2),

(1.11) χ ∈ [0, 1],
(
µ̂(χ, θ)χt + λ′(χ)−

L

θc
(θ − θc)

)
(z − χ) � 0 ∀z ∈ [0, 1].

0 θ

χ

θc
(
1− α

L

)
θc θc

(
1 + α

L

)

χt > 0

χt < 0

1�
Figure 2: The θ − χ diagram corresponding to (1.11).

It is easy to see that every solution (θ, χ) of (1.1), (1.2), (1.6)–(1.9), (1.11) for which
(1.4) holds, satisfies formally the Clausius-Duhem inequality. Indeed, for χ ∈ [0, 1]
we have I(χ) ≡ 0 and S = cV log θ +

L

θc
χ, hence

(1.12) Ut − θSt =
(
λ′(χ)− L

θc
(θ − θc)

)
χt � 0

according to (1.11).

We now introduce an auxiliary variable

(1.13) w(x, t) :=
∫ t

0

1
µ̂(χ, θ)

( L
θc
(θ − θc)− λ′(χ)

)
(x, τ) dτ.

Then inequality (1.11) takes the form

(1.14) χ ∈ [0, 1], (χt − wt)(z − χ) � 0 ∀z ∈ [0, 1].

At this point, the notion of hysteresis operators comes into play. Variational inequal-
ity (1.14) is known to have a unique solution χ ∈ W 1,1(0, T ) for every w ∈W 1,1(0, T )

and an initial condition χ(0) = χ0 ∈ [0, 1]. According to [13], [25], [4], [14], it is conve-
nient to introduce the solution operator sZ of (1.14) called stop, where the subscript

Z stands for the convex constraint Z = [0, 1], that is,

(1.15) χ = sZ [χ0, w].
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The hysteretic input-output behaviour of the stop operator is illustrated in Fig. 3.

Along the upper (lower) threshold line χ = 1, (χ = 0), the process is irreversible and
can only move to the right (to the left, respectively), while in between, motions in
both directions are admissible. This is similar to Prandtl’s model of perfect elasto-

plasticity, where the horizontal parts of the diagram correspond to plastic yielding
and the intermediate lines can be interpreted as linearly elastic trajectories.

0 w

χ

1�
Figure 3: A diagram of the stop operator (1.15).

Identity (1.15) enables us to eliminate χ from (1.13) and rewrite the system (1.1)–
(1.3) in the form

(1.16) µ̂(sZ [χ
0, w], θ)wt =

L

θc
(θ − θc)− λ′

(
sZ [χ

0, w]
)
,

(1.17)
(
cV θ + λ(sZ [χ

0, w]) + LsZ [χ
0, w]

)
t
− κ∆θ = ψ.

We thus obtain in a natural way a system of equations for an order parameter w

and the absolute temperature θ involving hysteresis operators.

In [15] we have studied a generalization of the field equations (1.16), (1.17), namely
an initial-boundary value problem for a system of the form

(1.18) µwt + f1[w] + f2[w]θ = 0,

(1.19) (cV θ + F1[w])t − κ∆θ = ψ(x, t, θ),

where f1, f2, F1 denote hysteresis operators and µ > 0 is a constant. Note that (1.16),
(1.17) with µ̂(χ, θ) ≡ µ becomes a special case of (1.18), (1.19) if we put g[w] :=

sZ [χ0, w] and define f1[w] := λ′(g[w])+L, F1[w] := λ(g[w])+Lg[w], f2[w] := −L/θc.
Thinking in terms of classical models, the system (1.18), (1.19) can be regarded as
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a phase-field model of Caginalp type (see [5], [4] and the references cited there) for

a free energy of the form

(1.20) F = F0(θ) + F1[w] + F2[w]θ,

where F1 and F2 are so-called clockwise admissible hysteresis potentials of f1 and f2,
respectively (the precise definition of clockwise admissibility will be given below).

It is the aim of this paper to investigate a hysteresis counterpart of the so-called
Penrose-Fife model of phase transitions (cf. [20], [4], [6], [7], [11], [10], [17], [18],

[22]) which formally results if we choose µ̂(χ, θ) = µθ with a constant coefficient
µ > 0.

We therefore replace here (1.18) by

(1.21) µwt +
1
θ
f1[w] + f2[w] = 0.

It should be clear, however, that we are now dealing with a free energy of the form
(1.20), so that (1.3) needs to be properly interpreted. Indeed, in the classical case the

relaxation law (1.3), with χ replaced by w, is combined with identities of the form
fi[w] = δwFi[w], i = 1, 2, where δw denotes the variation with respect to w, in order
to make the model comply with the Second Principle of Thermodynamics. However,

since hysteresis operators are, as a rule, non-differentiable, we cannot hope to have
these identities, as the variation δwFi[w] of Fi with respect to w does not exist.

In this regard, the situation is entirely different from classical phase-field models.
What is needed here to guarantee the thermodynamical consistency of the model is

a property of energy dissipation which is specific for hysteresis operators and leads
to the concept of clockwise admissibility as made precise below.

The main mathematical difficulty in the analysis of the system (1.21), (1.19) is,

besides the hysteretic nonlinearities, the occurrence of a singularity in (1.21) which
makes it necessary to prove the positivity of temperature along with the existence

of a solution. It will be shown in the following sections that under quite natural
conditions on the hysteresis operators involved an initial-boundary value problem

for the system (1.21), (1.19) is well-posed and thermodynamically consistent. The
technique used in the proof is an extension of a method recently introduced in [8].

It combines a “cutoff”–method with the specific property of energy dissipation of
hysteresis operators.
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2. Statement of the problem

We put, for the sake of convenience, cV = κ = 1 and consider the system of

equations in Ω× ]0, T [

(2.1) µwt +
1
θ
f1[w] + f2[w] = 0,

(2.2) (θ + F1[w])t −∆θ = ψ(x, t, θ),

coupled with the initial conditions

(2.3) w(x, 0) = w0(x), θ(x, 0) = θ0(x) for x ∈ Ω,

and with the Neumann boundary condition

(2.4)
∂θ

∂n
(x, t) = 0 for (x, t) ∈ ∂Ω× ]0, T [ ,

where n(x) is the unit outward normal to ∂Ω at the point x ∈ ∂Ω. This simple

boundary condition has been chosen in order to make the method of hysteresis oper-
ators more transparent, which is our main goal here. We assume that T > 0, µ > 0

are given numbers and that Ω ⊂ �
N is a given bounded domain with a lipschitzian

boundary.

We now formulate precisely the assumptions on the mappings f1, f2, F2, ψ.
(H1) f1, f2 : C[0, T ] → C[0, T ] are causal, bounded and Lipschitz continuous

operators; in other words, there exists a constant K1 such that for every w1, w2,
w ∈ C[0, T ] and t ∈ [0, T ] we have

(2.5)
∣∣fi[w1](t)− fi[w2](t)

∣∣ � K1 max
0�s�t

|w1(s)− w2(s)|, i = 1, 2,

(2.6)
∣∣fi[w](t)

∣∣ � K1, i = 1, 2.

(H2) The mapping F1 : W 1,2(0, T ) → W 1,2(0, T ) is causal, and there exist a
constant K2 > 0 and a function ϕ : �+ → �

+ such that

(2.7)
∣∣∣ d
dt
F1[w](t)

∣∣∣ � K2|ẇ(t)| a.e. in ]0, T [ , ∀w ∈W 1,2(0, T ),

∣∣F1[w1](t)− F1[w2](t)
∣∣ � ϕ(M) ‖w1 − w2‖W 1,2(0,t)(2.8)

∀M > 0, ∀w1, w2 ∈W 1,2(0, T ) : max
{
‖wi‖W 1,2(0,T ) : i = 1, 2

}
� M,
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where we denote

(2.9) ‖w‖W 1,p(0,t) := |w(0)| +
(∫ t

0
|ẇ(s)|p ds

)1/p
∀t ∈ ]0, T ] , 1 � p <∞.

We moreover assume that the function ψ satisfies the condition

(2.10) ψ0 := ψ(·, ·, 0) ∈ Lq(Ω× ]0, T [), |ψθ(x, t, θ)| � K2 a.e.,

for some q >
r2N

rN − 1, where rN := max
{
2, 1 + N

2

}
.

(H3) It holds

(2.11) ψ0(x, t) � 0 a.e. in Ω× ]0, T [ ,

(2.12) F1[w](t) � 0 ∀w ∈ W 1,2(0, T ), ∀t ∈ [0, T ],

and there exist operators F2, g : W 1,2(0, T ) → W 1,2(0, T ) and a constant K3 > 0
such that the inequalities

(2.13) 0 � g[w]twt � K3w
2
t ,

(2.14) Fi[w]t − fi[w]g[w]t � 0

hold for each w ∈ W 1,2(0, T ) and a.e. t ∈ ]0, T [, i = 1, 2.
Let us mention that property (2.13) is called piecewise ([25]) or local ([14])

monotonicity.

������ 2.1. The domains of definition of the operators fi, Fi, g can be extended
in a natural way to functions which depend on both x and t and appear in (2.1),

(2.2). It suffices to keep the same symbols and put

(2.15) fi[w](x, t) := fi[w(x, ·)](t) for x ∈ Ω, t ∈ ]0, T [ ,

and similarly for Fi and g, for every function w such that w(x, ·) belongs to the
original domain of definition for a.e. x ∈ Ω.

������ 2.2. Inequality (2.14) is a typical condition which guarantees the ther-

modynamical consistency of hysteresis operators also in other areas of application.
It is fulfilled, in particular, for operators of the form

(2.16) fi[w] := Pi
[
g[w]

]
, Fi[w] := Ui

[
g[w]

]
,
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where Pi is a hysteresis operator with a clockwise admissible hysteresis potential Ui
in the sense of Section 2.5 in [4]. Note that in this case the “dissipation” over a
closed cycle (i.e. u(t1) = u(t2), Pi[u](t1) = Pi[u](t2), Ui[u](t1) = Ui[u](t2)) is positive
and equal to the integral ∫ t2

t1

Pi[u](t)
du(t)
dt
dt

or, in geometrical terms, to the area of the corresponding hysteresis loop, see Fig. 4.
A classical example is the Prandtl-Ishlinskii operator

(2.17) Pi[u] :=
∫ ∞

0
hi(r)sZr [u] dr, Ui[u] :=

1
2

∫ ∞

0
hi(r)s2Zr

[u] dr,

where sZr is the stop operator with characteristic Zr = [−r, r] and hi are given
nonnegative density functions.

u

p

�
Figure 4: Clockwise admissibility for p = Pi[u]

Also here, the condition (1.5) follows from (2.14) provided θ is positive. Indeed, if we
define the internal energy U = U [w, θ] := θ + F1[w] and the entropy S = S[w, θ] :=

log θ − F2[w], then we obtain formally

(2.18) Ut − θSt = F1[w]t + θF2[w]t � −µθwtg[w]t � 0,

so that (1.5) is satisfied. We will see below in Theorem 2.3 that hypotheses (H1)–
(H3) ensure also the positivity of θ. In conclusion, inequality (2.14), which reflects
the fundamental energy dissipation properties of hysteresis operators fi, takes over
the role of the identity fi[w] = δwFi[w] which is meaningless here. We should recall

that for constant temperature, (2.18) just means that F decreases in time.

The next three sections are devoted to the proof of the following theorems.

Theorem 2.3 (Existence). Let Ω ⊂ �
N be a bounded domain with a lip-

schitzian boundary, let hypotheses (H1), (H2), (H3) hold, and let δ > 0 be given.
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Then for every w0 ∈ L∞(Ω) and θ0 ∈ W 1,2(Ω) ∩ L∞(Ω) such that θ0(x) � δ

a.e. in Ω, problem (2.1)–(2.4) has a solution (w, θ) ∈ (L∞(Ω× ]0, T [))2 such that
θt,∆θ ∈ L2(Ω × ]0, T [), wt ∈ L∞(Ω × ]0, T [), θ(x, t) � δe−βt a.e. in Ω × ]0, T [,
where β is explicitly given in terms of the constants K1, K2, K3 from (H1), (H2),
(H3), namely β := K2 +K21K3/4µ, and such that (2.1), (2.2) are satisfied almost
everywhere.

Theorem 2.4 (Uniqueness and continuous dependence). Let the hypothe-
ses of Theorem 2.3 hold. Let w0i ∈ L∞(Ω), θ0i ∈ W 1,2(Ω) ∩ L∞(Ω) and ψi :
Ω × ]0, T [ × � → �, i = 1, 2, be given functions such that θ0i (x) � δ a.e. in Ω,

i = 1, 2. Let each of the functions ψ = ψ1, ψ = ψ2 satisfy (2.10), (2.11), and let

there exist a function dψ ∈ L2(Ω× ]0, T [) such that for a.e. (x, t, ϑi) ∈ Ω× ]0, T [×�,
i = 1, 2, we have

(2.19)
∣∣ψ1(x, t, ϑ1)− ψ2(x, t, ϑ

2)
∣∣ � dψ(x, t) +K2|ϑ1 − ϑ2|.

Let (w1, θ1), (w2, θ2) be solutions to (2.1)–(2.4) from Theorem 2.3 corresponding to

the data w01 , θ
0
1, ψ1 and w

0
2 , θ

0
2, ψ2, respectively. Then there exists a constant C > 0

depending only on the norm of the data in their respective spaces such that, for all

t ∈ [0, T ],

∫ t

0

∫

Ω

∣∣θ1 − θ2
∣∣2(x, τ) dxdτ(2.20)

� C
[
t
(
‖w01 − w02‖2L2(Ω) + ‖θ01 − θ02‖2L2(Ω)

)
+

∫ t

0

∫

Ω
d2ψ(x, τ) dxdτ

]
,

∫

Ω
‖w1 − w2‖2W 1,2(0,T )(x) dx(2.21)

� C
[
‖w01 − w02‖2L2(Ω) + ‖θ01 − θ02‖2L2(Ω) +

∫ T

0

∫

Ω
d2ψ(x, t) dxdt

]
.
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3. An auxiliary equation

Instead of (2.1), we first consider the “ordinary” differential equation

(3.1) µẇ(t) + (t)f1[w](t) + f2[w](t) = 0, w(0) = w0,

where the dot denotes the derivative with respect to t and  is a given function of
t. We omit the proof of the following two lemmas which are just special cases of

Lemmas 3.1, 3.2 in [15].

Lemma 3.1 (Existence). Let hypothesis (H1) hold, and let  ∈ L1(0, T ) and
w0 ∈ � be given. Then there exists a solution w ∈ W 1,1(0, T ) of (3.1) such that
(3.1) holds a.e., together with the estimate

(3.2) |ẇ(t)| � K1
µ

(
1 + |(t)|

)
.

Lemma 3.2 (Uniqueness and continuous dependence). Let hypothesis
(H1) hold. Then to every M > 0 there exists a constant CM > 0 such that for
every 1, 2 ∈ L1(0, T ), ‖i‖L1(0,T ) � M , i = 1, 2, the corresponding solutions w1,

w2 of (3.1) with initial conditions w01, w
0
2 , respectively, satisfy for a.e. t ∈ ]0, T [ the

estimates

(3.3) |w1(t)− w2(t)| � CM

(
|w01 − w02 |+

∫ t

0
|1 − 2|(s) ds

)
,

|ẇ1(t)− ẇ2(t)| � CM

(
|w01 − w02 |+

∫ t

0
|1 − 2|(s) ds

)
(3.4)

·
(
1 + |1(t)|

)
+
K1
µ

∣∣1(t)− 2(t)
∣∣.

Lemmas 3.1 and 3.2 enable us to introduce the solution operator Pp : � ×
Lp(0, T ) → W 1,p(0, T ) of equation (3.1) for every 1 � p � ∞ through the for-
mula

(3.5) w = Pp[w0, ].

Pp is obviously causal, and according to Lemmas 3.1, 3.2 it satisfies for every t ∈ [0, T ]
the following inequalities.
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Proposition 3.3. Let hypothesis (H1) hold. Then there exist a constant C2 > 0
and a function γ : �+ → �

+ such that for every M > 0 and every (w0, ), (w01 , 1),
(w02 , 2) ∈ �×Lp (0, T ) and t ∈ [0, T ] satisfying max

{
|w0i |, ‖i‖Lp(0,t); i = 1, 2

}
� M ,

we have

(3.6)
∥∥Pp[w0, ]

∥∥
W 1,p(0,t)

� C2
(
1 + |w0|+ ‖‖Lp(0,t)

)
,

(3.7) ‖Pp[w01 , 1]− Pp[w02 , 2]‖W 1,p(0,t) � γ(M)
(
|w01 − w02 |+ ‖1 − 2‖Lp(0,t)

)
.

4. Existence, uniqueness and stability

This section is devoted to the proofs of Theorems 2.3 and 2.4. Let δ and β be
fixed as in Theorem 2.3. We couple (2.2) with the “truncated” equation

(4.1) µwt +Q(θ, t)f1[w] + f2[w] = 0, w(x, 0) = w0(x),

where

(4.2) Q(θ, t) := min
{1
δ
eβt,

1
|θ|

}
.

Keeping the notation (3.5) we introduce the operator

(4.3) Vp[w0, θ](x, t) := F1
[
Pp[w0(x), Q(θ(x, ·), ·)]

]
(t).

This enables us to rewrite the system (4.1), (2.2)–(2.4) as a single equation for θ,
namely

(4.4)
(
θ + Vp[w0, θ]

)
t
−∆θ = ψ(x, t, θ),

coupled with initial and boundary conditions (2.3), (2.4). The natural domains of

definition of Vp are the spaces Dtp := Lp(Ω) × Lp(Ω × ]0, t[) for p ∈ [1,∞] and
t ∈ ]0, T ]. From Proposition 3.3 and hypothesis (H2) we see that Vp maps Dtp into
Lp(Ω;W 1,p(0, t)). Moreover, since Vr

∣∣
Dt

p
= Vp for every p > r, we may simply write

V in place of Vp, with an implicitly given domain of definition. The operator V has
the following properties.
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Proposition 4.1. Let hypotheses (H1), (H2) hold. Then there exists a function
ψ̃ : �+ → �

+ such that for every M > 0, θ ∈ L1(Ω × ]0, t[), θ1, θ2 ∈ L2(Ω × ]0, t[),
w0, w01 , w

0
2 ∈ L∞(Ω) satisfyingmax

{
‖w0i ‖L∞(Ω) : i = 1, 2

}
� M , and every t ∈ ]0, T ],

we have

(4.5) ‖V [w0, θ]t‖L∞(Ω×]0,t[) � K1K2
µ

(
1 +
1
δ
eβt

)
,

∥∥V [w01, θ1]− V [w02 , θ2]
∥∥
L2(Ω;L∞(0,t))

(4.6)

� ψ̃(M)
(
‖w01 − w02‖L2(Ω) + ‖θ1 − θ2‖L2(Ω×]0,t[)

)
.

�����. It suffices to use Lemma 3.1, Proposition 3.3, hypothesis (H2) and to
integrate over Ω. �

The existence result for the truncated system (4.1), (2.2)–(2.4) can be stated as
follows. We omit here its proof which is based on an easy successive approximation

scheme and is identical to the proof of Theorem 4.2 of [15].

Theorem 4.2. Let hypotheses (H1), (H2) hold. Then, for every w0 ∈ L∞(Ω)
and θ0 ∈ L∞(Ω) ∩ W 1,2(Ω), there exists θ ∈ L∞(Ω × ]0, T [) such that θt, ∆θ ∈
L2(Ω× ]0, T [) and such that the equation

(4.7)
(
θ + V [w0, θ]

)
t
−∆θ = ψ(x, t, θ)

is satisfied almost everywhere, together with the initial and boundary conditions

(2.3), (2.4).

Note that equation (4.7) does not have the general form considered by Visintin [25],

since the operator V is not piecewise monotone. We now show that the additional
hypothesis (H3) ensures that the solution from the above theorem satisfies also the
original system (2.1)–(2.4).

Theorem 4.3. Let hypotheses (H1)–(H3) hold, and let w0 ∈ L∞(Ω) and θ0 ∈
L∞(Ω) ∩W 1,2(Ω) satisfy the assumptions of Theorem 2.3. Let θ be the solution to
(4.7), (2.3), (2.4) from Theorem 4.2. Then

(4.8) θ(x, t) � δe−βt.

����� �� 	
����� 4.3. Put w := P∞[w0, θ]. Then w, θ satisfy (4.1),
(2.2)–(2.4) almost everywhere. Let us test (2.2) with an arbitrary function p ∈
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W 1,2(Ω × ]0, T [) such that p � 0 a.e. This yields, according to hypotheses (H2),
(H3),

(4.9)
∫

Ω

(
pθt +

〈
∇p,∇θ

〉)
dx �

∫

Ω
|p|

(
F1[w]

)
t
dx+K2

∫

Ω
|p||θ| dx.

Let us estimate the first integral on the right-hand side of (4.9). Using (H3) we
obtain

∫

Ω
|p|

(
F1[w]

)
t
dx �

∫

Ω
|p|f1[w]g[w]t dx(4.10)

= −
∫

Ω
|p|g[w]t

µwt
f1[w]

(
Q(θ, t)f1[w] + f2[w]

)
dx

= −
∫

Ω
|p|g[w]t

µwt

[(√
Q(θ, t)f1[w] +

f2[w]

2
√
Q(θ, t)

)2
− f22 [w]
4Q(θ, t)

]
dx

� K21K3
4µ

∫

Ω
|p|max

{
|θ|, δe−βt

}
dx.

Combining (4.9) and (4.10) we obtain

(4.11)
∫

Ω

(
pθt +

〈
∇p,∇θ

〉)
dx � β

∫

Ω
|p|max

{
|θ|, δe−βt

}
dx

for every non-positive function p ∈ W 1,2(Ω × ]0, T [). We now put in the above
inequality

(4.12) p(x, t) := −
(
δe−βt − θ(x, t)

)+
.

This yields

(4.13)
∫

Ω

(
p(p+ δe−βt)t +

∣∣∇p
∣∣2) dx � β

∫

Ω
|p|

(
|p|+ δe−βt

)
dx,

hence

(4.14)
∫

Ω

(
ppt +

∣∣∇p
∣∣2) dx � β

∫

Ω
p2 dx

with p(x, 0) ≡ 0, and Gronwall’s lemma yields p(x, t) ≡ 0. Theorem 4.3 is proved.
�

����� �� 	
����� 2.3. Theorems 4.1, 4.2 imply that under the hypotheses

of Theorem 2.3, every solution θ, w of (4.1), (2.2)–(2.4) fulfils Q(θ(x, t), t) = 1/θ(x, t),
hence also (2.1) is satisfied. �
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����� �� 	
����� 2.4. Subtracting equations (4.7) for θ1, θ2 and integrat-

ing with respect to t, we obtain that

(θ1 − θ2)(x, t) −∆
∫ t

0
(θ1 − θ2)(x, τ) dτ(4.15)

= (θ01 − θ02)(x) +
(
F1[w01 ]− F1[w02 ]

)
(x, 0)−

(
V [w01 , θ1]

− V [w02, θ2]
)
(x, t) +

∫ t

0

(
ψ1

(
x, τ, θ1(x, τ)

)
− ψ2(x, τ, θ2(x, τ)

))
dτ.

Multiplication by (θ1 − θ2)(x, t) and integration over Ω yields

∫

Ω

∣∣θ1 − θ2
∣∣2(x, t) dx+ d

dt

∫

Ω

∣∣∣∇
∫ t

0
(θ1 − θ2)(x, τ) dτ

∣∣∣
2
dx(4.16)

�
∫

Ω

∣∣θ01 − θ02
∣∣2(x) dx+ 4T

∫ t

0

∫

Ω

(
d2ψ +K2

∣∣θ1 − θ2
∣∣2

)
dxdτ

+ C8

(∫

Ω

∣∣w01 − w02
∣∣2 dx+

∫ t

0

∫

Ω

∣∣θ1 − θ2
∣∣2(x, τ) dxdτ

)
,

where we have used the estimates (2.8), (2.19), (4.5).

To obtain the assertion, it remains to integrate (4.16) from 0 to t̄ and apply a
standard Gronwall-type argument. �

References

[1] Besov, O. V., Il’in, V. P., Nikol’skii, S. M.: Integral representation of functions and
embedding theorems. Moscow, Nauka, 1975. (In Russian.)

[2] Blowey, J. F., Elliott, C. M.: Curvature dependent phase boundary motion and double
obstacle problems. Degenerate Diffusion (W.M. Ni, L.A. Peletier, and J.L. Vázquez,
eds.). IMA Vol. Math. Appl. 47, Springer, New York, 1993, pp. 19–60.

[3] Blowey, J. F., Elliott, C. M.: A phase-field model with double obstacle potential. Motion
by mean curvature and related topics (G. Buttazzo and A. Visintin, eds.). De Gruyter,
Berlin, 1994, pp. 1–22.

[4] Brokate, M., Sprekels, J.: Hysteresis and phase transitions. Appl. Math. Sci. Vol. 121.
Springer-Verlag, New York, 1996.

[5] Caginalp, G.: An analysis of a phase field model of a free boundary. Arch. Rational
Mech. Anal. 92 (1986), 205–245.

[6] Colli, P., Sprekels, J.: On a Penrose-Fife model with zero interfacial energy leading
to a phase-field system of relaxed Stefan type. Ann. Mat. Pura Appl. (4) 169 (1995),
269–289.

[7] Colli, P., Sprekels, J.: Stefan problems and the Penrose-Fife phase-field model. Adv.
Math. Sci. Appl. 7 (1997), 911–934.

[8] Colli, P., Sprekels, J.: Global solutions to the Penrose-Fife phase-field model with zero
interfacial energy and Fourier law. Preprint No. 351. WIAS Berlin, 1997.

[9] Frémond, M., Visintin, A.: Dissipation dans le changement de phase. Surfusion. Change-
ment de phase irréversible. C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers
Sci. Terre 301 (1985), 1265–1268.

221



[10] Kenmochi, N., Niezgódka, M.: Systems of nonlinear parabolic equations for phase
change problems. Adv. Math. Sci. Appl. 3 (1993/94), 89–117.

[11] Klein, O.: A semidiscrete scheme for a Penrose-Fife system and some Stefan problems
in �3 . Adv. Math. Sci. Appl. 7 (1997), 491–523.

[12] Klein, O.: Existence and approximation results for phase-field systems of Penrose-Fife
type and some Stefan problems. Ph.D. thesis, Humboldt University, Berlin, 1997.

[13] Krasnosel’skii, M. A., Pokrovskii, A. V.: Systems with hysteresis. Springer-Verlag, Hei-
delberg, 1989; Russian edition. Nauka, Moscow, 1983.

[14] Krejčí, P.: Hysteresis, convexity and dissipation in hyperbolic equations. Gakuto Int.
Series Math. Sci. & Appl., Vol. 8. Gakkōtosho, Tokyo, 1996.
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