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1. Introduction

In this paper we study the existence of weak 2�-periodic solutions to the discon-
tinuous semilinear wave equation

utt − uxx + g(u) + f(x, t, u) = h(x, t),(Prob)

u(0, ·) = u(�, ·) = 0,

where f : Ω × � → �, Ω = (0, �) × (0, 2�) is Carathéodory continuous and nonde-
creasing in u, g : � → � is bounded nondecreasing and h ∈ L2(Ω). Moreover, we

suppose
|f(x, t, u)| � c0|u|+ h0(x, t) ∀u ∈ �, ∀ (x, t) ∈ Ω

for a constant c0 > 0 and h0 ∈ L2(Ω). (Prob) with g = 0, i.e. for the continuous
case, was studied in [2], where a construction of a topological degree is introduced

for a class of monotone single-valued mappings. The main purpose of this paper
is to extend that method to monotone multi-valued mappings. Like in [2], we use

a Galerkin projection method, which is however not at all the standard Galerkin
approximation method of [2]. We construct continuous one-parametric generalized
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Galerkin projections which we use for the derivation of a one-parametric family of

multi-valued mappings possessing the Leray-Schauder degree [7]. The basic Lemma
6 below is the stabilization of this degree for large parameters. In this way, we can
define a topological degree for our multi-valued mappings. The rest of the paper

is the extension of the main results of [2] to the multi-valued case. We end the
paper with a discontinuous equation of a vibrating string presenting a problem at

resonance with an infinite-dimensional kernel. This result is motivated by [4]. Other
topological degrees for single and multi-valued mappings have been introduced in

[1], [3], [5], [6] and [9].

2. Standard classes of mappings

Let H be a real separable Hilbert space with an inner product (·, ·). In what
follows we use the following notation:
• {an} means {an}∞n=1;
• lim an means lim

n→∞
an (similarly lim sup and lim inf);

• | · | always denotes the norm in H ;

• ‖ · ‖ denotes the norm in the space of continuous linear mappings L (H).
A multi-valued mapping F : H → 2H is
• monotone (denote F ∈ (mMON)), if

(f∗u − f∗v , u− v) � 0

for all u, v ∈ H and all selections f∗u ∈ F (u), f∗v ∈ F (v);
• quasimonotone (F ∈ (mQM)), if for any sequence {un} in H with un ⇀ u and

for all selections f∗n ∈ F (un) we have

lim inf(f∗n, u∗n − u) � 0;

• pseudomonotone (F ∈ (mPM)), if for any sequence {un} in H with un ⇀ u,
the existence of selections f∗n ∈ F (un) and a point f∗ ∈ H with f∗n ⇀ f∗ and

lim sup(f∗n, un − u) � 0 implies that f∗ ∈ F (u) and (f∗n, un)→ (f∗, u);
• of class (mS+) (F ∈ (mS+)), if for any sequence {un} in H with un ⇀ u, the

existence of selections f∗n ∈ F (un) with lim sup(f∗n, un − u) � 0 implies that
un → u;

• compact (F ∈ (mCOMP )), if for any bounded sequence {un} in H and for any
f∗n ∈ F (un) the sequence {f∗n} has a convergent subsequence;

• of Leray-Schauder type (F ∈ (mLS)), if F = I + C, where I is the identity on
H , for some C ∈ (mCOMP );
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• bounded, if for any bounded set B ⊂ H the set
⋃

u∈B

F (u) is bounded;

• convex-valued, if F (u) is a non-empty convex set in H for any u ∈ H ;
• upper semicontinuous (F is usc), if F−1(A) is closed in H whenever A ⊂ H is

closed;
• weak upper semicontinuous (F is w-usc), if for any sequence {un} ∈ H , un →

u ∈ H , the existence of selections f∗n ∈ F (un) with f∗n ⇀ f∗ ∈ H implies
f∗ ∈ F (u).

In what follows, we assume that all mappings used are bounded, w-usc and convex-
valued. When a mapping is defined only on a subset of H , the above definitions can
be modified in an obvious way.

Proposition 1. For the classes defined above the following inclusions hold:

(mLS) ⊂ (mS+) ⊂ (mPM) ⊂ (mQM),

(mMON) ⊂ (mPM), (mCOMP ) ⊂ (mQM).

Proposition 2. If F ∈ (mQM) and G ∈ (mS+) then F +G ∈ (mS+).

Proofs of Propositions 1 and 2 are similar to those for single-valued mappings [2].

3. Classes of admissible mappings

Let G be a bounded open subset in H , M a closed subspace of H and let Q and
P stand for the orthogonal projections to M and M⊥, respectively. The family

FG = {F : G → 2H | F = Qg + Pf for some g ∈ (mLS) and f ∈ (mS+)}

is called the class of admissible mappings. Other very important and more general
classes are

FG(mQM) = {F : G → 2H | F = Qg + Pf for some g ∈ (mLS) and f ∈ (mQM)}

and FG(mPM) defined accordingly. Obviously FG = FG(mS+) ⊂ FG(mPM) ⊂
FG(mQM).

Let L : H ⊃ D(L) → H be a closed densely defined linear operator with ImL =
(KerL)⊥. Let L0 = L/ ImL and assume that the right inverse L−10 : ImL → ImL is

compact. We choose M = ImL and M⊥ = KerL. Let N : H → 2H . Then similarly
to [2], we consider the mapping

F = Q(I + L−10 QN) + PN.
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Clearly, F ∈ FG for N ∈ (mS+).

Lemma 3. Let F and N be defined as above. Then for h ∈ H

(SInc) h ∈ Lu+N(u) with u ∈ D(L) ∩G

if and only if

y ∈ F (u) with u ∈ G for y = (L−10 Q+ P )h.

The proof is the same as for single-valued mappings [2]. The inclusion h ∈ Lu −
N(u) can be treated analogously.

4. Construction of the degree for FG(mS+)

We construct a topological degree function for FG. First, we define a class of

admissible homotopies. A mapping: (t, u)→ ft(u) from [0, 1]×G to 2H is a (multi-)
homotopy of the class (mS+), if for any sequences {un} in G, {tn} in [0, 1], f∗n ∈
ftn(un) with un ⇀ u, tn → t and lim sup(f∗n, un − u) � 0 we have un → u. We also
assume that the mapping (t, u)→ ft(u) satisfies all the necessary conditions.

Similarly, a mapping: (t, u)→ gt(u) = (I + Ct)(u) from [0, 1]×G to 2H is called
a (multi-)homotopy of the Leray-Schauder type, if the mapping (t, u) → Ct(u) is

compact. We denote
HG = {Ft | Ft = Qgt + Pft}

where gt and ft are homotopies of the Leray-Schauder type and of the class (mS+),

respectively. The set HG is called the class of admissible homotopies. Obviously
Ft = (1 − t)F1 + tF2 ∈ HG, 0 � t � 1 for any F1, F2 ∈ FG.

We use Galerkin approximations [8] with respect to the subspace M⊥. The space
H (M⊥ ⊂ H) is separable so there exists a sequence {Nn} of finite dimensional
subspaces of M⊥ with Nn ⊂ Nn+1 for all n, and ∪∞n=1Nn is dense in M⊥. We
denote by Pn the orthogonal projection from H to Nn. We extend this to generalized

Galerkin approximations defined by

Pλ = (λ− n)Pn+1 + (n+ 1− λ)Pn for any λ ∈ [n, n+ 1].

We have the following obvious result.

Proposition 4. The generalized Galerkin approximations satisfy
i) (Pλu, v) = (u, Pλv) for every λ � 1, u, v ∈ H ;

ii) ‖Pλ‖ � 1 for all λ � 1;
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iii) Pλv → Pv for every v ∈ H as λ →∞;
iv) PnPλ = Pn for every λ � n ∈ �;
v) (z, Pλz) � 0 for every z ∈ H and λ � 1.

For each F = Q(I + C) + Pf ∈ FG, we define the approximations {Fλ | λ � 1} by

Fλ = I +QC + λPλf.

We note that QC + λPλf is compact, convex-valued and usc for each λ � 1.
Similarly, for each admissible homotopy Ft = Q(I +Ct)+Pft, 0 � t � 1, we have

(Ft)λ = I +QCt + λPλft,

which is obviously a homotopy of the Leray-Schauder type for any λ � 1. Finally, if
y ∈ H is given, we denote

yλ = Qy + λPλy for each λ � 1.

It is clear that (F − y)λ = Fλ − yλ.

Proposition 5. Let {uk}, uk ∈ H and let {Pλ} be the projections defined as
above. Then

a) if uk ⇀ u and λk →∞ then Pλk
uk ⇀ Pu;

b) if uk → u and λk →∞ then Pλk
uk → Pu.

Now we can formulate the basic lemma.

Lemma 6. Let Ft = Q(I +Ct)+Pft be an admissible homotopy, yt (0 � t � 1)
a continuous curve in H and let A be a closed subset in G. If yt /∈ Ft(A) for all

t ∈ [0, 1], then there exists n0 ∈ � such that

(yt)λ /∈ (Ft)λ(A) for all t ∈ [0, 1] and λ � n0.

�����. Since also Ft − yt defines an admissible homotopy and (Ft − yt)λ =
(Ft)λ − (yt)λ, we may assume, without loss of generality, that yt ≡ 0.
If the assertion were false, there would exist sequences {uk} in A and {λk} in

[1,∞), λk → ∞, and {tk} in [0, 1] such that 0 ∈ (Ftk
)λk
(uk). This is equivalent to

the existence of selections g∗k ∈ ftk
(uk) and c∗k ∈ Ctk

(uk) for which

uk +Qc∗k + λkPλk
g∗k = 0.

19



Writing this equation in both subspaces M and M⊥ we get

Quk +Qc∗k = 0,(1)

Puk + λkPλk
g∗k = 0.(2)

The sequence uk is bounded therefore we can (taking a subsequence, if necessary)
assume that uk ⇀ u for some u ∈ H . Similarly we can assume tk → t, t ∈ [0, 1]. We
have c∗k ∈ Ctk

(uk). Since C is a compact mapping we can assume c∗k → z∗, z∗ ∈ H

and, since the sequence g∗k is bounded, g
∗
k ⇀ g∗, g∗ ∈ H .

Hence we have Qc∗k → Qz∗ and by (1), Quk → Qu. By (2),

1
λk

Puk + Pλk
g∗k = 0.

The set {uk | k = 1, 2, . . .} is bounded, thus 1
λk

Puk → 0 for k → ∞. This leads to
Pλk

g∗k → 0. On the other hand, for g∗k ⇀ g∗ we conclude Pλk
g∗k ⇀ Pg∗, which yields

Pg∗ = 0. Hence we have Pg∗k ⇀ Pg∗ = 0 followed by lim(g∗k, Pu) = 0, ∀u ∈ H .

We continue with calculating of lim sup(g∗k, uk − u):

(3) lim sup(g∗k, uk − u) = lim sup(g∗k, Puk − Pu) = lim sup(g∗k, Puk).

From (2) we obtain Puk = −λkPλk
g∗k. Inserting it in to the last term of (3) we get

lim sup(g∗k, uk − u) = − lim inf λk(g∗k, Pλk
g∗k).

By v) of Proposition 4, λk(g∗k, Pλk
g∗k) � 0 and it immediately follows that

lim sup(g∗k, uk − u) � 0.

Hence, by the definition of the homotopy ft of the class (mS+) we have uk → u,
u ∈ A. We have tn → t, g∗k ⇀ g∗ and uk → u. Since (t, u)→ ft(u) is w-usc, we get

g∗ ∈ ft(u). Similarly, we get z∗ ∈ Ct(u). From Quk → Qu, Qc∗k → Qz∗ using (1),
we obtain Qu+Qz∗ = 0. Since Pg∗ = 0 we have

0 = Qu+Qz∗ + Pg∗ ∈ Qu+QCt(u) + Pft(u) = Ft(u),

a contradiction. The proof is complete. �
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If we choose a constant homotopy Ft = F = Qg + Pf , yt = y, and A = ∂G, we

obtain the stabilization of a degree. If y /∈ F (∂G), then there exists λ0 � 1 such that
yλ /∈ Fλ(∂G) for all λ � λ0.

Lemma 7. Let F ∈ FG and y /∈ F (∂G). Then there exists λ1 ∈ [1,∞) such
that

d(Fλ, G, yλ) = constant for all λ � λ1.

Due to Lemma 7 we can define a degree function for the class FG. We put

(4) d(F, G, y) = lim
λ→∞

d(Fλ, G, yλ)

for any given F ∈ FG and y ∈ H with y /∈ F (∂G). In the next lemma we show

that the degree function defined by (4) has all the usual properties. The proof is the
same as in [2] with the use of the degree theory for multi-valued mappings [7].

Lemma 8. Let G be an open bounded subset of H and F ∈ FG(mS+). Then

i) d(F, G, y) �= 0 implies that there exists y ∈ F (G).
ii) d(F, G, y) = d(F, G1, y) + d(F, G2, y) (thus F ∈ FG1 and F ∈ FG2), whenever

G1 and G2 are disjoint open subsets of G such that y /∈ F (G \ (G1 ∪G2)).
iii) d(Ft, G, yt) is independent of t ∈ J = [0, 1] if Ft ∈ HG, yt is a continuous curve

in H and yt /∈ Ft(∂G) for all t ∈ J .

iv) d(I, G, w) = 1 if and only if w ∈ G (normalization).

We can also simply prove the Borsuk Theorem for the class FG(mS+).

Proposition 9. Let G be an open bounded symmetric subset of H containing

the origin and let F be a multi-mapping G → 2H satisfying F (−u) = −F (u) for all
u ∈ ∂G. Then if F ∈ FG(mS+), the inclusion 0 ∈ F (u) admits a solution u in G

and d(F, G, 0) is odd whenever defined.

We have already proved all the desired properties of the degree function for the

class FG. We formulate our result in the next theorem.

Theorem 10. Let H be a real separable Hilbert space, G a bounded open

subset of H , FG the class of admissible mappings and HG the class of admissible

homotopies defined above. Then there exists a classical topological degree function

d on FG satisfying the properties i), ii), iii) and iv) from Lemma 8 with respect to

HG and the normalizing mapping I.
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5. A degree theory for FG(mQM) and FG(mPM)

The most common method of studying the existence of solutions of differential
equations (inclusions) applying a degree theory is to use a homotopy between a

mapping and the normalizing mapping—the identity. However, it is not always
possible to use such a homotopy. Sometimes we can substitute the identity with an

other mapping with a nonzero degree. A mapping R ∈ FG(mS+) with d(R, G, y) �= 0
for all y ∈ R(G) is called a reference mapping.

The next basic theorem immediately follows from the properties of the degree
function d (see [2, Theorem 2]).

Theorem 11. Let G be an open bounded set, G ⊂ H , R ∈ FG a reference

mapping and F ∈ FG. If for a given y ∈ H there exists w ∈ R(G) such that

(1 − t)w + ty /∈ (1− t)R(u) + tF (u) for all u ∈ ∂G and t ∈ [0, 1],

then d(F, G, y) �= 0 and hence the inclusion y ∈ F (u) admits a solution u in G.

We already have constructed a degree function for the class FG = FG(mS+). By

using this we can also build a similar degree function for the larger classFG(mQM).
By Proposition 2 we can use an (mS+) approximation fε = f + εI for any given

f ∈ (mQM) and ε > 0. In fact, we generalize Theorem 11 in the following form (see
[2, Theorem 3]).

Theorem 12. LetG be an open bounded subset ofH , R ∈ FG(mS+) a reference
mapping and F ∈ FG(mQM). If for a given y ∈ H there exists w ∈ R(G) such that

the condition

(5) (1− t)w + ty /∈ (1− t)R(u) + tF (u) for all u ∈ ∂G and t ∈ [0, 1]

holds, then the inclusion y ∈ F (u) is almost solvable, i.e. y ∈ F (G).

�����. Without loss of generality, we can assume that y = 0 and w = 0 ∈ R(G).
If 0 ∈ F (∂G) ⊂ F (G), the assertion is true. Thus let 0 /∈ F (∂G). Since F ∈
FG(mQM), F has a representation F = Q(I + C) + Pf for some C ∈ (mCOMP )
and f ∈ (mQM). Similar argument leads to R = Q(I + C0) + Pf0 for some C0 ∈
(mCOMP ) and f0 ∈ (mS+). Now we introduce an FG(mS+) approximation of F ,
for each ε > 0 we denote

Fε = F + εPR = Q(I + C) + P (f + εf0).
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By Proposition 2, f + εf0 ∈ (mS+), therefore Fε ∈ FG(mS+) for all ε > 0. For

applying Theorem 11 to the mapping Fε we show there exists ε0 such that

(6) 0 /∈ (1 − t)R(u) + tFε(u) for all u ∈ ∂G and t ∈ [0, 1] and 0 < ε < ε0.

If (6) were not true, we could find sequences {εn}, {tn} ⊂ [0, 1] and {un} ⊂ ∂G for

which

(7) 0 ∈ (1− tn)R(un) + tnFεn(un) for all n ∈ �.

Taking subsequences, if necessary, we can assume that εn → 0+, tn → t and un ⇀ u.

Clearly t �= 1, since otherwise 0 ∈ F (∂G) which contradicts the assumption. Thus
t ∈ [0, 1). Writing (6) in the components and taking selections c∗n ∈ C(un), d∗n ∈
C0(un), f∗n ∈ f(un) and g∗n,1, g

∗
n,2 ∈ f0(un) we have

Qun + (1− tn)Qd∗n + tnQc∗n = 0,(8)

(1− tn)Pg∗n,1 + tnεnPg∗n,2 + tnPf∗n = 0(9)

with r∗n = Q(un + d∗n) + Pg∗n,1 ∈ R(un) and h∗n = Q(un + c∗n) + P (f∗n + εng∗n,2) ∈
Fεn(un). Without loss of generality, we can assume that c∗n → c∗ and d∗n → d∗ for

some c∗, d∗ ∈ H , which yields r∗n ⇀ r∗ and h∗n ⇀ h∗. Therefore from (8) we have
Qun → Qu (un ⇀ u). By (9)

Pg∗n,1 = −
tn
1− tn

Pf∗n −
tnεn

1− tn
Pg∗n,2.

By using this and Qun → Qu we can calculate

lim sup(g∗n,1, un − u) = lim sup(Pg∗n,1, un − u)

= lim sup
{
− tn
1− tn

(Pf∗n, un − u)− tnεn

1− tn
(Pg∗n,2, un − u)

}

= − t

1− t
lim inf(f∗n, un − u).

Since f ∈ (mQM), we conclude that

lim sup(g∗n,1, un − u) = − t

1− t
lim inf(f∗n, un − u) � 0.

By using the (mS+) property of f0 we obtain un → u. Clearly u ∈ ∂G. From the w-
usc property of the mapping R we get r∗n ⇀ r∗ ∈ R(u) and similarly h∗n ⇀ h∗ ∈ F (u).

Consequently,
0 = (1− tn)r∗n + tnh∗n ⇀ (1− t)r∗ + th∗
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giving 0 = (1− t)r∗ + th∗ and hence

0 ∈ (1− t)R(u) + tF (u) for some u ∈ ∂G.

That gives a contradiction to (5) (y = w = 0). Hence we have proved (6). Thus

applying Theorem 11 we find uε ∈ G such that

(10) 0 ∈ Fε(uε) for every ε ∈ (0, ε0).

Choosing an arbitrary sequence {εi} with εi → 0+ along with solutions uεi from (10)
we get

F (uεi) = Fεi(uεi)− εiPR(uεi)

where the set ∪iPR(uεi) is bounded. Thus 0 ∈ F (G). �

Because the condition of quasimonotonicity is in applications the easiest to ver-

ify (e.g. it is implied by the monotonicity), we need a result for FG(mPM). By
using similar argument as in Theorem 12, we obtain the following result (see [2,

Theorem 4]).

Theorem 13. Let the assumptions of Theorem 12 be satisfied and let, in addi-
tion, G be convex and F ∈ FG(mPM). If for a given y ∈ H there exists w ∈ R(G)
such that the condition (5) holds, then the inclusion y ∈ F (u) does admit a solution

u in G.

Now we can generalize the Borsuk Theorem to the class FG(mQM) (see [2, The-
orem 5]).

Theorem 14. Let G be an open bounded symmetric subset of H containing

the origin and let F be a multi-mapping G → 2H satisfying F (−u) = −F (u) for all

u ∈ ∂G. Then if F ∈ FG(mQM), the inclusion 0 ∈ F (u) is almost solvable in G,

i.e., 0 ∈ F (G).

For the class FG(mQM) we have the following surjectivity theorem (see [2, The-
orem 6]).

Theorem 15. Let F : H → 2H be a mapping of the class FH(mQM) satisfying

the following condition:

for any K ∈ �+ there exists R0 ∈ � such that

(A) |f∗| > K for all selections f∗ ∈ F (u), |u| � R0.
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Assume moreover that there exists a positive real constant r0 such that one of the

following condition holds:

(f∗, u)
|u| + |f∗| > 0 for all |u| � r0 and for all f

∗ ∈ F (u);(B)

F (−u) = −F (u) for all |u| � r0.(C)

Then F (H) = H .

�����. Let y ∈ H . By (A), there exists r1 > r0 such that 0 /∈ F (∂Br) for all

r � r1, where Br is the ball Br = {u ∈ H | |u| < r}.
Assume first that (B) holds. It gives

0 /∈ (1− t)u+ tF (u) for all t ∈ [0, 1] and u ∈ ∂Br.

By using the same argument as in the proof of Theorem 12 (with R = I) we can

conclude (see (6)) that there exists a positive constant ε0 = ε0(r) such that

0 /∈ (1− t)u+ t(F (u) + εPu) for all |u| = r, r > r1, t ∈ [0, 1] and 0 < ε < ε0.

Hence
d(F + εP, Br, 0) = +1 for all r > r1 and 0 < ε < ε0.

We take r2 > r1 such that |f∗| � (3|y|+1) for all f∗ ∈ F (u), |u| � r2. Let 0 < ε1 < ε0

be such that ε1r2 < |y|+ 1. Consequently,

|f∗ + εPu| � 3|y| − |y| = 2|y|

for all f∗ ∈ F (u), u ∈ ∂Br2 and 0 < ε < ε1. Since |ty| � |y| we have

ty /∈ (F + εP )(∂Br2)

and
d(F + εP, Br2 , y) = d(F + εP, Br2 , 0) = +1 for all 0 < ε < ε1.

Hence y ∈ (F + εP )(Br2) for all 0 < ε < ε1. It follows that y ∈ F (Br2) ⊂ F (H).
Now we assume that (C) holds. We can use similar argument that in the first

case. By applying Theorem 14, from (C) we obtain

d(F + εP, Br2 , y) = d(F + εP, Br2 , 0) = odd

for all 0 < ε < ε1. Hence y ∈ (F + εP )(Br2) for all 0 < ε < ε1 and the conclusion
y ∈ F (H) follows. Thus the proof is completed. �
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It is not easy to check whether a multi-mapping F is of the class FG(mQM) or

FG(mS+). The simplest condition to check is the monotonicity and therefore the
most useful theorems concern the classFG(mPM). We prove the following existence
result (see [2, Theorem 9]).

Theorem 16. Let N ∈ (mPM), let L : D(L) ⊂ H → H be the linear mapping

defined as above and let c > 0, −c /∈ σ(L), where σ(L) is the spectrum of L. If there

exist real positive constants τ , τ < dist(−c, σ(L)) and K such that

|f∗ − cu| � (τ |u|+K) for all u ∈ H , f∗ ∈ N(u),

then for all h ∈ H the inclusion (SInc) admits a solution in H , i.e. there exists

u ∈ D(L) ∩G such that h ∈ Lu+N(u).

�����. We consider the homotopy

Ft(u) = Lu+ cu+ t(N(u)− cu) for all t ∈ [0, 1]

and yt = th. Clearly F0(u) = Lu+ cu and F1(u) = Lu+N(u). Since −c /∈ σ(L) the
operator (L+ cI)−1 exists and is bounded. Thus we can put r = ‖(L+ cI)‖−1(K +
|h|+ 1)/(1− τ‖(L+ cI)−1‖) and G = Br. If for some u ∈ ∂G ∩D(L) we have

th ∈ Lu+ cu+ t(N(u)− cu)

for some t ∈ [0, 1] then

u = (L+ cI)−1(−t(f∗ − cu) + th), f∗ ∈ N(u).

Hence

r = |u| � ‖(L+ cI)−1‖(τr +K + |h|) < r,

a contradiction. Thus

th /∈ Lu+ cu+ t(N(u)− cu) for all t ∈ [0, 1] and u ∈ ∂G ∩D(L).

For t = 0 we have Lu + cu = 0 not possessing a non-zero solution. The mapping

L + cI is linear, odd and cI ∈ (mS+), therefore using Lemma 3, Proposition 9 and
then applying Theorem 13, we conclude h ∈ F1(G), i.e. h ∈ Lu + N(u) for some

u ∈ D(L) ∩G. �
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6. M -regular multi-functions

A function p : Ω×� → � is called superpositionally measurable [6] if p(x, t, u(x, t))
is measurable for any measurable function u : Ω → �. A multi-function S : Ω ×
� → 2� is called measurable-bounded if there exist two superpositionally measurable
functions q−(x, t, u) and q+(x, t, u) such that

q−(x, t, u) � q+(x, t, u) and S(x, t, u) = [q−(x, t, u), q+(x, t, u)]

for any (x, t, u) ∈ Ω × � where the function q−(x, t, u) is lsc in u, the function

q+(x, t, u) is usc in u and there exist positive constants d1, d2 and c1, c2 ∈ L2(Ω)
such that

|q−(x, t, u)| � c1(x, t) + d1|u| and |q+(x, t, u)| � c2(x, t) + d2|u|

for any (x, t, u) ∈ Ω × �. We denote by (mMB) the set of all measurable-bounded
multi-functions. By using a multi-function S ∈ (mMB), for any u ∈ L2(Ω) we put

N(u) = {v ∈ L2(Ω) | v(x, t) ∈ S(x, t, u(x, t))}
= {v ∈ L2(Ω) | q−(x, t, u(x, t)) � v(x, t) � q+(x, t, u(x, t))}

and call it an M -regular multi-function. We denote the set of all such multi-functions
by (mMr). N(u) is nonempty because q±(x, t, u(x, t)) ∈ N(u). The degree theory

we have constructed works just for multi-mappings that are w-usc.

Lemma 17. Let N ∈ (mMr) and un → u in L2(Ω). If a sequence {w∗n} satisfies
w∗n ∈ N(un) and w∗n ⇀ w∗ in L2(Ω) then w∗ ∈ N(u), i.e. N : L2(Ω) → 2L2(Ω) is
w-usc.

�����. First, we have

(11) q−(x, t, un(x, t)) � w∗n(x, t)

for every n ∈ �. Since w∗n ⇀ w∗, using the Mazur theorem we can choose a sequence

{vn}, vn ∈ conv{w∗n, w∗n+1, . . .} such that vn → w∗ almost everywhere in L2(Ω).
Thus we have

vn =
mn∑

k=n

λn,kw∗k; 0 � λn,k � 1;
mn∑

k=n

λn,k = 1 for n < mn ∈ �, n � k � mn.
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From (11) we have

mn∑

k=n

λn,kq−(x, t, uk(x, t)) �
mn∑

k=n

λn,kw∗k(x, t) = vn(x, t).

By virtue of the convergence in the measure we can assume that vn(x, t)→ w∗(x, t)

almost everywhere in (x, t) [10]. Let (x0, t0) ∈ Ω be such an element. The mapping
s → q−(x0, t0, s) is lsc and so for every ε > 0 there exists a positive integer n0 such

that for every k � n0 we have

q−(x0, t0, u(x0, t0))− ε � q−(x0, t0, uk(x0, t0)).

Summing this inequality for k = n, n+ 1, . . . , mn with weights λn,k we get

mn∑

k=n

λn,k(q−(x0, t0, u(x0, t0))− ε) �
mn∑

k=n

λn,kq−(x0, t0, uk(x0, t0)),

q−(x0, t0, u(x0, t0))− ε � vn(x0, t0)

for all n � n0. Hence by the convergence vn(x0, t0)→ w∗(x0, t0) we have

q−(x0, t0, u(x0, t0))− ε � w∗(x0, t0) for every ε > 0.

Finally, we get

q−(x0, t0, u(x0, t0)) � w∗(x0, t0)

as we need. Similar argument leads to

w∗(x0, t0) � q+(x0, t0, u(x0, t0)).

Thus w∗ ∈ N(u). �

7. Semilinear wave equations

We show how the previous results can be applied to the semilinear wave equation
(Prob). We state the precise setting of (Prob) by putting

q−(x, t, u) = g−(u) + f(x, t, u), q+(x, t, u) = g+(u) + f(x, t, u),

g+(u) = lim sup
s→u

g(u), g−(u) = lim inf
s→u

g(u).
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We note that g± are Borel measurable. By Lemma 17, the Nemytskij operator

N : H → 2H , H = L2(Ω) defined by

N(u) = {v ∈ L2(Ω) | q−(x, t, u(x, t)) � v(x, t) � q+(x, t, u(x, t))}

is bounded and w-usc. N ∈ (mMON) and hence by Proposition 1, N ∈ (mPM).
Let C2 be the set of twice continuously differentiable functions v : [0, �] × � → �

satisfying v(0, ·) = v(�, ·) = 0 and 2�-periodic in t ∈ �.
A weak 2�-periodic solution of (Prob) for h ∈ H is any u ∈ H satisfying

(wProb) (u, vtt − vxx) + (u∗, v) = (h, v) for some u∗ ∈ N(u) and for all v ∈ C2.

Let ϕm,n(x, t) = �
−1eimt sinnx for all m ∈ �, n ∈ �

+. Each u ∈ L2(Ω) has a
representation

u =
∑

m∈�,n∈�+
(n2 −m2)um,nϕm,n,

where um,n = (u, ϕm,n) and um,n = um,n, since u is a real function. The abstract

realization of the wave operator
∂2

∂t2
− ∂2

∂x2
in L2(Ω) is the linear operator L : D(L)→

L2(Ω) defined by
Lu =

∑

m∈�,n∈�+
(n2 −m2)um,nϕm,n,

where

D(L) =

{
u ∈ L2(Ω) |

∑

m∈�,n∈�+
|n2 −m2|2|um,n|2 < ∞

}
.

It can be shown that u ∈ L2(Ω) is a weak solution of (wProb) if and only if

h ∈ Lu +N(u) with u ∈ D(L). Moreover, L is densely defined, self-adjoint, closed,
ImL = (KerL)⊥ and L has a pure point spectrum of eigenvalues σ(L) = {n2−m2 |
m ∈ �, n ∈ �+} with the corresponding eigenfunctions {ϕm,n}. Clearly σ(L) is un-
bounded both from above and from below, any eigenvalue λ �= 0 has a finite multi-
plicity, but KerL is infinite dimensional. The right inverse of L0, L

−1
0 : ImL → ImL

is compact. Hence (Prob) fulfils all conditions for the inclusion (SInc) of Lemma 3.

Theorem 16 immediately implies the following result (see [2, pp. 961–962]).

Theorem 18. The semilinear wave equation (Prob) under the conditions men-
tioned above admits a weak 2�-periodic solution for any h ∈ L2(Ω) provided that in

addition

a � f(x, t, u)/u � b ∀ (x, t) ∈ Ω and ∀ u ∈ �, |u| > R

for positive constants a, b, R such that m2 − n2 /∈ [a, b] for all n ∈ �+ and m ∈ �.
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We leave to the reader other extensions of results on pp. 960–962 from [2] to

(Prob). In the conclusion, we consider the nonlinear discontinuous vibrating string
equation

utt − uxx + g(u) = f(x, t)

u(0, ·) = u(�, ·) = 0,

where f ∈ L∞(Ω), g : � → � is nondecreasing and bounded on �. This equation is
considered in the form

uxx − utt + f(x, t) ∈
[
g−(u), g+(u)

]
(12)

u(0, ·) = u(�, ·) = 0.

We put g(+∞) = sup
�

g, g(−∞) = inf
�

g. We extend Theorem 1 of [4] to (12).

Theorem 19. Let f have a decomposition

f(x, t) = f1(x, t) + f2(x, t), f1 ∈ (kerL)⊥, f2 ∈ kerL

together with

g(−∞) + δ � f2(x, t) � g(+∞)− δ ∀ (x, t) ∈ Ω

for some δ > 0. Then (12) has a weak 2�-periodic solution.

�����. For 1 > ε > 0 fixed, we consider the problem

uxx − utt + f(x, t) ∈
[
g−(u), g+(u)

]
+ εu(13)

u(0, ·) = u(�, ·) = 0.

Since 1 > ε > 0 and g is nondecreasing and bounded on �, Theorem 16 implies the
existence of a weak 2�-periodic solution u of (13). Now we show that u is bounded

in L∞(Ω) uniformly for ε > 0 small. From (13) we have

(14) −Lu+ f = z + εu, z ∈
[
g−(u), g+(u)

]
.

We decompose u = u1 + u2, z = z1 + z2, u1, z1 ∈ (kerL)⊥, u2, z2 ∈ kerL. Then (14)
implies

Lu1 + εu1 + z1 = f1(15)

f2 = z2 + εu2.(16)
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Since f1, z ∈ L∞(Ω) for ε > 0 small, we have |u1|L∞ < C̃ (see [4, p. 417]). In what

follows C̃ denotes positive constants independent of ε. By (16) also

(17)

2�∫

0

�∫

0

f2u2 dxdt =

2�∫

0

�∫

0

z2u2 dxdt+ ε

2�∫

0

�∫

0

u22 dxdt �
2�∫

0

�∫

0

z2u2 dxdt.

We take M > 0 such that

g(v) � g(+∞)− δ

2
∀ v � M, g(v) � g(−∞) + δ

2
∀ v � −M.

Let us define

Σ+ =
{
(x, t) | u2(x, t) � M + C̃

}
, Σ− =

{
(x, t) | u2(x, t) � −M − C̃

}
.

Then we have

z(x, t) � g(+∞)− δ

2
∀ (x, t) ∈ Σ+, z(x, t) � g(−∞) + δ

2
∀ (x, t) ∈ Σ−.

Now (17) gives

(g(+∞)− δ)
∫

Σ+

u2 dxdt+ (g(−∞) + δ)
∫

Σ−

u2 dxdt+
∫

(
Σ+∪Σ−

)′
f2u2 dxdt

�
2�∫

0

�∫

0

f2u2 dxdt

�
∫

(
Σ+∪Σ−

)′
z2u2 dxdt+

(
g(+∞)− δ

2

) ∫

Σ+

u2 dxdt+
(
g(−∞) + δ

2

) ∫

Σ−

u2 dxdt,

hence we arrive at ∫

Σ+∪Σ−

|u2| dxdt � C̃.

Consequently, we obtain that |u2|L1 < C̃. Since dimkerL = ∞, this estimate is
not enough. Now following the same argument like on p. 419 of [4], we obtain that
|u2|L∞ < C̃. Hence for any ε > 0 small, any solution of (14) satisfies |u|L∞ < C̃.

Then clearly |u|L2 < C̃. By passing to the limit ε → 0+ in (14) like for Theorem 13,
we obtain a weak 2�-periodic solution of (12). �
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We remark according to Theorem 19: If −g(−∞) = g(+∞) > 0 then the condition

∣∣∣∣
2�∫

0

�∫

0

f2(x, t)z(x, t) dxdt

∣∣∣∣ � g(+∞)
2�∫

0

�∫

0

|z(x, t)| dxdt, ∀ z ∈ kerL

is necessary, and the condition

∣∣∣∣
2�∫

0

�∫

0

f2(x, t)z(x, t) dxdt

∣∣∣∣ � (g(+∞)− δ)

2�∫

0

�∫

0

|z(x, t)| dxdt, ∀ z ∈ kerL

for some 0 < δ < g(+∞) is sufficient for the weak 2�-periodic solvability of (12).
Finally, we note that similar results hold for (Prob) with nonincreasing f and g in u.
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