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Abstract. Making use of a surface integral defined without use of the partition of unity,
trace theorems and the Gauss-Ostrogradskij theorem are proved in the case of three-
dimensional domains Ω with a Lipschitz-continuous boundary for functions belonging to
the Sobolev spaces H1,p(Ω) (1 � p < ∞). The paper is a generalization of the previous
author’s paper which is devoted to the line integral.
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Introduction

In [Ne] (and similarly in [KJF]) a surface integral is defined with help of the
partition of unity in a rather complicated and unnatural way. This approach is then

used with advantage in the proofs of trace theorems and the Gauss-Ostrogradskij
theorem. Using a Gauss-Ostrogradskij theorem proved in this way for deriving the

variational formulation of the boundary value problem

−∆u = f in Ω, u
∣∣
Γ1
= 0,

∂u

∂n

∣∣∣
Γ2
= q,

where ∂Ω = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅, we obtain the following problem: Find

u ∈ V := {v ∈ H1(Ω): v
∣∣
Γ1
= 0}

1 This work was supported by the grant No. 201/97/0153 of the Grant Agency of the Czech
Republic.
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such that ∫∫∫

Ω

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y
+
∂u

∂z

∂v

∂z

)
dxdy dz

=
∫∫∫

Ω
vf dxdy dz +

∫∫

Γ2

vq dσ ∀v ∈ V.

In this variational problem the surface integral is defined with help of the partition

of unity and thus this formulation is not suitable for practical computations.

In this paper we define a surface integral in a quite natural way (this means,
without use of the partition of unity) and prove the Gauss-Ostrogradskij theorem

and the necessary trace theorems. Of course, the theory of a surface integral is also
developed.

In some books the proof of the Gauss-Ostrogradskij theorem reduces to a list of
wishes (or a list of unproved assertions—see, e.g., [PF]) and even in textbooks of

a high standard the proof of this theorem suffers from confusion (see, e.g., [Fi3]).
In books of the top standard the notion of the surface integral is either artificial

(see the already mentioned references [Ne] and [KJF]) or difficult to understand and
unnecessarily general (as far as the applications are concerned) (see, e.g., [Si]).

In the famous book of Saks (see [Sa]) the expression for the area of a surface

z = F (x, y) is derived, where F (x, y) is a continuous function and the expression√
[Fx(x, y)]2 + [Fy(x, y)]2 can be integrable only in the sense of Lebesgue. Our ap-

proach, which accentuates the viewpoint of practical applications, is different. We
will consider surfaces z = f(x, y) for which the expression

√
f2x + f2y is Riemann

integrable (at least in an improper sense) because only such surfaces appear in appli-

cations. These surfaces form parts of boundaries of domains Ω in which variational
problems considered in applications are formulated. The solutions of these problems
belong, in general, to H1(Ω). Thus the traces of these solutions are elements of

spaces L2(Ω). (As to the notation of Sobolev spaces, it is the same as in [KJF].)

The outline of the paper follows: We will define a surface integral over surfaces
which appear in applications. This definition will be done without help of the par-

tition of unity. First we will define a surface integral in a Riemann sense and prove
its properties. Then we extend the definition to the case when the integrand is the

trace of a function from H1,p(Ω) ≡ W 1,p(Ω) (p ∈
〈
1,∞)). In connection with it we

prove the corresponding trace theorems. The second part of the paper is focused on

various formulations of the Gauss-Ostrogradskij theorem.

It should be noted that the conception expressed in Convention 6.7 and Defini-
tion 10.1 is new and quite suitable for applications. Moreover, it avoids problems

which are unnecessary from the practical viewpoint, solved with difficulties by some
mathematicians.
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1. Regular part of a surface

In this section we deal with parts of surfaces over which we shall integrate. Unless
stated otherwise we consider an arbitrary but fixed Cartesian coordinate system〈
O, x, y, z

〉
, where O is the origin of the system, O = [0, 0, 0].

1.1. Definition. a) We say that a set S is a part of a surface, which is regular

with respect to the coordinate plane (x, y), if the points [x, y, z] ∈ S satisfy

(1.1) z = f(x, y), [x, y] ∈ Sxy,

where Sxy is a simply connected two-dimensional bounded closed domain lying in the

plane (x, y), which is bounded by a simple piecewise smooth closed curve ∂Sxy, and
f : Sxy → �

1 is a real function continuous on Sxy, which has continuous first partial

derivatives fx ≡ ∂f
∂x , fy ≡ ∂f

∂y in Sxy (where the symbol Sxy denotes the interior
of Sxy, i.e., Sxy = Sxy − ∂Sxy). The closed domain Sxy is called the orthogonal

projection of the part S onto the plane (x, y).

The set of points [x, y, z], for which

z = f(x, y), [x, y] ∈ ∂Sxy,

is called the boundary of the part S and is denoted ∂S.

b) Similarly we say that a set S is a part of a surface, which is regular with respect
to the coordinate plane (x, z) (or (y, z)), if the points [x, y, z] ∈ S satisfy

(1.2) y = g(x, z), [x, z] ∈ Sxz,

or

(1.3) x = h(y, z), [y, z] ∈ Syz,

where the closed domains Sxz, Syz and the functions g : Sxz → �
1 , h : Syz → �

1

have analogous properties as the closed domain Sxy and the function f : Sxy → �
1 .

The closed two-dimensional domains Sxz and Syz are called orthogonal projections

of the part S onto the planes (x, z) and (y, z).

c) We will often use the notion “part” instead of the notion “part of a surface”.

d) We say that S is a regular part if S is regular at least with respect to one
coordinate plane.

171



1.2. Definition. a) We say that a part S is Lipschitz-regular with respect to

the plane (x, y), if S is regular with respect to (x, y) and the derivatives fx, fy are
bounded in Sxy (i.e., in the interior of Sxy).
b) Similarly we define that the part S is Lipschitz-regular with respect to (x, z)

or (y, z).
c) We say that a part S is Lipschitz-regular if S is Lipschitz-regular at least with

respect to one coordinate plane.

1.3. Definition. a) We say that a part S is strongly regular with respect to the
plane (x, y) if S is Lipschitz-regular with respect to (x, y) and if the derivatives fx,

fy can be continuously extended from Sxy onto Sxy.
b) Similarly we define a part which is strongly regular with respect to (x, z) or

(y, z).
c) We say that a part S is strongly regular if S is strongly regular at least with

respect to one coordinate plane.

1.4. �������. a) Let Sxy = {[x, y] : x2 + y2 � r2, r > 0}. The set S of points
[x, y, z] satisfying (1.1) with f(x, y) =

√
r2 − x2 − y2 is a part of a sphere which is

regular (but not Lipschitz-regular) with respect to the coordinate plane (x, y).

b) Let us divide the part S described in a) into 16 parts by the coordinate planes
and the planes z = r/2, y = x and y = −x. Each of these 16 parts is strongly
regular.

1.5. �������. Let the set Sxy be the same as in Example 1.4 and let f(x, y) =√
x2 + y2. Then the set S of points [x, y, z] satisfying (1.1) is a part of a cone. The

coordinate plane (x, z) (or (y, z)) divides S into two parts which are Lipschitz-regular.
However, neither of them is strongly regular because the derivatives

fx(x, y) =
x√

x2 + y2
, fy(x, y) =

y√
x2 + y2

cannot be continuously extended to the point [0, 0].

1.6. Theorem. a) Let a part S be regular with respect to (x, y) and (x, z).

Then

f(x, g(x, z)) = z ∀[x, z] ∈ Sxz,(1.4)

g(x, f(x, y)) = y ∀[x, y] ∈ Sxy.(1.5)

b) Let a part S be regular with respect to (x, y) and (y, z). Then

f(h(y, z), y) = z ∀[y, z] ∈ Syz,(1.6)

h(y, f(x, y)) = x ∀[x, y] ∈ Sxy.(1.7)
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c) Let a part S be regular with respect to (x, z) and (y, z). Then

g(h(y, z), z) = y ∀[y, z] ∈ Syz,(1.8)

h(g(x, z), z) = x ∀[x, z] ∈ Sxy.(1.9)

��		
. We shall prove a). The orthogonal projections of the two closed two-

dimensional domains Sxy and Sxz onto the axis x are identical; this projection is a
segment which will be denoted by

〈
a, b

〉
. Let x0 ∈

〈
a, b

〉
be an arbitrary but fixed

point. Let z be any fixed point such that [x0, z] ∈ Sxz, and let us set y = g(x0, z).

As [x0, y, z] ∈ S (by virtue of the fact that S is regular with respect to (x, z)) we
have (by virtue of the fact that S is regular with respect to (x, y)) [x0, y] ∈ Sxy,

and simultaneously z = f(x0, y). Thus z = f(x0, y) and y = g(x0, z) are mutually
inverse functions in one variable. This implies

z = f(x0, g(x0, z)) and y = g(x0, f(x0, y)).

As x0 ∈
〈
a, b

〉
is an arbitrary point these relations imply (1.4) and (1.5). The proof

of b) and c) is similar. �

1.7. Theorem. At every interior point [x, y, z] ∈ S of a regular part S there

exists a tangent plane to S (and thus also a normal to S).

��		
. Let the part S be regular with respect to (x, y). The assertion of

Theorem 1.7 follows then from the following facts (see, for example, [Fi1, pp. 433–
442]):

I. The plane z = f(x, y) has at the point M0[x0, y0, z0], where z0 = f(x0, y0), a
tangent plane, which is not parallel to the axis z, if and only if the function f(x, y)

is differentiable at the point [x0, y0].
II. The function f(x, y) is differentiable at the point [x0, y0] if the partial deriv-

atives fx(x, y), fy(x, y) exist in some neighbourhood of the point [x0, y0] and are
continuous at this point. �

1.8. Definition (Orientation of the normal to a regular part). Let a
part S be regular with respect to (ξ, η), where (ξ, η) denotes one of the planes (x, y),

(x, z), (y, z). In case the part S is regular with respect to more than one coordinate
plane we choose for (ξ, η) one of them. Let ζ be that of the coordinate axes x, y, z

which is different from ξ a η. Let V be a domain whose boundary ∂V is a cylinder
directed by the curve ∂Sξη and with surface straight-lines which are parallel to the

axis ζ. The part S divides the domain V into two parts, which will be denoted by
the symbols V 1 a V 2 (the numbering is either arbitrary or depends on the problem
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with which the orientation of the normal is connected). At each point [x, y, z] ∈ S

the unit normal n(x, y, z) to S will be oriented from V 1 into V 2.

If S is a part of the boundary ∂Ω of a domain Ω (which has no cuts) then the

definition of the orientation of the normal is simpler: At all points [x, y, z] ∈ S the
unit normal n(x, y, z) is directed either from Ω (we speak about the outer normal),
or into Ω (we speak about the inner normal).

The angle which is made by n(x, y, z) with the axis x (or y, or z) will be denoted
by α(x, y, z) (or β(x, y, z), or γ(x, y, z)); briefly α (or β, or γ). Thus we have

(1.10) n(x, y, z) = (cosα(x, y, z), cosβ(x, y, z), cos γ(x, y, z)).

1.9. Theorem. a) If a part S is regular with respect to (x, y) and is described
by relation (1.1) then at each point [x, y, z] ∈ S (where S denotes the interior of S)
the oriented unit normal satisfies

n(x, y, z) =
εz√

1 + f2x(x, y) + f2y (x, y)
(−fx(x, y), −fy(x, y), 1),

or more briefly

(1.11) n =
εz√

1 + f2x + f2y
(−fx,−fy, 1),

where εz = 1 if γ(x, y, z) < �

2 for all points [x, y, z] ∈ S, and εz = −1 if γ(x, y, z) > �

2

for all points [x, y, z] ∈ S. (Relation (1.11) implies that we cannot have γ(x, y, z) = �

2

at the points [x, y, z] ∈ S and that εz is the same for all interior points of the part

S.)

b) If a part S is regular with respect to (x, z) and is described by relation (1.2)

then at each point [x, y, z] ∈ S the oriented unit normal satisfies

(1.12) n =
εy√

1 + g2x + g2z
(−gx, 1,−gz),

where εy = 1 if β(x, y, z) < �

2 for all points [x, y, z] ∈ S, and εy = −1 if β(x, y, z) > �

2

for all points [x, y, z] ∈ S.
c) If a part S is regular with respect to (y, z) and is described by relation (1.3)

then at each point [x, y, z] ∈ S the oriented unit normal satisfies

(1.13) n =
εx√

1 + h2y + h2z
(1,−hy,−hz),
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where εx = 1 if α(x, y, z) < �

2 for all points [x, y, z] ∈ S, and εx = −1 if α(x, y, z) > �

2

for all points [x, y, z] ∈ S.

��		
. We prove a). Let [x0, y0] ∈ Sxy be an arbitrary point. According to

Theorem 1.7 and its proof, there exists a total differential at the point [x0, y0]

(1.14) dz = fx(x0, y0) dx+ fy(x0, y0) dy.

It is well-known (see, for example, [Fi1, p. 442]) that the equation of the tangent

plane τ(P0) to S at the point P0 = [x0, y0, z0] will be obtained if the differentials dx,
dy and dz in (1.14) are substituted by the differences x− x0, y− y0 a z− z0. Hence

(1.15) −fx(x0, y0)(x− x0)− fy(x0, y0)(y − y0) + (z − z0) = 0.

The left-hand side of (1.15) can be interpreted as the scalar product of the vectors

(x− x0, y − y0, z − z0),(1.16)

(−fx(x0, y0),−fy(x0, y0), 1).(1.17)

In (1.16), x, y, z are coordinates of an arbitrary point [x, y, z] ∈ τ(P0). Thus the
vector (1.16) is parallel to the plane τ(P0). Relation (1.15) then implies that the

vector (1.17) is perpendicular to the plane τ(P0). As the z-coordinate of the vector
(1.17) is positive this vector makes an acute angle with the z-axis. If εz = 1 in (1.11)

then the orientations of the parallel vectors (1.11) and (1.17) are identical; if εz = −1
then the orientations of these vectors are opposite. Assertion a) is proved. �

2. Functions continuous on a regular part

In Section 1 we have described sets over which we shall integrate; in this section we

will describe functions which will be integrated on these sets in the Riemann sense.

2.1. Definition. a) Let S be a regular part. Let F : S → �
1 be a real

function defined on S, i.e., to each point [x, y, z] ∈ S just one real number F (x, y, z)
corresponds (this means that we exclude the cases F (x, y, z) = +∞ and F (x, y, z) =
−∞). We say that the function F : S → �

1 is continuous at a point [x0, y0, z0] ∈ S
if for every ε > 0 there exists δ = δ(ε) > 0 such that for all points [x, y, z] ∈ S

satisfying the inequality

(2.1) [(x− x0)2 + (y − y0)2 + (z − z0)2]1/2 < δ
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we have

(2.2) |F (x, y, z)− F (x0, y0, z0)| < ε.

b) Let S be a regular part. We say that a function F : S → �
1 is continuous on

S if it is continuous at each point of the part S.

2.2. Theorem. a) Let a part S be regular with respect to (x, y) and let a
function F : S → �

1 be continuous on S. Then the function ϕ : Sxy → �
1 defined

at each point [x, y] ∈ Sxy by the relation

ϕ(x, y) := F (x, y, f(x, y))

is continuous on Sxy.

b) Let a part S be regular with respect to (x, z) and let a function F : S → �
1 be

continuous on S. Then the function ψ : Sxz → �
1 defined at each point [x, z] ∈ Sxz

by the relation

ψ(x, z) := F (x, g(x, z), z)

is continuous on Sxz.

c) Let a part S be regular with respect to (y, z) and let a function F : S → �
1 be

continuous on S. Then the function χ : Syz → �
1 defined at each point [y, z] ∈ Syz

by the relation

χ(y, z) := F (h(y, z), y, z)

is continuous on Syz.

��		
. a) Let ε > 0 be given. Let us consider an arbitrary point [x0, y0] ∈ Sxy.

This point is in a one-to-one correspondence with the point

[x0, y0, z0] = [x0, y0, f(x0, y0)] ∈ S.

For the points [x, y, z] ∈ S appearing in Definition 2.1a we have [x, y, z] ∈ U , where
U = S ∩K(δ; [x0, y0, z0]) with

K(δ; [x0, y0, z0]) := {[x, y, z] : (x− x0)2 + (y − y0)2 + (z − z0)2 < δ2}.

As the part S is regular with respect to (x, y), the orthogonal projection Uxy of the
set U onto the plane (x, y) satisfies meas2 Uxy > 0 and Uxy is a simply connected

set. Thus there exists such a � > 0 that

Dxy := κ(�; [x0, y0]) ∩ Sxy ⊂ Uxy, meas2Dxy > 0,
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where κ(�; [x0, y0]) = {[x, y] : (x− x0)2 + (y − y0)2 < �2}.
For the given ε > 0 we have found such a � > 0 that the points [x, y] ∈ Dxy,

i.e. points [x, y] ∈ Sxy for which

[(x− x0)2 + (y − y0)2]1/2 < �,

satisfy

|ϕ(x, y) − ϕ(x0, y0)| = |F (x, y, f(x, y))− F (x0, y0, f(x0, y0))|
= |F (x, y, z)− F (x0, y0, z0)| < ε.

Assertions b), c) can be proved similarly. �

2.3. Corollary. A function F : S → �
1 , where S is a regular part of a surface,

is bounded, if it is continuous on S (i.e., there exists such a constant M > 0 that
|F (x, y, z)| � M for all points [x, y, z] ∈ S).
In applications we use also the notion of a function which is bounded and piecewise

continuous on a regular part of a surface. This notion is a simple and straightforward
generalization of Definition 2.1.

3. A surface integral of the first kind over a strongly regular part

of a surface

In this section the notion of a surface integral of the first kind will be introduced
formally. The meaning of this notion will be explained in the next section.

3.1. �	���
	�. Let a function F : S → �
1 be continuous on a regular part S.

a) If the part S is strongly regular with respect to (x, y) then we set

(3.1) IS
xy(F ) :=

∫∫

Sxy

F (x, y, f(x, y))
√
1 + f2x(x, y) + f2y (x, y) dxdy.

b) If the part S is strongly regular with respect to (x, z) then we set

(3.2) IS
xz(F ) :=

∫∫

Sxz

F (x, g(x, z), z)
√
1 + g2x(x, z) + g2z(x, z) dxdz.

c) If the part S is strongly regular with respect to (y, z) then we set

(3.3) IS
yz(F ) :=

∫∫

Syz

F (h(y, z), y, z)
√
1 + h2y(y, z) + h2z(y, z) dy dz.

������. By the assumptions of Notation 3.1, the integrals on the right-hand
sides of (3.1)–(3.3) are Riemann integrals in �2 .
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3.2. Theorem. a) Let a part S be strongly regular with respect to (x, y) and
(x, z). Then

IS
xy(F ) = I

S
xz(F ).

b) Let a part S be strongly regular with respect to (x, y) and (y, z). Then

IS
xy(F ) = I

S
yz(F ).

c) Let a part S be strongly regular with respect to (x, z) and (y, z). Then

IS
xz(F ) = I

S
yz(F ).

��		
. We shall prove assertion a). Let us define mapping Φ : Sxz → �
2 by

the relations

(3.4) x = x, y = g(x, z), [x, z] ∈ Sxz.

Let us verify that the mapping Φ satisfies the assumptions of the theorem on substi-
tution in a two-dimensional integral.

Functions (3.4) are continuously differentiable in Sxz.
The relations

[x, y, z] = [x, y, f(x, y)] = [x, g(x, z), z] ∈ S, [x, y] ∈ Sxy, [x, z] ∈ Sxz

imply that
Φ(Sxz) = Sxy, Φ(Sxz) = Sxy

and that the mapping Φ : Sxz → Sxy is bijective.
By virtue of (3.4), the Jacobian of the mapping Φ : Sxz → Sxy satisfies

J(x, z) = gz(x, z), [x, z] ∈ Sxz.

By the assumptions of Theorem 3.2a the function J(x, z) is bounded on Sxz. Now

we verify that

(3.5) J(x, z) 
= 0 ∀[x, z] ∈ Sxz.

According to Theorem 1.9 and the assumptions of Theorem 3.2, we have at each

point [x, y, z] ∈ S

n =
εz√

1 + f2x(x, y) + f2y (x, y)
(−fx(x, y),−fy(x, y), 1)

=
εy√

1 + g2x(x, z) + g2z(x, z)
(−gx(x, z), 1,−gz(x, z)).
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Comparing the z-components of the two vectors, we see that relation (3.5) is satisfied.

Further, the domains Sxz and Sxy are measurable (in both the Jordan and the
Lebesgue sense).
As meas2 ∂Sxy = meas2 ∂Sxz = 0 and as the integrands on both sides of relation

(3.6) are continuous and bounded functions on Sxy or Sxz, the theorem for the
transformation of two-dimensional integral gives (we use also (1.4))

∫∫

Sxy

F (x, y, f(x, y))
√
1 + [fx(x, y)]2 + [fy(x, y)]2 dxdy(3.6)

=
∫∫

Sxz

F (x, g(x, z), z)
√
1 + [fx(x, g(x, z))]2 + [fy(x, g(x, z))]2 |gz(x, z)| dxdz.

Now we transform the integrand on the right-hand side of (3.6). Differentiating

relation (1.4) with respect to x and z, we obtain

(3.7) fx(x, g(x, z)) + fy(x, g(x, z))gx(x, z) = 0

and

(3.8) fy(x, g(x, z))gz(x, z) = 1,

respectively. Relation (3.8) yields

(3.9) fy(x, g(x, z)) =
1

gz(x, z)
.

Relations (3.7) and (3.9) imply

(3.10) fx(x, g(x, z)) = −
gx(x, z)
gz(x, z)

.

From (3.9) and (3.10) we obtain

√
1 + [fx(x, g(x, z))]2 + [fy(x, g(x, z))]2 |gz(x, z)|

=
√
1 + [gx(x, z)]2 + [gz(x, z)]2, [x, z] ∈ Sxz.

Inserting this result into the right-hand side of (3.6), we obtain, according to (3.1)
and (3.2), the relation IS

xy(F ) = I
S
xz(F ).

Assertions b), c) can be proved similarly. �

3.3. Corollary. If a part S is strongly regular with respect to all three coordi-
nate planes then IS

xy(F ) = I
S
xz(F ) = I

S
yz(F ).

Theorem 3.2 enables us to formulate the following definition:
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3.4. Definition. a) If a part S is strongly regular with respect to (x, y) and

F : S → �
1 is a function continuous on S then the term IS

xy(F ) is called the surface
integral (of the first kind) of the function F over the part S. We use the notation

(3.11)
∫∫

S

F (x, y, z) dσ := IS
xy(F ).

b) If a part S is strongly regular with respect to (x, z) and F : S → �
1 is a function

continuous on S then the term IS
xz(F ) is called the surface integral (of the first kind)

of the function F over the part S. We use the notation

(3.12)
∫∫

S

F (x, y, z) dσ := IS
xz(F ).

c) If a part S is strongly regular with respect to (y, z) and F : S → �
1 is a function

continuous on S then the term IS
yz(F ) is called the surface integral (of the first kind)

of the function F over the part S. We use the notation

(3.13)
∫∫

S

F (x, y, z) dσ := IS
yz(F ).

������. a) Theorem 3.2 enables us to use the same symbol on the left-hand
sides of relations (3.11)–(3.13).

b) Instead of the long expression “a surface integral of the first kind” we will often
use the notion “a surface integral”.

4. Geometrical and analytical meaning of a surface integral

4.1. Definition (A measure of a strongly regular part of a surface).
The definition contained in this subsection is standard (see, e.g., [ŠT, p. 198]): Let

a part S be strongly regular with respect to (x, y). Let us embed the closed domain
Sxy into an arbitrary square Q the sides of which are parallel to the coordinate axes

x, y. Let Dn be a square net consisting of n2 squares of the same size with mutually
disjoint interiors and sides parallel to the axes x, y. Let the union of these closed

squares cover the square Q. (The net Dn will be obtained by dividing the sides of the
square Q into n parts of the same length and connecting the opposite points by lines

parallel to the coordinate axes.) Let rn be the number of squares belonging to Dn

the intersection of which with Sxy has a positive two-dimensional measure. Let us

denote these squares by the symbols ∆s(n)1 , ∆s
(n)
2 , . . . , ∆s

(n)
rn . In each square ∆s

(n)
k

let us choose arbitrarily a point [x(n)k , y
(n)
k ] which lies also in Sxy. The corresponding
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point P (n)k = [x(n)k , y
(n)
k , z

(n)
k ], where z

(n)
k = f(x(n)k , y

(n)
k ), lies on S. By Theorem

1.7 at the point P (n)k there exists a tangent plane τ(P (n)k ) of the part S. Let ∆σ(n)k

be that part of τ(P (n)k ), the orthogonal projection of which onto the plane (x, y) is
equal to ∆s(n)k . Let |∆σ

(n)
k | denote the two-dimensional measure of the parallelogram

∆σ
(n)
k . If there exists a finite limit

(4.1) lim
n→∞

rn∑

k=1

∣∣∣∆σ(n)k

∣∣∣

and has the property that it does not depend on the choice of the points [x(n)k , y
(n)
k ],

then this limit will be called the measure of the strongly regular part S and will be

denoted by |S|.
Let us note that in case the part S is strongly regular with respect to (x, z) or

(y, z) the definition of |S| is analogous.

4.2. Theorem. Let a part S be strongly regular. Then

(4.2) |S| =
∫∫

S

dσ.

��		
. Let S be strongly regular with respect to (x, y). The acute angle which

is made by the nonoriented normal at the point P (n)k and the z-axis, will be denoted
by ω(n)k . We have

cosω(n)k = |cos γ(x(n)k , y
(n)
k , z

(n)
k )|,

where, according to (1.11),

| cos γ(x(n)k , y
(n)
k , z

(n)
k )| =

1√
1 + [fx(x

(n)
k , y

(n)
k )]

2 + [fy(x
(n)
k , y

(n)
k )]

2
.

The same acute angle is made by the tangent plane τ(P (n)k ) and the plane (x, y).

Hence

|∆σ(n)k | = |∆s(n)k |
cosω(n)k

=
√
1 + [fx(x

(n)
k , y

(n)
k )]

2 + [fy(x
(n)
k , y

(n)
k )]

2 |∆s(n)k |,

where |∆s(n)k | is the measure of the square ∆s(n)k . The expression

|Sn| =
rn∑

k=1

√
1 + [fx(x

(n)
k , y

(n)
k )]

2 + [fy(x
(n)
k , y

(n)
k )]

2 |∆s(n)k |
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is, according to Definition 4.1, an approximate measure of the part S. On the other

hand, the expression |Sn| is an integral sum corresponding to the two-dimensional
Riemann integral

∫∫

Sxy

√
1 + [fx(x, y)]2 + [fy(x, y)]2 dxdy,

where the integrand
√
1 + f2x + f2y is an integrable function in the sense of Riemann

(because the part S is strongly regular with respect to (x, y)). Thus

lim
n→∞

|Sn| =
∫∫

S

dσ,

which was to be proved. In case the part S is strongly regular with respect to (x, z)
or (y, z) the proof is similar. �

The analytical meaning of the surface integral is introduced in the following the-
orem.

4.3. Theorem. Let a part S be strongly regular and let F : S → �
1 be a

continuous function on S. Let ∆σ(n)k have an analogous meaning as in 4.1 and 4.2.
Then the sequence {In(F )} of integral sums

(4.3) In(F ) =
rn∑

k=1

F (x(n)k , y
(n)
k , z

(n)
k )|∆σ

(n)
k |

converges to the surface integral
∫∫

S F (x, y, z) dσ independently of the choice of

points P (n)k = [x(n)k , y
(n)
k , z

(n)
k ].

��		
. We prove Theorem 4.3 in the case when S is strongly regular with
respect to (x, z). Then we can write the integral sum (4.3) in the form

In(F ) =
rn∑

k=1

F (x(n)k , g(x(n)k , z
(n)
k ), z

(n)
k )

√
1 + [gx(x

(n)
k , z

(n)
k )]

2 + [gz(x
(n)
k , z

(n)
k )]

2|∆s(n)k |,

where the square ∆s(n)k lies in the plane (x, z). As the function Ψ : Sxz → �
1 , where

Ψ(x, z) = F (x, g(x, z), z)
√
1 + [gx(x, z)]2 + [gz(x, z)]2,

is bounded and continuous on Sxz, we obtain from here and from the results of
Section 3 the assertion of Theorem 4.3. �

182



A very important application of the surface integral of the first kind appears

in the formulations of the so called weak solutions of boundary value problems of
mathematical physics.
For example, in the case of three-dimensional elasticity problems we meet a surface

integral of the form

(4.4)
3∑

i=1

∫∫

S

pi(s, y, z)ui(x, y, z) dσ,

where (p1, p2, p3) is the pressure vector prescribed on part S and (u1, u2, u3) is the

displacement vector. The physical meaning of integral (4.4) is the work of the exter-
nal pressure which acts on the part S.

5. A surface integral over a regular part of a surface

A generalization of Sections 3 and 4 to the case of a regular part of a surface needs

an improper two-dimensional Riemann integral.

5.1. Definition. a) Let a part S be regular with respect to (x, y) and let F :
S → �

1 be a function continuous on S. We say that the function F can be integrated

over the part S with respect to the variables x, y if there exists a real number ĨS
xy(F )

with the following property: For every ε > 0 there exists δ = δ(ε, F ) > 0 such that

every part D ⊂ S, for which

(5.1) meas2(Sxy −Dxy) � δ,

satisfies

(5.2)

∣∣∣∣
∫∫

Dxy

F (x, y, f(x, y))
√
1 + f2x(x, y) + f2y (x, y) dxdy − ĨS

xy(F )

∣∣∣∣ � ε.

b) Let a part S be regular with respect to (x, z) and let F : S → �
1 be a function

continuous on S. We say that the function F can be integrated over the part S

with respect to the variables x, z if there exists a number ĨS
xz(F ) with the following

property: For every ε > 0 there exists δ = δ(ε, F ) > 0 such that every part D ⊂ S,

for which

(5.3) meas2(Sxz −Dxz) � δ,

satisfies

(5.4)

∣∣∣∣
∫∫

Dxz

F (x, g(x, z), z))
√
1 + g2x(x, z) + g2z(x, z) dxdz − ĨS

xz(F )

∣∣∣∣ � ε.
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c) Let a part S be regular with respect to (y, z) and let F : S → �
1 be a function

continuous on S. We say that the function F can be integrated over the part S
with respect to the variables y, z if there exists a number ĨS

yz(F ) with the following
property: For every ε > 0 there exists δ = δ(ε, F ) > 0 such that every part D ⊂ S,

for which

(5.5) meas2(Syz −Dyz) � δ,

satisfies

(5.6)

∣∣∣∣
∫∫

Dyz

F (h(y, z), y, z)
√
1 + h2y(y, z) + h2z(y, z) dy dz − ĨS

yz(F )

∣∣∣∣ � ε.

Let us note that every part D satisfying the inclusion D ⊂ S is strongly regular.

Hence the integrals appearing on the left-hand sides of inequalities (5.2), (5.4) and
(5.6) are Riemann integrals.

5.2. Definition. Let (s, t) be one of the pairs (x, y), (x, z) and (y, z). Let
S be regular with respect to (s, t). We say that we can integrate over the part S

with respect to s, t if we can integrate an arbitrary function F : S → R1, which is
continuous on S, over S with respect to s, t.

5.3. Theorem. a) Let a part S be regular with respect to both (x, y) and (x, z)
and let F : S → �

1 be a function continuous on S. If we can integrate the function

F over S with respect to x, y (or with respect to x, z) then we can integrate the

function F over S with respect to x, z (or with respect to x, y) and we have

(5.7) ĨS
xy(F ) = Ĩ

S
xz(F ).

b) Let a part S be regular with respect to both (x, y) and (y, z) and let F : S → �
1

be a function continuous on S. If we can integrate the function F over S with respect

to x, y (or with respect to y, z) then we can integrate the function F over S with

respect to y, z (or with respect to x, y) and we have

(5.8) ĨS
xy(F ) = Ĩ

S
yz(F ).

c) Let a part S be regular with respect to both (x, z) and (y, z) and let F : S → �
1

be a function continuous on S. If we can integrate the function F over S with respect

to x, z (or with respect to y, z) then we can integrate the function F over S with
respect to y, z (or with respect to x, z) and we have

(5.9) ĨS
xz(F ) = Ĩ

S
yz(F ).
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��		
. a) Let it be possible to integrate the function F over S with respect to x,

y. Let ε > 0 be arbitrary but fixed. By Definition 5.1a there exists δ1 = δ1(ε, F ) > 0
such that every part D ⊂ S, for which

(5.10) meas2(Sxy −Dxy) � δ1,

satisfies

(5.11)

∣∣∣∣
∫∫

Dxy

F (x, y, f(x, y))
√
1 + f2x(x, y) + f2y (x, y) dxdy − ĨS

xy(F )

∣∣∣∣ � ε

2
.

Let D∗ ⊂ S be a fixed part satisfying (5.10), (5.11). Let us set

δ∗2 := meas2(Sxz −D∗
xz)

and let us choose arbitrarily a part K which satisfies the inclusions

(5.12) D∗ ⊂ K ⊂ S.

The part K is, according to the assumptions of Theorem 5.3 and Definitions 1.1, 1.3,
strongly regular with respect to both (x, y) and (x, z) and we have

meas2(Sxy −Kxy) � meas2(Sxy −D∗
xy) � δ1,

meas2(Sxz −Kxz) � meas2(Sxz −D∗
xz) = δ

∗
2 .

By Theorem 3.4a (where we substitute the symbol S by K) we have

∫∫

Kxy

F (x, y, f(x, y))
√
1 + f2x(x, y) + f2y (x, y) dxdy

=
∫∫

Kxz

F (x, g(x, z), z)
√
1 + g2x(x, z) + g2z(x, z) dxdz.

Let us subtract from both sides of this relation the expression ĨS
xy(F ) (which does

exist, according to the assumption formulated at the beginning of this proof) and let

us take the absolute values. Using (5.11) and (5.12) we obtain

(5.13)

∣∣∣∣
∫∫

Kxz

F (x, g(x, z), z)
√
1 + g2x(x, z) + g2z(x, z) dxdz − ĨS

xy(F )

∣∣∣∣ � ε

2
.

Let us set

(5.14) δ∗∗2 := ε
/{
2 max
[x,z]∈D∗

xz

|F (x, g(x, z), z)|
√
1 + g2x(x, z) + g2z(x, z)

}
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and define

(5.15) δ2 := min(δ
∗
2 , δ

∗∗
2 ).

Let M ⊂ S be an arbitrary part satisfying

(5.16) meas2(Sxz −Mxz) � δ2.

and let us set

(5.17) Kxz :=Mxz ∪D∗
xz, ∆xz = D

∗
xz −Mxz.

Relation (5.17)1 means that we have set K :=M ∪D∗, which is not in contradiction
with (5.12).
The part M is by assumptions of Theorem 5.3 (which include the regularity of S

with respect to (x, y) a (x, z)) and Definitions 1.1, 1.3 strongly regular with respect
to both (x, y) and (x, z) and it holds

∣∣∣∣
∫∫

Mxz

F (x, g(x, z), z)
√
1 + g2x(x, z) + g2z(x, z) dxdz − ĨS

xy(F )

∣∣∣∣(5.18)

�
∣∣∣∣
∫∫

Kxz

F (x, g(x, z), z)
√
1 + g2x(x, z) + g2z(x, z) dxdz − ĨS

xy(F )

∣∣∣∣

+

∣∣∣∣
∫∫

∆xz

F (x, g(x, z), z)
√
1 + g2x(x, z) + g2z(x, z) dxdz

∣∣∣∣ ,

because, according to (5.17), the integral over Mxz is equal to the difference of

integrals over Kxz and ∆xz. The first expression on the right-hand side of (5.18) is,
according to (5.13), less or equal to ε/2. As ∆xz ⊂ Sxz −Mxz, it holds by (5.16)

(5.19) meas2∆xz � δ2.

Further we have, according to (5.17)2,

(5.20) ∆xz ⊂ D∗
xz.

Relations (5.14), (5.15), (5.19) and (5.20) imply

∣∣∣∣
∫∫

∆xz

F (x, g(x, z), z)
√
1 + g2x(x, z) + g2z(x, z) dxdz

∣∣∣∣(5.21)

� max
[x,z]∈D∗

xz

∣∣∣F (x, g(x, z), z)
√
1 + g2x(x, z) + g2z(x, z)

∣∣∣ meas2∆xz � ε

2
.
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Combining inequality (5.18) with (5.13) and (5.21) we obtain

(5.22)

∣∣∣∣
∫∫

Mxz

F (x, g(x, z), z)
√
1 + g2x(x, z) + g2z(x, z) dxdz − ĨS

xy(F )

∣∣∣∣ � ε.

For the given ε > 0 we have found δ2 > 0 which depends on ε, F and S and is
such that relation (5.22) holds for all parts M ⊂ S satisfying (5.16). As ε > 0 is

arbitrary, we obtain from here and from Definition 5.1b that the function F can be
integrated over the part S with respect to x, z and (5.7) holds. �

5.4. Theorem. Let a part S be strongly regular with respect to (s, t), where
(s, t) is one of the pairs (x, y), (x, z), (y, z). Then we can integrate over S with
respect to (s, t) (in the sense of Definition 5.2) and we have

(5.23) ĨS
st(F ) =

∫∫

S

F (x, y, z) dσ,

where F : S → �
1 is an arbitrary function continuous on S.

��		
. Theorem 5.4 will be proved in the case that (s, t) = (x, y). Let us

choose an arbitrary ε > 0 and set

δ := ε
/
max

[x,y]∈Sxy

∣∣∣F (x, y, f(x, y))
√
1 + f2x(x, y) + f2y (x, y)

∣∣∣ .

For every part D ⊂ S satisfying (5.1) we then have (see relations (3.11) and (3.1))

∣∣∣∣
∫∫

Dxy

F (x, y, f(x, y))
√
1 + f2x(x, y) + f2y (x, y) dxdy −

∫∫

S

F (x, y, z) dσ

∣∣∣∣

=

∣∣∣∣
∫∫

Sxy−Dxy

F (x, y, f(x, y))
√
1 + f2x(x, y) + f2y (x, y) dxdy

∣∣∣∣

� max
[x,y]∈Sxy

∣∣∣F (x, y, f(x, y))
√
1 + f2x(x, y) + f2y (x, y)

∣∣∣ meas2(Sxy −Dxy) � ε.

Thus, taking into account Definitions 5.1 and 5.2, we can see that relation (5.23) is

satisfied. �

5.5. Definition. Let a part S be regular with respect to (s, t), where (s, t) is
one of the pairs (x, y), (x, z), (y, z), and let F : S → �

1 be a function continuous on

S. If the function F can be integrated over S with respect to s, t then we set

∫∫

S

F (x, y, z) dσ := ĨS
st(F ).
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Theorem 5.4 shows that Definition 5.5 is an extension of Definition 3.6 (i.e., the

definition of the surface integral over a strongly regular part of a surface) to the case
of a surface integral over a regular part of a surface, and Theorem 5.3 guarantees
correctness of this definition.

In Section 6 a practical criterion is introduced enabling us to decide whether it

is possible to integrate over a given part of a surface (or over a given surface)—see
Theorem 6.2.

5.6. Definition. We say that we can integrate over a part S if S is regular at
least with respect to one of the three coordinate planes (let us denote it by (s, t))

and if we can integrate over S with respect to s, t.

Theorem 4.2 can be extended only by definition:

5.7. Definition. Let us assume that we can integrate over a part S. Then we
set

|S| :=
∫∫

S

dσ.

5.8. �	���
	�. For the sake of brevity we set

σ(x, y) :=
√
1 + f2x(x, y) + f2y (x, y),

σ(x, z) :=
√
1 + g2x(x, z) + g2z(x, z),

σ(y, z) :=
√
1 + h2y(y, z) + h2z(y, z).

The same symbol σ for three different functions is introduced in order to be able to
use the neutral variables s, t.

6. The surface integral over a union of

Lipschitz-regular parts of a surface

6.1. Theorem. a) Let S be a Lipschitz-regular part with respect to (x, y).

Then we can integrate over S and for an arbitrary function F : S → �
1 , which is

continuous on S, we have

(6.1)
∫∫

S

F (x, y, z) dσ =
∫∫

Sxy

F (x, y, f(x, y))σ(x, y) dxdy.

b) In the case that S is a Lipschitz-regular part with respect to the plane (x, z)
(or (y, z)) the assertion of the theorem is analogous.
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��		
. By the assumptions of Theorem 6.1 the integral on the right-hand side

of (6.1) is a proper Riemann integral. Let us choose an arbitrary ε > 0 and set

δ = ε/{sup
Sxy

(|F (x, y, f(x, y))|σ(x, y))}.

Let D ⊂ S be an arbitrary part for which

meas2(Sxy −Dxy) � δ.

Then we have
∣∣∣∣
∫∫

Sxy

F (x, y, f(x, y))σ(x, y) dxdy −
∫∫

Dxy

F (x, y, f(x, y))σ(x, y) dxdy

∣∣∣∣

� sup
Sxy

(|F (x, y, f(x, y))|σ(x, y))
∫∫

Sxy−Dxy

dxdy

� sup
Sxy

(|F (x, y, f(x, y))|σ(x, y)) δ = ε.

From here we obtain, according to Definition 5.1,

ĨS
xy(F ) =

∫∫

Sxy

F (x, y, f(x, y))σ(x, y) dxdy.

If S is not regular with respect to the other two coordinate planes then relation
(6.1) is proved, according to Definition 5.6. If in addition the part S is regular

with respect to (x, z) or (y, z) then we prove in the same way as in Theorem 5.3
that IS

xz(F ) = ĨS
xy(F ) or Ĩ

S
yz(F ) = ĨS

xy(F ). From here and Definition 5.5 we obtain

relation (6.1). �

Now we formulate a sufficient condition for integration over a regular part S.

6.2. Theorem. Let a regular part S satisfy

(6.2) S =
m⋃

i=1

Si, Si ∩ Sj = ∅ (i 
= j; i, j = 1, . . . ,m),

where S1, . . . , Sm are Lipschitz-regular parts. Then we can integrate over S and we

have

(6.3)
∫∫

S

F (x, y, z) dσ =
m∑

i=1

∫∫

Si

F (x, y, z) dσ,

where F : S → �
1 is an arbitrary function continuous on S.
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��		
. By Theorem 6.1 we can integrate over the parts Si; thus the right-hand

side of (6.3) has sense. Let, for example, the part S be regular with respect to (x, y).
Let us choose an arbitrary ε > 0. We have to prove that there exists such a δ > 0
that for every part D ⊂ S, which satisfies

meas2(Sxy −Dxy) � δ,

we have

(6.4)

∣∣∣∣
∫∫

Dxy

F (x, y, z) dσ −
m∑

i=1

∫∫

Si

F (x, y, z) dσ

∣∣∣∣ � ε.

The proof of inequality (6.4) meets with a small technical difficulty: Namely, we have

Dxy =
m⋃

i=1

Dxy ∩ Si
xy,

where the closed domains Dxy ∩ Si
xy are not subsets of the domains S

i
xy. Thus

the proofs introduced in Section 5 must be modified. Details are laborious but not
surprising; thus we omit them. �

Now we extend the preceding results by definition:

6.3. Definition. Let a surface S and Lipschitz-regular parts S1, . . . , Sn satisfy

(6.5) S =
n⋃

i=1

Si, Si ∩ Sj = ∅ (i 
= j; i, j = 1, . . . , n).

Let F : S → �
1 be a function defined almost everywhere on S and such that it is

continuous and bounded in Si (i = 1, . . . , n) and continuously extendible from Si on
Si (i = 1, . . . , n). Then we set

(6.6)
∫∫

S

F (x, y, z) dσ :=
n∑

i=1

∫∫

Si

F (x, y, z) dσ.

It has to be proved that this definition does not lead to a contradiction.

6.4. Theorem. Let it be possible to express a surface S in the form

S =
m⋃

i=1

Di, Dj ∩Dk = ∅ (j 
= k; j, k = 1, . . . ,m)
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and also in the form

S =
n⋃

j=1

Kj , Ki ∩Kk = ∅ (i 
= k; i, k = 1, . . . , n),

where D1, . . . , Dm and K1, . . . ,Kn are Lipschitz-regular parts. Let F : S → R1 be a

function defined almost everywhere on S and such that it is continuous and bounded

in D1, . . . , Dm,K1, . . . ,Kn and continuously extendible fromDi toDi (i = 1, . . . ,m)

and from Kj to Kj (j = 1, . . . , n). Then

(6.7)
m∑

i=1

∫∫

Di

F (x, y, z) dσ =
n∑

j=1

∫∫

Kj

F (x, y, z) dσ.

��		
. As the intersection Di∩Kj of Lipschitz-regular parts Di, Kj is either a
Lipschitz-regular part, or the union of a finite number of mutually disjoint Lipschitz-
regular parts, the evident relations

Di =
n⋃

j=1

Di ∩Kj ,
m⋃

i=1

Di =
m⋃

i=1

n⋃

j=1

Di ∩Kj ,

Kj =
m⋃

i=1

Kj ∩Di,

n⋃

j=1

Kj =
n⋃

j=1

m⋃

i=1

Kj ∩Di

imply

S =
m⋃

i=1

Di =
n⋃

j=1

Kj =
m⋃

i=1

n⋃

j=1

Di ∩Kj =
p⋃

k=1

Mk,

where M i ∩M j = ∅ (i, j = 1, . . . , p; p � mn) and M1, . . . ,Mp are Lipschitz-regular

parts. From here and Theorem 6.2 we immediately obtain (6.7). �

6.5. Corollary. Definition 6.3 does not lead to a contradiction.

It is natural to expect that the surface integral is also additive. Let us prove it.

6.6. Theorem (additivity of the surface integral). Let S be a regular part
of a surface and F1 : S → �

1 , F2 : S → �
1 two functions continuous on S. Let the

integrals on the right-hand side of (6.8) exist. Then

(6.8)
∫∫

S

(F1(x, y, z) + F2(x, y, z)) dσ =
∫∫

S

F1(x, y, z) dσ +
∫∫

S

F2(x, y, z) dσ.
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��		
. Let the part S be regular with respect to (x, y). Let us choose an

arbitrary ε > 0. Then, according to Definition 5.1, there exist δi > 0 (i = 1, 2) such
that for an arbitrary part D ⊂ S, which satisfies the inequality

meas2(Sxy −Dxy) � δi, (i = 1 or i = 2),

we have
∣∣∣∣∣

∫∫

Dxy

F1(x, y, f(x, y))σ(x, y) dxdy −
∫∫

S

F1(x, y, z) dσ

∣∣∣∣∣ � ε,

or ∣∣∣∣∣

∫∫

Dxy

F2(x, y, f(x, y))σ(x, y) dxdy −
∫∫

S

F2(x, y, z) dσ

∣∣∣∣∣ � ε.

Let us choose an arbitrary part D ⊂ S satisfying the inequality

meas2(Sxy −Dxy) � min (δ1, δ2).

Then the additivity of the Riemann two-dimensional integral and the preceding in-
equalities imply

∣∣∣∣∣

∫∫

Dxy

(F1(x, y, f(x, y)) + F2(x, y, f(x, y)))σ(x, y) dxdy−

−
∫∫

S

F1(x, y, z) dσ −
∫∫

S

F2(x, y, z) dσ

∣∣∣∣ � 2ε,

which proves relation (6.8). �

6.7. Convention. In what follows we will consider only surfaces satisfying the

assumption of Definition 6.3 expressed by relation (6.5).

7. A parametric representation of a surface integral

A parametric representation is convenient for computation of some surface inte-
grals.

7.1. Definition. We say that a part (or surface) S has a smooth parametric

representation if every point [x, y, z] ∈ S can be expressed in the form

(7.1) x = X(u, v), y = Y (u, v), z = Z(u, v), [u, v] ∈M,
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and the following conditions are satisfied:

a) M is a closed and bounded simply connected two-dimensional domain;
b) the functions X : M → �

1 , Y : M → �
1 , Z : M → �

1 are continuous;
c) the partial derivatives Xu, Xv, Yu, Yv, Zu, Zv exist at each point [u, v] ∈M and

the functions Xu : M → �
1 , . . . , Zv : M → �

1 are continuous;
d) each point [u, v] ∈M is mapped onto a point [x, y, z] ∈ S;
e) if two points [u1, v1] 
= [u2, v2] satisfy

X(u1, v1) = X(u2, v2), Y (u1, v1) = Y (u2, v2), Z(u1, v1) = Z(u2, v2),

then both the points [u1, v1], [u2, v2] lie on the boundary ∂M of the domain M ;
f) if S is not a closed surface (i.e., a boundary of a three-dimensional domain)

then the boundary ∂S of the surface S is the image of a subset of the boundary ∂M

of M .

7.2. Lemma. Let a part S have a smooth parametric representation (7.1).
a) If S is regular with respect to (x, y), i.e., it can be expressed in the form

(7.2) z = f(x, y), [x, y] ∈ Sxy,

then

Z(u, v) = f(X(u, v), Y (u, v)) ∀[u, v] ∈M,(7.3)

Sxy = {[x, y] : x = X(u, v), y = Y (u, v), [u, v] ∈M}.(7.4)

b) If S is regular with respect to (x, z), i.e., it can be expressed in the form

(7.5) y = g(x, z), [x, z] ∈ Sxz,

then

Y (u, v) = g(X(u, v), Z(u, v)) ∀[u, v] ∈M,(7.6)

Sxz = {[x, z] : x = X(u, v), z = Z(u, v), [u, v] ∈M}.(7.7)

c) If S is regular with respect to (y, z), i.e., it can be expressed in the form

(7.8) x = h(y, z), [y, z] ∈ Syz,

then

X(u, v) = h(Y (u, v), Z(u, v)) ∀[u, v] ∈M,(7.9)

Syz = {[y, z] : y = Y (u, v), z = Z(u, v), [u, v] ∈M}.(7.10)
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��		
. We shall prove a). According to the assumptions, the coordinates of

each point [x, y, z] ∈ S satisfy both the relations (7.2) and (7.1) and in the case (7.1)
for every point [u, v] ∈ M there exists just one point [x, y, z] ∈ S. Hence, inserting
(7.1) in (7.2), we obtain relation (7.3).

Relations (7.1) and (7.3) enable us to write all points [x, y, z] ∈ S in the form

[x, y, z] = [X(u, v), Y (u, v), f(X(u, v), Y (u, v))], [u, v] ∈M.

From it we can see that the orthogonal projection of S onto the plane (x, y) is the

set appearing on the right-hand side of (7.4). By (7.2) the orthogonal projection of
S onto the plane (x, y) is Sxy. Thus relation (7.4) is satisfied. �

7.3. �	���
	�. We set

(7.11) H(u, v) :=
√
[A(u, v)]2 + [B(u, v)]2 + [C(u, v)]2,

where

A(u, v) :=

∣∣∣∣
Yu(u, v) Zu(u, v)
Yv(u, v) Zv(u, v)

∣∣∣∣ ,(7.12)

B(u, v) := −
∣∣∣∣
Xu(u, v) Zu(u, v)

Xv(u, v) Zv(u, v)

∣∣∣∣ ,(7.13)

C(u, v) :=

∣∣∣∣
Xu(u, v) Yu(u, v)
Xv(u, v) Yv(u, v)

∣∣∣∣ .(7.14)

7.4. Lemma. a) Let S be regular with respect to (x, y) and let it have a smooth
parametric representation (7.1). Then

(7.15) C(u, v) 
= 0 ∀[u, v] ∈M

and the cosine of the angle, which is made by the normal to S and the z-axis at an

arbitrary interior point of S, satisfies

(7.16) cos γ(x, y, z) = εz|C(u, v)|/H(u, v),

where εz is defined in Theorem 1.9 and [x, y, z] corresponds to [u, v] ∈M according

to (7.1).
b) Let S be regular with respect to (x, z) and let it have a smooth parametric

representation (7.1). Then

(7.17) B(u, v) 
= 0 ∀[u, v] ∈M
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and the cosine of the angle, which is made by the normal to S and the y-axis at an

arbitrary interior point of S, satisfies

(7.18) cosβ(x, y, z) = εy|B(u, v)|/H(u, v),

where εy is defined in Theorem 1.9 and [x, y, z] corresponds to [u, v] ∈M according
to (7.1).

c) Let S be regular with respect to (y, z) and let it have a smooth parametric
representation (7.1). Then

(7.19) A(u, v) 
= 0 ∀[u, v] ∈M

and the cosine of the angle, which is made by the normal to S and the x-axis at an

arbitrary interior point of S, satisfies

(7.20) cosα(x, y, z) = εx|A(u, v)|/H(u, v),

where εx is defined in Theorem 1.9 and [x, y, z] corresponds to [u, v] ∈M according
to (7.1).

��		
. By (1.11) and (7.1) we have

(7.21) cos γ(x, y, z) =
εz√

1 + [fx(X(u, v), Y (u, v)]2 + [fy(X(u, v), Y (u, v)]2
.

In order to obtain (7.16), we must conveniently express the term appearing under the

sign of the square root on the right-hand side of (7.21). In the course of computation
we also prove (7.15).

Taking into account the assumptions of assertion a) we can see that relation (7.3)

holds. According to the rule for differentiation of a composite function, relation (7.3)
implies

Zu(u, v) = fx(X(u, v), Y (u, v))Xu(u, v) + fy(X(u, v), Y (u, v))Yu(u, v),

Zv(u, v) = fx(X(u, v), Y (u, v))Xv(u, v) + fy(X(u, v), Y (u, v))Yv(u, v).

Inserting these relations into both (7.12) and (7.13), we obtain after an easy compu-

tation in which we use (7.14):

A(u, v) = − fx(X(u, v), Y (u, v))C(u, v),(7.22)

B(u, v) = − fy(X(u, v), Y (u, v))C(u, v).(7.23)
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It will be proved in Section 8 that no point [u, v] ∈ M satisfies A(u, v) = B(u, v) =

C(u, v) = 0. This fact and relations (7.22), (7.23) imply (7.15): Let us choose an
arbitrary point [u0, v0] ∈ M . If C(u0, v0) 
= 0, then we need not prove (7.15) for
this point. If A(u0, v0) 
= 0 then (7.22) implies C(u0, v0) 
= 0 (because both the
expressions fx and C on the right-hand side are finite). If B(u0, v0) 
= 0 then the
relation C(u0, v0) 
= 0 follows from (7.23).
As (7.15) holds, we can divide both relations (7.22) and (7.23) by C(u, v). If we

insert such modified relations (7.22), (7.23) in (7.21), then after a small rearrange-

ment in which we use (7.11), relation (7.16) follows. �

7.5. Theorem. Let a part S be Lipschitz-regular and let it have a smooth

parametric representation (7.1). Let F : S → �
1 be a function continuous on S.

Then

(7.24)
∫∫

S

F (x, y, z) dσ =
∫∫

M

F (X(u, v), Y (u, v), Z(u, v))H(u, v) du dv,

where the function H : M → �
1 is given by (7.11)–(7.14).

��		
. The proof of (7.24) is a modification of the proof of Theorem 3.2; it is

again based on the theorem on transformation of a two-dimensional integral. If S is
Lipschitz-regular with respect to (x, y) then we have

(7.25)
∫∫

S

F (x, y, z) dσ =
∫∫

Sxy

F (x, y, f(x, y))
√
1 + f2x(x, y) + f2y (x, y) dxdy.

The integral on the right-hand side of (7.25) will be transformed by means of the

substitution

(7.26) x = X(u, v), y = Y (u, v), [u, v] ∈M.

By (7.14) we can write

J(u, v) = C(u, v) ∀[u, v] ∈M ;

hence by Lemma 7.4a
J(u, v) 
= 0 ∀[u, v] ∈M.

The other assumptions of the theorem on substitution in an integral can be easily
verified and we have

∫∫

Sxy

F (x, y, f(x, y))
√
1 + f2x(x, y) + f2y (x, y) dxdy

=
∫∫

M

F (X(u, v), Y (u, v), Z(u, v))

×
√
1 + f2x(X(u, v), Y (u, v)) + f2y (X(u, v), Y (u, v))|C(u, v)| du dv.
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By (7.22), (7.23) and (7.11) we have

√
1 + f2x(X(u, v), Y (u, v)) + f2y (X(u, v), Y (u, v))|C(u, v)| = H(u, v)

and we obtain (7.24). �

7.6. Corollary. The value of a surface integral does not depend on the form of
the parametric representation of the surface.

7.7. Theorem. Let a surface S satisfy relation (6.5) and let it have a smooth
parametric representation (7.1). Let the parts Si have smooth parametric represen-

tations

x = X(u, v), y = Y (u, v), z = Z(u, v), [u, v] ∈M i,

where the functions x = X(u, v), y = Y (u, v), z = Z(u, v) are the same as in (7.1),

and let closed domains M i satisfy the relation

M =
n⋃

i=1

M i, Mi ∩Mj = ∅ (i 
= j; i, j = 1, . . . , n).

Then we have

∫∫

S

F (x, y, z) dσ =
∫∫

M

F (X(u, v), Y (u, v), Z(u, v))H(u, v) du dv.

��		
. According to Theorem 7.5, we have

∫∫

Si

F (x, y, z) dσ =
∫∫

Mi

F (X(u, v), Y (u, v), Z(u, v))H(u, v) du dv.

Summing up these relations from i = 1 to i = n, we obtain the assertion of Theorem

7.7; we use the assumptions of the theorem and the preceding results. �
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8. The geometrical meaning of determinants A, B, C

Let us consider a smooth parametric representation (7.1) of a regular part S. Let
us choose an arbitrary point [x0, y0, z0] ∈ S. There is just one point [u0, v0] ∈ M

which corresponds to this point in transformation (7.1). We shall prove that the
equation of the tangent plane of S at the point [x0, y0, z0] can be written in the form

(8.1) A(u0, v0)(x− x0) +B(u0, v0)(y − y0) + C(u0, v0)(z − z0) = 0,

where A(u0, v0), B(u0, v0), C(u0, v0) are the values of the determinants A(u, v),
B(u, v), C(u, v) given by relations (7.12)–(7.14) at the point [u0, v0].

In order to prove it let us write for the first time the equation of the tangent plane
at the point [x0, y0, z0] in the form

(8.2) k1(x− x0) + k2(y − y0) + k3(z − z0) = 0,

where the coefficients k1, k2, k3 should be determined. Let us consider the so called
v0-curve on the part S, whose parametric representation can be obtained if we set

v = v0 in (7.1):

x = X(u, v0), y = Y (u, v0), z = Z(u, v0), [u, v0] ∈M.

Let us consider an arbitrary point [x∗, y∗, z∗] ∈ S lying on the v0-curve. Then the

parametric equations of the straight line determined by this point and the point
[x0, y0, z0] are of the form

x = x0 +
X(u∗, v0)−X(u0, v0)

u∗ − u0
t, t ∈ (−∞,∞),

y = y0 +
Y (u∗, v0)− Y (u0, v0)

u∗ − u0
t, t ∈ (−∞,∞),

z = z0 +
Z(u∗, v0)− Z(u0, v0)

u∗ − u0
t, t ∈ (−∞,∞).

If [x∗, y∗, z∗]→ [x0, y0, z0] then u∗ → u0 and we obtain from the preceding relations

the parametric equations of the tangent line to the v0-curve at the point [x0, y0, z0]:

x = x0 +Xu(u0, v0)t, y = x0 + Yu(u0, v0)t,(8.3)

z = x0 + Zu(u0, v0)t, t ∈ (−∞,∞).
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Similarly we obtain the parametric equations of the tangent line to the u0-curve at

the point [x0, y0, z0]:

x = x0 +Xv(u0, v0)t, y = x0 + Yv(u0, v0)t,(8.4)

z = x0 + Zv(u0, v0)t, t ∈ (−∞,∞).

As (8.3), (8.4) are parametric equations of straight lines, none of the vectors

(Xu(u0, v0), Yu(u0, v0), Zu(u0, v0)),(8.5)

(Xv(u0, v0), Yv(u0, v0), Zv(u0, v0)),(8.6)

can have all components equal to zero. Further, as the straight lines u = u0, v = v0
intersect, the v0-curve and u0-curve intersect too; hence, the tangent lines (8.3), (8.4)

are noncollinear and thus determine the tangent plane (8.2). Hence we obtain that
the vectors (8.5), (8.6) are noncollinear.

We express x−x0, y−y0, z−z0 from equations (8.3) and insert in (8.2). Assuming
[x, y, z] 
= [x0, y0, z0], i.e., t 
= 0, we obtain dividing (8.2) by the parameter t:

(8.7) k1Xu(u0, v0) + k2Yu(u0, v0) + k3Zu(u0, v0) = 0.

From equations (8.4) and (8.2) we similarly obtain

(8.8) k1Xv(u0, v0) + k2Yv(u0, v0) + k3Zv(u0, v0) = 0.

We can see from (8.7) a (8.8) that the numbers k1, k2, k3 can be interpreted as
components of a vector different from the zero vector,

(8.9) (k1, k2, k3) 
= (0, 0, 0),

which is orthogonal to noncollinear vectors (8.5), (8.6). Thus we can set

(k1, k2, k3) =

∣∣∣∣∣∣

e1 e2 e3
Xu(u0, v0) Yu(u0, v0) Zu(u0, v0)

Xv(u0, v0) Yv(u0, v0) Zv(u0, v0)

∣∣∣∣∣∣
,

where e1, e2 and e3 are the unit vectors which are parallel to the positive directions
of the axes x, y and z, respectively. The determinant on the right-hand side expresses

the vector product of vectors (8.5) and (8.6). From here and from (7.12)–(7.14) we
obtain that

(8.10) k1 = A(u0, v0), k2 = B(u0, v0), k3 = C(u0, v0).
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Inserting (8.10) in (8.2), we obtain equation (8.1).

Relations (8.9) and (8.10) imply the following lemma, which we have used in the

proof of Lemma 7.4:

8.1. Lemma. At any point [u, v] ∈M which corresponds to the point [x, y, z] ∈
S, the relations

A(u, v) = 0, B(u, v) = 0, C(u, v) = 0

cannot hold simultaneously.

9. Invariance of the surface integral with respect to a
transformation between two Cartesian coordinate systems

Till now we have considered the surface integral only in one (arbitrarily chosen)

Cartesian coordinate system.

9.1. Theorem (on the invariance of the surface integral). Let (x, y, z)
and (ξ, η, ζ) be two Cartesian coordinate systems related by the transformation

(9.1)

x = x0 + a1ξ + a2η + a3ζ,

y = y0 + b1ξ + b2η + b3ζ,

z = z0 + c1ξ + c2η + c3ζ

where [x0, y0, z0] is the origin of the system (ξ, η, ζ) in the system (x, y, z). Let a
part S be strongly regular to both the coordinate planes (x, y) and (ξ, η). Let S be

expressed in the system (x, y, z) by

(9.2) z = f(x, y), [x, y] ∈ Sxy,

where f ∈ C1(Sxy), and in the system (ξ, η, ζ) by

(9.3) ζ = ϕ(ξ, η), [ξ, η] ∈ Sξη,

where ϕ ∈ C1(Sξη). If F : S → �
1 is a function continuous on S with values

F (x, y, z), [x, y, z] ∈ S then

(9.4)

∫∫

Sxy

F (x, y, f(x, y))
√
1 + f2x(x, y) + f2y (x, y) dxdy

=
∫∫

Sξη

F̃ (ξ, η, ϕ(ξ, η))
√
1 + ϕ2ξ(ξ, η) + ϕ

2
η(ξ, η) dξ dη,
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where

(9.5) F̃ (ξ, η, ζ) := F (x0 + a1ξ + a2η + a3ζ, . . . , z0 + c1ξ + c2η + c3ζ).

��		
. A) It is well-known that the determinant of transformation (9.1) satisfies

the relation

(9.6)

∣∣∣∣∣∣

a1 a2 a3
b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣
= ±1,

where we take the sign + (sign −) if both systems (x, y, z) and (ξ, η, ζ) have the
same (opposite) orientation. In the case of the same orientation each entry of the
matrix of transformation (9.1) is equal to its complement. In the case of the opposite

orientation each entry is equal to its complement with the opposite sign.

It is also well-known that the lines (columns) of (9.6) form a system of three
orthonormal vectors.

B) Let P ∈ S be an arbitrary but fixed point. By (9.2) we can write its coordinates
in the system (x, y, z) in the form [x, y, f(x, y)] and by (9.3) in the system (ξ, η, ζ)
in the form [ξ, η, ϕ(ξ, η)]. By (9.1) these coordinates satisfy the relations

x = �(ξ, η) := x0 + a1ξ + a2η + a3ϕ(ξ, η),(9.7)

y = σ(ξ, η) := y0 + b1ξ + b2η + b3ϕ(ξ, η),(9.8)

f(x, y) = z0 + c1ξ + c2η + c3ϕ(ξ, η).(9.9)

First we prove that the mapping Φ : Sξη → �
2 , which is given by relations (9.7)

and (9.8), is injective and that Φ(Sξη) = Sxy. As the part S is regular with respect
to both (x, y) and (ξ, η), every point P ∈ S is the image of just one point [x, y] ∈ Sxy

and of just one point [ξ, η] ∈ Sξη and the coordinates of these points [x, y], [ξ, η]
satisfy relations (9.7), (9.8). From here both properties of the mapping Φ follow.

As the part S is strongly regular with respect to Sξη, the functions � : Sξη → �
1 ,

σ : Sξη → �
1 are continuous and bounded on S together with their first partial

derivatives. The Jacobian of transformation (9.7), (9.8) satisfies

J(ξ, η) ≡ C̃(ξ, η) :=

∣∣∣∣
�ξ(ξ, η) σξ(ξ, η)

�η(ξ, η) ση(ξ, η)

∣∣∣∣
= (a1 + a3ϕξ(ξ, η))(b2 + b3ϕη(ξ, η)) − (b1 + b3ϕξ(ξ, η))(a2 + a3ϕη(ξ, η))

=

∣∣∣∣
a1 a2
b1 b2

∣∣∣∣−
∣∣∣∣
a2 a3
b2 b3

∣∣∣∣ϕξ(ξ, η) +

∣∣∣∣
a1 a3
b1 b3

∣∣∣∣ϕη(ξ, η).
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Thus, according to part A), we can write

(9.10) J(ξ, η) ≡ C̃(ξ, η) = ±c3 ∓ c1ϕξ(ξ, η)∓ c2ϕη(ξ, η).

As the part S is strongly regular with respect to (ξ, η) and is expressed by (9.3),

we obtain from (9.10) that the Jacobian J(ξ, η) is bounded on Sξη. In part C) of
this proof we will show that

(9.11) J(ξ, η) 
= 0 ∀[ξ, η] ∈ Sξη.

Finally, the domains Sxy and Sξη are measurable and the function F (x, y, f(x, y))
is continuous and bounded on Sxy. Thus all assumptions of the theorem on trans-

formation of the two-dimensional Riemann integral are satisfied for the integral ap-
pearing on the left-hand side of relation (9.4).

For the sake of brevity let us set

(9.12) τ(ξ, η) := f(�(ξ, η), σ(ξ, η)).

Then, according to (9.9),

(9.13) τ(ξ, η) = z0 + c1ξ + c2η + c3ϕ(ξ, η)

and by the rule of differentiation of a composite function

Ã(ξ, η) :=

∣∣∣∣
σξ(ξ, η) τξ(ξ, η)
ση(ξ, η) τη(ξ, η)

∣∣∣∣ =
∣∣∣∣
σξ fx(�, σ)�ξ + fy(�, σ)σξ

ση fx(�, σ)�η + fy(�, σ)ση

∣∣∣∣

= − fx(�(ξ, η), σ(ξ, η))

∣∣∣∣
�ξ(ξ, η) σξ(ξ, η)

�η(ξ, η) ση(ξ, η)

∣∣∣∣ ;

similarly

B̃(ξ, η) := −
∣∣∣∣
�ξ(ξ, η) τξ(ξ, η)
�η(ξ, η) τη(ξ, η)

∣∣∣∣ = −fy(�(ξ, η), σ(ξ, η))

∣∣∣∣
�ξ(ξ, η) σξ(ξ, η)
�η(ξ, η) ση(ξ, η)

∣∣∣∣ .

Using the definition of C̃(ξ, η), we obtain

Ã(ξ, η) = − fx(�(ξ, η), σ(ξ, η))C̃(ξ, η),(9.14)

B̃(ξ, η) = − fy(�(ξ, η), σ(ξ, η))C̃(ξ, η),(9.15)
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and as J(ξ, η) ≡ C̃(ξ, η) the theorem on transformation of the two-dimensional Rie-

mann integral yields

∫

Sxy

F (x, y, f(x, y))
√
1 + f2x(x, y) + f2y (x, y) dxdy(9.16)

=
∫∫

Sξη

F (�(ξ, η), σ(ξ, η), f(�(ξ, η), σ(ξ, η))

×
√
1 + f2x(�(ξ, η), σ(ξ, η)) + f2y (�(ξ, η), σ(ξ, η)) |C̃(ξ, η)| dξ dη

=
∫∫

Sξη

F (�(ξ, η), σ(ξ, η), τ(ξ, η))
√
Ã2(ξ, η) + B̃2(ξ, η) + C̃2(ξ, η) dξ dη.

The definition of the determinants Ã(ξ, η), B̃(ξ, η) and part A) yield (similarly as

(9.10), with the use of (9.7), (9.8), (9.13))

Ã(ξ, η) = ± a3 ∓ a1ϕξ(ξ, η)∓ a2ϕη(ξ, η).(9.17)

B̃(ξ, η) = ± b3 ∓ b1ϕξ(ξ, η) ∓ b2ϕη(ξ, η).(9.18)

Relations (9.17), (9.18) and (9.10) give (for the sake of brevity we omit the arguments
ξ, η)

Ã2 = a23 + a
2
1ϕ
2
ξ + a

2
2ϕ
2
η − 2a1a3ϕξ − 2a2a3ϕη + 2a1a2ϕξϕη,

B̃2 = b23 + b
2
1ϕ
2
ξ + b

2
2ϕ
2
η − 2b1b3ϕξ − 2b2b3ϕη + 2b1b2ϕξϕη,

C̃2 = c23 + c
2
1ϕ
2
ξ + c

2
2ϕ
2
η − 2c1c3ϕξ − 2c2c3ϕη + 2c1c2ϕξϕη.

Hence by the last assertion of part A) we obtain

Ã2 + B̃2 + C̃2 = 1 + ϕ2ξ + ϕ
2
η

and relation (9.16) can be rewritten to the form

∫

Sxy

F (x, y, f(x, y))
√
1 + f2x(x, y) + f2y (x, y) dxdy(9.19)

=
∫∫

Sξη

F (�(ξ, η), σ(ξ, η), τ(ξ, η))
√
1 + ϕ2ξ(ξ, η) + ϕ

2
η(ξ, η) dξ dη.

By (9.5), (9.7), (9.8) and (9.13) we have

F (�(ξ, η), σ(ξ, η), τ(ξ, η)) = F̃ (ξ, η, ϕ(ξ, η)) ;

thus relation (9.19) is identical with relation (9.4).
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C) It remains to prove relation (9.11). As

x = �(ξ, η), y = σ(ξ, η), z = τ(ξ, η), [ξ, η] ∈ Sξη

is a smooth parametric representation of the part S, it follows from Lemma 8.1 that
at any point [ξ, η] ∈ Sξη the relations

Ã(ξ, η) = 0, B̃(ξ, η) = 0, C̃(ξ, η) = 0

cannot hold simultaneously. Using this result and (9.14), (9.15), we can prove in the

same way as in Lemma 7.4 that

J(ξ, η) ≡ C̃(ξ, η) 
= 0 ∀[ξ, η] ∈ Sξη.

Theorem 9.1 is proved. �

9.2. ������. Using symbolism analogous to that of Section 3, we can write

relation (9.4) in the form

(9.20) IS
xy(F ) = I

S
ξη(F̃ ).

Relation (9.20) is one of the nine possibilities, which can be formally expressed by
the relation

(9.21) IS
uv(F ) = I

S
στ (F̃ ),

where (u, v) is one of the pairs (x, y), (x, z), (y, z) and (σ, τ) one of the pairs (ξ, η),

(ξ, ζ), (η, ζ).

9.3. Theorem. Let
〈
O, x, y, z

〉
,
〈
O′, ξ, η, ζ

〉
be two arbitrary Cartesian coordi-

nate systems. Let the part S be strongly regular in both systems and let F , F̃ be

functions from Theorem 9.1. Then

(9.22)
∫∫

S

F (x, y, z) dσ =
∫∫

S

F̃ (ξ, η, ζ) dσ̃

where the meaning of the symbols is obvious.

��		
. Relation (9.22) is an immediate consequence of Theorem 3.2, Definition
3.4 and relations (9.21). �

9.4. ������. It is not difficult to see that Theorem 9.3 holds also in the case
when the part S is only regular in both systems provided it is possible to integrate

over S at least in one of the systems. (Then we can integrate over S also in the other
system and relation (9.22) holds.)
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9.5. ������. On the contrary, the invariance of the three-dimensional integral

over a domain Ω with respect to transformation (9.1) is an immediate consequence
of the theorem on transformation of an integral:

(9.23)
∫∫∫

Ω
F (x, y, z) dxdy dz =

∫∫∫

Ω
F̃ (ξ, η, ζ) dξ dη dζ.

On the right-hand side of (9.23) one usually writes another symbol; for example, if
we write transformation (9.1) in the form (x, y, z)T = A(ξ, η, ζ)T then it is more
convenient to write

(9.24)
∫∫∫

Ω
F (x, y, z) dxdy dz =

∫∫∫

A−1(Ω)
F̃ (ξ, η, ζ) dξ dη dζ.

In both cases we integrate over the same domain but we see it in two different ways.
In the case of a surface integral the situation is different: Both integrals in relation

(9.22) are symbols the precise meaning of which is given in Definition 3.4 and by
Theorem 3.2.

10. Trace theorems

10.1. Definition. a) We say that a domain Ω has a piecewise smooth boundary

∂Ω if ∂Ω satisfies the assumptions of Definition 6.3 concerning S = ∂Ω and if ∂Ω
has an outer normal at almost all points.2

b) We say that a domain Ω has an S-continuous boundary if Ω has a continuous
boundary in the sense of Nečas (see [Ne, pp. 14–15]) and if Ω has a piecewise smooth

boundary.3

c) We say that a domain Ω has an S-Lipschitz continuous boundary if Ω has a

Lipschitz continuous boundary ∂Ω in the sense of Nečas and Hlaváček (see [NH,
p. 17]) and if Ω has a piecewise smooth boundary ∂Ω.4

Restricting our considerations to S-Lipschitz continuous boundaries we shall be
able to prove both the trace theorems and the Gauss-Ostrogradskij theorem without

use of the partition of unity.
In the case of Sobolev spaces we will use the same notation as in [KJF]. In what

follows we will need these three well-known theorems:

2 This assumption guarantees that the domain Ω has no “cuts”.
3 There are domains which have a continuous boundary but do not have a piecewise smooth
boundary.

4 There are domains which have a Lipschitz continuous boundary but do not have a piece-
wise smooth boundary.
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10.2. Lemma (density theorem). Let a domain Ω have a continuous bound-
ary in the sense of Nečas. Then the set C∞(Ω) is dense in the Sobolev space Hk,p(Ω)
for every p ∈

〈
1,∞) and k ∈ �. Moreover, Hk,p(Ω)� W k,p(Ω).

For the proof see [KJF, pp. 271–272].

10.3. Lemma (extension theorem). Let a domain Ω ⊂ �
N have a Lipschitz

continuous boundary. Then there exists a bounded linear operator E : H1(Ω) →
H1(�N ) such that

E(u)
∣∣
Ω
= u on Ω ∀u ∈ H1(Ω).

For the proof see [Ne, p. 80].

10.4. Lemma (imbedding theorem). Let a domain Ω ⊂ �
N have a Lipschitz

continuous boundary, let N � 2, p ∈
〈
1, N). Put q∗ = Np/(N − p). Then

H1,p(Ω) ⊂ Lq(Ω) algebraically and topologically

provided q ∈
〈
1, q∗

〉
(i.e., 1 � 1

q � 1
p − 1

N ).

For the proof see [KJF, pp. 282–286].

10.5. Definition. Let a surface S satisfy (6.5) with Lipschitz-regular parts

S1, . . . , Sn. Let

w = ωi(s, t), [s, t] ∈ Si
st

be the explicit expression of the part Si, where s, t, w are the so called neutral

variables. Let the corresponding function from Notation 5.8 be denoted by σi(s, t),
i.e.,

σi(s, t) =

√
1 +

[
∂ωi

∂s
(s, t)

]2
+

[
∂ωi

∂t
(s, t)

]2
.

Let u : S → �
1 be such a function that u(s, t, ωi(s, t)) ∈ Lp(Si

st) where 1 � p < ∞.
Then we say that u ∈ Lp(S) and define the norm

(10.1) ‖u‖Lp(S) :=

( n∑

i=1

∫∫

Si
st

|u(s, t, ωi(s, t))|pσi(s, t) ds dt

)1/p

.

It is easy to see that the expression ‖u‖Lp(S) defined by (10.1) satisfies all three

axioms of a norm. Moreover, according to the results of Section 9, expression (10.1)
does not depend on the choice of a Cartesian coordinate system.
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10.6. Theorem. Let a surface S satisfy relation (6.5) with Lipschitz-regular
parts S1, . . . , Sn. Let u ∈ Lp(S), where 1 � p <∞. Then the expression

(10.2) Ip,S(u) =

( n∑

i=1

∫∫

Si
st

|u(s, t, ωi(s, t)|p ds dt
)1/p

defines a norm which is equivalent to the norm ‖u‖Lp(S), i.e., there exist two positive

constants C1, C2 such that

(10.3) C1Ip,S(u) � ‖u‖Lp(S) � C2Ip,S(u) ∀u ∈ Lp(S).

��		
. The assumptions of Theorem 10.7 imply

1 � σi(s, t) � Ki (i = 1, . . . , n),

where Ki are constants. These inequalities immediately imply

(10.4) [Ip,S(u)]
p � ‖u‖p

Lp(S)
� max

i=1,...,n
Ki[Ip,S(u)]

p ∀u ∈ Lp(S).

Relations (10.4) yield inequalities (10.3) with C1 = 1 and C2 =
(
max

i=1,...,n
Ki

)1/p

. �

10.7. Corollary. Let a surface S satisfy relation (6.5) with Lipschitz-regular
parts S1, . . . , Sn. Then the normed space Lp(S), where 1 � p < ∞, is a Banach
space.

��		
. According to Definition 10.5, the set of elements belonging to Lp(S)
equipped with the norm Ip,S(u) is a Banach space. This fact and Theorem 10.6 yield

the assertion. �

Now we can start our considerations concerning the trace theorems. First we prove
a generalization of [KJF, Theorem 6.4.1]:

10.8. Theorem (trace theorem). Let a domain Ω ⊂ �
N have an S-Lipschitz

continuous boundary. Let 1 � p < N = 3, q = (Np− p)/(N − p) = 2p/(3− p). Then
there exists a uniquely determined continuous linear mapping γ : H1,p(Ω)→ Lq(∂Ω)
such that γu = u

∣∣
∂Ω
for all u ∈ C∞(Ω).

��		
. A) First we prove that for any function u ∈ C∞(G) we have

(10.5) ‖u‖Lq(∂Ω) � C‖u‖H1,p(G),
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where G is a simply connected bounded domain such that

(10.6) Ω ⊂ G

with

(10.7) 2β := dist(∂Ω, ∂G) > 0.

Let u ∈ C∞(G) and let

(10.8) v(s, t, ωi(s, t)) = |u(s, t, ωi(s, t))|(Np−p)/(N−p).

Then

(10.9) v(s, t, ωi(s, t)) = −
∫ τ

ωi(s,t)

∂v

∂ξ
(s, t, ξ) dξ + v(s, t, τ),

where

(10.10) ωi(s, t) � τ � ωi(s, t) + β.

Inserting (10.8) into (10.9) and taking into account (10.10), we obtain, after calcu-

lating the derivative,

|u(s, t, ωi(s, t))|(Np−p)/(N−p) � |u(s, t, τ)|(Np−p)/(N−p)(10.11)

+
Np− p

N − p

∫ ωi(s,t)+β

ωi(s,t)
|u(s, t, ξ)|(Np−N)/(N−p)

∣∣∣∣
∂u

∂ξ
(s, t, ξ)

∣∣∣∣ dξ.

Let us integrate (10.11) with respect to τ over the interval
〈
ωi(s, t), ωi(s, t)+β

〉
and

let us use the definition of q. Then we find that

β|u(s, t, ωi(s, t))|q �
∫ ωi(s,t)+β

ωi(s,t)
|u(s, t, τ)|q dτ

+ qβ
∫ ωi(s,t)+β

ωi(s,t)
|u(s, t, ξ)|(Np−N)/(N−p)

∣∣∣∣
∂u

∂ξ
(s, t, ξ)

∣∣∣∣ dξ.

Let us multiply this inequality by the inequality

σi(s, t) � Ki
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and integrate the result over Si
st. We obtain

β‖u‖q
Lq(Si) � Ki

∫∫∫

Vi

|u(s, t, τ)|q ds dt dτ

+ qβKi

∫∫∫

Vi

|u(s, t, ξ)|(Np−N)/(N−p)

∣∣∣∣
∂u

∂ξ
(s, t, ξ)

∣∣∣∣ds dt dξ,(10.12)

where

(10.13) V i ⊂ G.

Let us write shortly dV = ds dt dξ and let us use the Hölder inequality for the

second integral on the right-hand side of (10.12):

∫∫∫

Vi

|u(s, t, ξ)|(Np−N)/(N−p)

∣∣∣∣
∂u

∂ξ
(s, t, ξ)

∣∣∣∣ dV(10.14)

�
( ∫∫∫

Vi

∣∣∣∣
∂u

∂ξ
(s, t, ξ)

∣∣∣∣
p

dV

)1/p( ∫∫∫

Vi

|u(s, t, ξ)|Np−N
N−p · p

p−1 dV

) p−1
p

.

Denoting the right-hand side of (10.14) shortly by RHS and using the notation

q∗ = Np/(N − p) introduced in Lemma 10.4, we obtain by (10.13) and then by
Lemma 10.4

(10.15) RHS � ‖u‖H1,p(G)‖u‖
Np−N
N−p

Lq∗(G)
� C‖u‖q

H1,p(G),

because 1 + Np−N
N−p =

Np−p
N−p = q. Relations (10.12)–(10.15) yield

(10.16) ‖u‖Lq(∂Ω) � C1‖u‖Lq(G) + C2‖u‖H1,p(G).

As q = Np−p
N−p < Np

N−p we can use Lemma 10.4 to obtain from (10.16) inequality

(10.5).

B) Let us choose v ∈ H1,p(Ω) arbitrarily. Then, according to Lemma 10.3, there
exists ṽ ∈ H1,p(G) such that ṽ = v on Ω. By Lemma 10.2 there exists a sequence
{un} ⊂ C∞(G) such that

(10.17) un → ṽ in H1,p(G).

By (10.5)

(10.18) ‖γun‖Lq(S) � C‖un‖H1,p(G)
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and by (10.5) and (10.17)

(10.19) ‖γun − γum‖Lq(S) � C‖un − um‖H1,p(G) → 0 as m,n→∞.

By (10.19), {γun} is a Cauchy sequence in Lq(S) and as Lq(S) is a Banach space
(see Corollary 10.7), there exists a γv ∈ Lq(S) such that

(10.20) γun → γv in Lq(S).

Using (10.17) and (10.20), we obtain from (10.18):

(10.21) ‖γv‖Lq(S) � C‖ṽ‖H1,p(G).

Inequality (10.21) and Lemma 10.3 imply

(10.22) ‖γv‖Lq(S) � C‖v‖H1,p(Ω) ∀v ∈ H1,p(Ω),

which was to be proved. �

10.9. Theorem (trace theorem). Let a domain Ω ⊂ �
N (N = 3) have an

S-Lipschitz continuous boundary.

a) Let p � N . Then for any q � 1 there exists a unique continuous linear mapping
γ : H1,p(Ω)→ Lq(∂Ω) such that γu = u

∣∣
∂Ω
for all u ∈ C∞(Ω).

b) Let p = 2. Then for q = 2 there exists a unique continuous linear mapping
γ : H1,2(Ω)→ L2(∂Ω) such that γu = u

∣∣
∂Ω
for all u ∈ C∞(Ω).

��		
. a) Because of its shortness we reproduce the proof of [KJF, Theorem

6.4.2] and correct simultaneously a misprint appearing in this proof.
Let q � 1 be an arbitrary fixed number. Since the function ν(t) = 2t/(3 − t)

increases from 1 to ∞ on the interval
〈
1, 3), there exists a p ∈

〈
1, 3) such that

q = ν(p). According to Theorem 10.9, there exists a uniquely defined linear mapping

M : H1,p(Ω)→ Lq(∂Ω),Mu = u
∣∣
∂Ω
if u ∈ C∞(Ω). Composing it with the identity

mapping I from H1,p(Ω) into H1,p(Ω), we can see that γ =M◦ I.
b) We have ν(32 ) = 2, i.e., p =

3
2 if q = 2. As H

1,2(Ω) ⊂ H1,
3
2 (Ω), we can set

p = 2 in this case and the considerations of part a) remain without changes.

Another proof: As L4(∂Ω) ⊂ L2(∂Ω) (algebraically and topologically), assertion
b) is a special case of Theorem 10.9 for p = 2 in the case N = 3. �

Our approach enables us to prove the following trace theorem which does not

follow from the theory developed in [Ne] and [KJF]. (For example, the theory from
[Ne] and [KJF] does not allow us to consider domains with cusp points.)
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10.10. Theorem (trace theorem). Let Ω ⊂ G, where Ω ⊂ �
3 is a domain with

a piecewise smooth boundary and G ⊂ �
3 a domain with a continuous boundary in

the sense of Nečas. Let us consider functions v ∈ H1,p(Ω) as restrictions of functions
v ∈ H1,p(G) to Ω and functions v ∈ C∞(Ω) as restrictions of functions v ∈ C∞(G).
a) Let 1 � p < 3, q = 2p/(3 − p). Then there exists a uniquely determined

continuous linear mapping γ : H1,p(Ω) → Lq(∂Ω) such that γu = u
∣∣
∂Ω
for all u ∈

C∞(Ω).
b) Let p � 3. Then for any q � 1 there exists a unique continuous linear mapping

γ : H1,p(Ω)→ Lq(∂Ω) such that γu = u
∣∣
∂Ω
for all u ∈ C∞(Ω).

c) Let p = 2. Then for q = 2 there exists a unique continuous linear mapping

γ : H1,2(Ω)→ L2(∂Ω) such that γu = u
∣∣
∂Ω
for all u ∈ C∞(Ω).

The proof is almost identical with the proofs of Theorems 10.8 and 10.9 and thus
we omit it.

11. Flow of a vector through a part of a surface.
Surface integral of the second kind

11.1. In physics we often speak about the flow of a vector of magnetic induction

through an oriented surface, about the flow of a vector of the intensity of an electric
field through an oriented surface, about the flow of a vector of velocity of a liquid

through an oriented surface, etc. All these considerations have a common base: We
are given a vector field

(11.1) F(x, y, z) = (P (x, y, z), Q(x, y, z), R(x, y, z)),

where P , Q, R are three continuous functions (components of a vector field in the
directions of the axes x, y, z), which are defined in a three-dimensional domain Ω,

and an oriented regular part S which lies in Ω, S ⊂ Ω. (The orientation of S is
given by prescribing a unit normal vector n(x, y, z), [x, y, z] ∈ S—see (1.10).) We

are interested in whether we can integrate the function

F · n ≡ P cosα+Q cosβ +R cos γ

over the part S, i.e., whether the surface integral

(11.2)
∫∫

S

(P cosα+Q cosβ + R cos γ) dσ

exists. This integral is called the flow of the vector F = (P,Q,R) through the
oriented part S.
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Let us explain the physical meaning of the integral (11.2). Let (P,Q,R) be, for

example, the velocity field of a flowing liquid. If this field is constant (i.e., the
components P , Q, R are constants) and the part S is a part of a plane, then during
a unit of time the volume

(11.3) (P cosα+Q cosβ +R cos γ)|S|.

will pass through the part S. This volume has a positive (negative) value, if the
liquid flows out from the upper (lower) side of the part S. In the case of a variable

field (P,Q,R) and a curved part S we consider the expression

rn∑

k=1

[
P (x(n)k , y

(n)
k , z

(n)
k ) cosα(x

(n)
k , y

(n)
k , z

(n)
k ) +Q(x

(n)
k , y

(n)
k , z

(n)
k ) cos β(x

(n)
k , y

(n)
k , z

(n)
k )

+R(x(n)k , y
(n)
k , z

(n)
k ) cos γ(x

(n)
k , y

(n)
k , z

(n)
k )

]
·
∣∣∣∆σ(n)k

∣∣∣

as an approximate value of the volume flowing out during a unit of time (an analogue

to (4.3)), which gives, according to Theorem 4.3, the integral (11.2) (for the time
being, under the assumption that the part S is strongly regular—this restrictive

assumption will be removed in this section).

11.2. Theorem. Let functions P : S → �
1 , Q : S → �

1 , R : S → �
1 be

continuous on S, where S is a strongly regular part of a surface.

a) If the part S is strongly regular with respect to (x, y), then

∫∫

S

(P cosα+Q cosβ +R cos γ) dσ(11.4)

= εz

∫∫

Sxy

{−P (x, y, f(x, y))fx(x, y)

−Q(x, y, f(x, y))fy(x, y) +R(x, y, f(x, y))} dxdy.

b) If the part S is strongly regular with respect to (x, z), then

∫∫

S

(P cosα+Q cosβ +R cos γ) dσ(11.5)

= εy

∫∫

Sxz

{−P (x, g(x, z), z)gx(x, z)

+Q(x, g(x, z), z)−R(x, g(x, z), z)gz(x, z)} dxdz.
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c) If the part S is strongly regular with respect to (y, z), then

∫∫

S

(P cosα+Q cosβ + R cos γ) dσ(11.6)

= εx

∫∫

Syz

{P (h(y, z), y, z)

−Q(h(y, z)y, z)hy(y, z)−R(h(y, z), y, z)hz(y, z)} dy dz.

��		
. All three assertions follow immediately from Definition 3.4, Notation
3.1 and Theorem 1.9. �

Assumptions of Theorem 11.2 are too strong and expressions on the right-hand

sides of relations (11.4)–(11.6) complicated. Both these drawbacks will be removed
in Theorem 11.4.

11.3. Lemma. a) Let a part S be regular with respect to (y, z) and let P : S →
�
1 be a continuous function. Then we can integrate the function P cosα : S → �

1

over S with respect to y, z and we have

(11.7)
∫∫

S

P (x, y, z) cosα(x, y, z) dσ = εx

∫∫

Syz

P (h(y, z), y, z) dy dz.

b) Let a part S be regular with respect to (x, z) and letQ : S → �
1 be a continuous

function. Then we can integrate the function Q cosβ : S → �
1 over S with respect

to x, z and we have

(11.8)
∫∫

S

Q(x, y, z) cosβ(x, y, z) dσ = εy

∫∫

Sxz

Q(x, g(x, z), z) dxdz.

c) Let a part S be regular with respect to (x, y) and let R : S → �
1 be a continuous

function. Then we can integrate the function R cos γ : S → �
1 over S with respect

to x, y and we have

(11.9)
∫∫

S

R(x, y, z) cos γ(x, y, z) dσ = εz

∫∫

Sxy

R(x, y, f(x, y)) dxdy.

��		
. a) As P : S → �
1 is a continuous function on S (and thus bounded on

S), the integral on the right-hand side of (11.7) exists. Let us choose ε > 0 arbitrarily
and let us set

δ = ε/max
S
|P (x, y, z)| = ε/max

Syz

|P (h(y, z), y, z)|.
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Then every part D ⊂ S for which

meas2(Syz −Dyz) < δ

satisfies, according to (1.13), (3.3) and (3.13), the relations

∣∣∣∣
∫∫

D

P (x, y, z) cosα(x, y, z) dσ − εx

∫∫

Syz

P (h(y, z), y, z) dy dz

∣∣∣∣

=

∣∣∣∣
∫∫

Syz−Dyz

P (h(y, z), y, z) dy dz

∣∣∣∣ � max
Syz

|P (h(y, z), y, z)|meas2(Syz −Dyz)

< max
Syz

|P (h(y, z), y, z)|δ < ε.

From here, according to Definitions 5.1 and 5.5, we obtain (11.7). �

11.4. Theorem. Let a part S be regular with respect to all three coordinate
planes and let P : S → �

1 , Q : S → �
1 , R : S → �

1 be functions continuous on S.

Then the integral (11.2) exists and satisfies

∫∫

S

(P cosα+Q cosβ + R cos γ) dσ(11.10)

= εx

∫∫

Syz

P (h(y, z), y, z) dy dz

+ εy

∫∫

Sxz

Q(x, g(x, z), z) dxdz + εz

∫∫

Sxy

R(x, y, f(x, y)) dxdy.

��		
. By Lemma 11.3 the integrals

∫∫

S

P cosα dσ,
∫∫

S

Q cosβ dσ,
∫∫

S

R cos γ dσ

exist. According to Theorem 6.6, the integral (11.2) also exists and is equal to

the sum of these integrals. Relation (11.10) can be now obtained by summing up
relations (17.7)–(17.9). �

������. From the point of view of the Gauss-Ostrogradskij theorem, at which

we are aimed, the assumption of Theorem 11.4 concerning the part S is not restric-
tive.

11.5. Definition. a) Let a part S be regular with respect to all three coordi-
nate planes, let n(x, y, z) be its oriented unit normal and let P , Q, R be functions
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continuous on S. We set
∫∫

S

P (x, y, z) dy dz := εx

∫∫

Syz

P (h(y, z), y, z) dy dz,(11.11)

∫∫

S

Q(x, y, z) dxdz := εy

∫∫

Sxz

Q(x, g(x, z), z) dxdz,(11.12)

∫∫

S

R(x, y, z) dxdy := εz

∫∫

Sxy

R(x, y, f(x, y)) dxdy.(11.13)

Integrals (11.11)–(11.13) are called projective surface integrals or surface integrals of
the second kind.

b) Under the same assumptions as in a) we denote

∫∫

S

(P (x, y, z) dy dz +Q(x, y, z) dxdz +R(x, y, z) dxdy)(11.14)

:=
∫∫

S

P (x, y, z) dy dz +
∫∫

S

Q(x, y, z) dxdz +
∫∫

S

R(x, y, z) dxdy.

The left-hand side of (11.14) is very often written in the form

∫∫

S

P (x, y, z) dy dz +Q(x, y, z) dxdz +R(x, y, z) dxdy.

Theorem 11.4 and Definition 11.5 yield

11.6. Corollary. Under the same assumptions as in Definition 11.5 we have

(11.15)
∫∫

S

(P cosα+Q cosβ +R cos γ) dσ =
∫∫

S

(P dy dz +Q dxdz +R dxdy).

If the part S is regular with respect to all three coordinate planes then

(11.16) meas2 Sxy > 0, meas2 Sxz > 0, meas2 Syz > 0.

In the case that (11.16) does not hold we proceed according to the following definition.

11.7. Definition. Let S be a regular part of a surface (i.e., S is regular at
least with respect to one coordinate plane), let n be its oriented unit normal, i.e.,

n(x, y, z) = (cosα(x, y, z), cosβ(x, y, z), cos γ(x, y, z)),

and let P , Q, R be functions continuous on S.
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a) If S is a part of the plane z = z0 then

cosα(x, y, z) = cosβ(x, y, z) = 0 ∀[x, y, z] ∈ S.

In this case we set
∫∫

S

P (x, y, z) dy dz = 0,
∫∫

S

Q(x, y, z) dxdz = 0.

b) If S is a part of the plane y = y0 then

cosα(x, y, z) = cos γ(x, y, z) = 0 ∀[x, y, z] ∈ S.

In this case we set
∫∫

S

P (x, y, z) dy dz = 0,
∫∫

S

R(x, y, z) dxdy = 0.

c) If S is a part of the plane x = x0 then

cosβ(x, y, z) = cos γ(x, y, z) = 0 ∀[x, y, z] ∈ S.

In this case we set
∫∫

S

Q(x, y, z) dxdz = 0,
∫∫

S

R(x, y, z) dxdy = 0.

d) If S is regular with respect to (x, y) and (x, z) and if S is a part of a surface
formed by straight lines which are parallel to the x-axis, which means that it can be

expressed in either of the forms z = f(y), [x, y] ∈ Sxy and y = g(z), [x, z] ∈ Sxz,
then

cosα(x, y, z) = 0 ∀[x, y, z] ∈ S.

In this case we set ∫∫

S

P (x, y, z) dy dz = 0.

e) If S is regular with respect to (x, y) and (y, z) and if S is a part of a surface
formed by straight lines which are parallel to the y-axis, which means that it can be

expressed in either of the forms z = f(x), [x, y] ∈ Sxy and x = h(z), [y, z] ∈ Syz,
then

cosβ(x, y, z) = 0 ∀[x, y, z] ∈ S.

In this case we set ∫∫

S

Q(x, y, z) dxdz = 0.
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f) If S is regular with respect to (x, z) and (y, z) and if S is a part of a surface

formed by straight lines which are parallel to the z-axis, which means that it can be
expressed in either of the forms y = g(x), [x, z] ∈ Sxz and x = h(y), [y, z] ∈ Syz,
then

cos γ(x, y, z) = 0 ∀[x, y, z] ∈ S.

In this case we set ∫∫

S

R(x, y, z) dxdy = 0.

11.8. Definition. We say that a part S has property (R) if it satisfies one of
the following three conditions:

a) the part S is regular with respect to all three coordinate planes;

b) the orthogonal projection of the part S onto one of the three coordinate planes

has the two-dimensional measure equal to zero; the part S is regular with respect to
the remaining two coordinate planes;

c) two components of the vector n(x, y, z) equal zero for all points [x, y, z] ∈ S.

11.9. Theorem. Let a part S have property (R), let n be its oriented unit
normal and let P , Q, R be three functions continuous on S. Then relation (11.15)

is satisfied, i.e.,

∫∫

S

(P cosα+Q cosβ +R cos γ) dσ =
∫∫

S

(P dy dz +Q dxdz +R dxdy).

��		
. Relation (11.15) follows from Theorem 11.4 and Definitions 11.5, 11.7
and 11.8. In more detail:

In the case 11.8a the assertion of the theorem coincides with Corollary 11.6.

In the case 11.8b let, for example, cosα ≡ 0. Then
∫∫

S

(P cosα+Q cosβ +R cos γ) dσ

=
∫∫

S

(Q cosβ +R cos γ) dσ

= εy

∫∫

Sxz

Q(x, g(x, z), z) dxdz + εz

∫∫

Sxy

R(x, y, f(x, y)) dxdy

=
∫∫

S

(P dy dz +Q dxdz +R dxdy),

where the second equality follows from Theorem 11.4 and the third equality from
(11.12), (11.13) and Definition 11.7d.
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In the case 11.8c let, for example, cosα ≡ 0, cosβ ≡ 0. Then
∫∫

S

(P cosα+Q cosβ +R cos γ) dσ =
∫∫

S

R dσ

= εz

∫∫

Sxy

R(x, y, z0) dxdy =
∫∫

S

(P dy dz +Q dxdz +R dxdy).

�

11.10. Theorem. Let a surface S be the union of n parts with property (R)
which have mutually disjoint interiors, let n be its oriented unit normal and let P ,
Q, R be three functions continuous on S. Then we can set

∫∫

S

(P dy dz +Q dxdz +R dxdy) :=
n∑

i=1

∫∫

Si

(P dy dz +Q dxdz +R dxdy).

��		
. The assertion of the theorem follows from the preceding results. �

At the end of this section we prove a basic theorem concerning the parametric

representation of a surface integral of the second kind.

11.11. Theorem. Let a part S, which has a smooth parametric representation
(7.1), be regular with respect to all three coordinate planes, let n be its oriented unit
normal and let P , Q, R be three function continuous on S. Then

∫∫

S

P (x, y, z) dy dz = β
∫∫

M

P (X(u, v), Y (u, v), Z(u, v))A(u, v) du dv,(11.17)
∫∫

S

Q(x, y, z) dxdz = β
∫∫

M

Q(X(u, v), Y (u, v), Z(u, v))B(u, v) du dv,(11.18)
∫∫

S

R(x, y, z) dxdy = β
∫∫

M

R(X(u, v), Y (u, v), Z(u, v))C(u, v) du dv,(11.19)

where β = +1 (β = −1) if the vector (A,B,C) is oriented similarly (not similarly)
as the normal vector n = (cosα, cosβ, cos γ). (For the definition of the components
A, B, C see (7.12)–(7.14) and for the definition of the set M see Definition 7.1.)

��		
. The proof of all three expressions is the same. Thus we prove only
(11.19). We start from expression (11.13), i.e., from

(11.20)
∫∫

S

R(x, y, z) dxdy = εz

∫∫

Sxy

R(x, y, f(x, y)) dxdy.
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By the theorem on transformation of a two-dimensional integral, Lemma 7.2a and

the fact that C(u, v) 
= 0 for all points [u, v] ∈M we can write

(11.21)
∫∫

Sxy

R(x, y, f(x, y)) dxdy =
∫∫

M

R(X,Y, Z)|C| du dv,

where for greater simplicity we omit the arguments u, v on the right-hand side.

A) Let εz = 1, which means that cos γ > 0. Let the vector (A,B,C) be oriented
similarly as the vector n. As cos γ > 0, we have, due to the same orientation of the
vectors mentioned, C > 0 (the fact that C 
= 0 follows from the considerations of
Section 8). Hence |C| = C and relations (11.20), (11.21) yield relation (11.19) with

β = +1.

Let now the orientation of the vectors (A,B,C) and n be opposite. In this case
C < 0. Hence |C| = −C and relations (11.20), (11.21) imply relation (11.19) with
β = −1.
B) Let εz = −1, which means that cos γ < 0. Let the vectors (A,B,C) and n be

oriented similarly. As cos γ < 0, we have C < 0 in this case; hence |C| = −C. Let
us insert this relation into (11.21) and multiply the relation obtained by minus one.
This yields

(11.22) εz

∫∫

Sxy

R(x, y, f(x, y)) dxdy =
∫∫

M

R(X,Y, Z)C du dv.

Relation (11.19) with β = +1 follows from (11.20) and (11.22).

Let now the vectors (A,B,C) and n be oriented in the opposite way. In this case
C > 0; hence |C| = C. If we multiply (11.21) by the relation εz = −1 and use
(11.20) we obtain (11.19) where β = −1. �

12. The elementary form of the Gauss-Ostrogradskij theorem

12.1. Definition. a) A bounded domain Ω is called elementary with respect to
the coordinate plane (x, y) if every straight line parallel to the z-axis intersects the
boundary ∂Ω at two points or has with ∂Ω a common segment which can degenerate

into a point.

b) Similarly we define domains elementary with respect to the plane (x, z), or with
respect to the plane (y, z).

c) A bounded domain Ω is called elementary if it is elementary with respect to all
three coordinate planes.
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12.2. Lemma. Let a domain Ω be elementary with respect to (x, y) and let
its boundary ∂Ω consist of a finite number of parts with property (R), which have
mutually disjoint interiors. Then these parts can be divided into three groups with

the following properties:

a) The union of parts belonging to the first group forms a part D1, whose points
[x, y, z] satisfy the equation

(12.1) z = z1(x, y), [x, y] ∈ D1xy,

where z1 is a continuous function.

b) The union of parts belonging to the second group forms a partD2, whose points
[x, y, z] satisfy the equation

(12.2) z = z2(x, y), [x, y] ∈ D2xy,

where z2 is a continuous function. At the same time we have

D1xy = D
2
xy,

z1(x, y) � z2(x, y) ∀[x, y] ∈ D1xy.

c) The normal vector of the parts belonging to the third group satisfies

cos γ ≡ 0.

The set of the parts belonging to the third group can be empty.

��		
. The assertion is evident. �

12.3. Theorem. Let the boundary ∂Ω of an elementary domain Ω be the union
of a finite number of parts with property (R). Let functions P , Q, R be continuous

on Ω and let the derivatives ∂P/∂x, ∂Q/∂y, ∂R/∂z be continuous and bounded in Ω.
Let the positive direction of the unit normal n be the direction of the outer normal.
Then

(12.3)
∫∫∫

Ω

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdy dz =

∫∫

∂Ω
(P dy dz +Q dxdz +R dxdy).

��		
. By Lemma 12.2 and the Fubini theorem

∫∫∫

Ω

∂R

∂z
dxdy dz =

∫∫

D1xy

{∫ z2(x,y)

z1(x,y)

∂R

∂z
dz

}
dxdy(12.4)

=
∫∫

D2xy

R(x, y, z2(x, y)) dxdy −
∫∫

D1xy

R(x, y, z1(x, y)) dxdy.
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Owing to the orientation of the normal, we have cos γ < 0 on D1 and cos γ > 0 on

D2. Thus relation (12.4) can be rewritten in the form
∫∫∫

Ω

∂R

∂z
dxdy dz(12.5)

= εz

∫∫

D2xy

R(x, y, z2(x, y)) dxdy + εz

∫∫

D1xy

R(x, y, z1(x, y)) dxdy.

As the boundary ∂Ω can be expressed as the union of the surfaces (12.1), (12.2) and
the parts for which cos γ = 0, the right-hand side of (12.5) is equal to the surface

integral
∫∫

∂ΩR dxdy. Hence

(12.6)
∫∫∫

Ω

∂R

∂z
dxdy dz =

∫∫

∂Ω
R dxdy.

Similarly we obtain
∫∫∫

Ω

∂P

∂x
dxdy dz =

∫∫

∂Ω
P dy dz,(12.7)

∫∫∫

Ω

∂Q

∂y
dxdy dz =

∫∫

∂Ω
Q dxdz.(12.8)

Summing (12.6)–(12.8), we obtain (12.3). �

12.4. Theorem. Let a domain Ω be the union of a finite number of elementary
domains Ω1, . . . ,Ωn, which have mutually disjoint interiors. Let the boundary ∂Ωi

of each domain Ωi (i = 1, . . . , n) be the union of a finite number of parts with
property (R). Let functions P , Q, R be continuous on Ω and let the derivatives
∂P/∂x, ∂Q/∂y, ∂R/∂z be continuous and bounded in Ω. Let the unit normal n of
the boundary ∂Ω be oriented in the direction of the outer normal. Then

(12.9)
∫∫∫

Ω

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdy dz =

∫∫

∂Ω
(P dy dz +Q dxdz +R dxdy).

��		
. The assumption concerning the normal n enables us to orient the
normal of each boundary ∂Ωi in the direction of the outer normal of Ωi; hence

∫∫∫

Ω

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdy dz =

n∑

i=1

∫∫∫

Ωi

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdy dz

=
n∑

i=1

∫∫

∂Ωi

(P dy dz +Q dxdz +R dxdy) =
∫∫

∂Ω
(P dy dz +Q dxdz +R dxdy),

because at every point P ∈ Ω which satisfies the relation P ∈ ∂Ωj ∩∂Ωk (j 
= k) two
opposite normals meet—one belonging to ∂Ωj and the other to ∂Ωk. �
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������. Every bounded convex domain is elementary.

13. A more general form of the Gauss-Ostrogradskij theorem

Verifying the assumptions of Theorem 12.4 concerning the domain Ω is in most

cases very difficult: Let us consider, for example, a domain (the so called “cheese
ball with many bubbles”)

Ω = K0 −
n⋃

i=1

Ki,

where K0,K1, . . . ,Kn are balls with properties

Ki ⊂ K0 (i = 1, . . . , n), Ki ∩Kj = ∅ (i 
= j; i, j = 1, . . . , n).

To make the Gauss-Ostrogradskij theorem applicable in general use we must sub-
stitute its assumption concerning the domain Ω by an assumption which would enable

us to check only the properties of the boundary ∂Ω. This is the aim of this section.

13.1. Definition. We say that a part S has property (R∗) (or property (R∗∗))

if it satisfies conditions a)–c) (or conditions a)–d)) where
a) the part S has property (R);

b) if
z = f(x, y), y = g(x, z), x = h(y, z)

are functions appearing in the analytical expressions of the part S with respect to the
coordinate planes then at least one of the three relations f ∈ C2(Sxy), g ∈ C2(Sxz),

h ∈ C2(Syz) holds;
c) if meas2 Sst > 0, then the boundary ∂Sst is piecewise of class C2 and has no

cusp-points;
d) at least one of the plane domains Sxy, Sxz, Syz is starlike. (A domain D is

starlike if there exists at least one point Q ∈ D with the property that every half-line
starting from this point intersects ∂D just at one point.)

�������. Let us divide the sphere

∂K = {[x, y, z] : x2 + y2 + z2 = 1}

by the coordinate planes into eight parts S1, . . . , S8, or alternatively by the coordi-

nate planes and the planes y = x, y = −x, z = 1
2 , z = − 12 into 32 parts D

1
, . . . , D

32
.

The partsD
1
, . . . , D

32
have property (R∗∗), whilst the parts S1, . . . , S8 do not satisfy

condition 13.1b.
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13.2. Lemma. Let g(0) = η1, g(l) = η2 and |g′′(s)| � K2 for s ∈ (0, l). Then

|g(s)| � max |ηj |+
1
8
K2l

2 ∀s ∈
〈
0, l

〉
.

��		
. According to the Lagrange interpolation theorem, we have

g(s) = η1
(
1− s

l

)
+ η2

s

l
+ ψ(s), s ∈

〈
0, l

〉
,

where the remainder ψ(s) satisfies

|ψ(s)| � 1
2
K2|s(s− l)|, s ∈

〈
0, l

〉
.

Hence

|g(s)| � max |ηj |+
1
2
K2 max

s∈〈0,l〉
|s(s− l)|, s ∈

〈
0, l

〉
.

From here the assertion of Lemma 13.2 follows, because max
s∈〈0,l〉

|s(s− l)| = 1
4 l
2. �

13.3. Lemma. Let T be a closed triangle in the plane (s, t) with points P1, P2,
P3 as vertices. Let ϕ ∈ C2(T ) and let M2 be a constant bounding the second partial
derivatives of the function ϕ on T . Then the linear polynomial p(s, t), for which

(13.1) p(Pi) = ϕ(Pi) (i = 1, 2, 3),

satisfies

(13.2) |ϕ(s, t) − p(s, t)| � 1
2
M2δ

2
T , [s, t] ∈ T,

where δT is the length of the largest side of the triangle T .

��		
. Let us set

(13.3) χ(s, t) := ϕ(s, t) − p(s, t).

Then M2 is a constant bounding the second partial derivative of χ on T and by

(13.1) we have
χ(Pi) = 0 (i = 1, 2, 3).

Let us consider the function g = χ|P2P3 . Then Lemma 13.2, where we set K2 = 2M2,
implies

|χ(s, t)| � 1
4
M2δ

2
T , [s, t] ∈ P2P3.

Let P ∈ T (P 
= Pi) and let B be the cross-point of the segment P2P3 and the
straight-line determined by the points P1, P . Then by Lemma 13.2

|χ(P )| � 1
4
M2δ

2
T +
1
4
M2δ

2
T .

This estimate and (13.3) yield (13.2). �

223



13.4. Lemma. If a function u(s, t) belongs to the class Cn(D), where D ∈ �
2

is a bounded closed domain whose boundary ∂D is piecewise of class Cn, without

cusp-points and with the outer normal existing at almost all points of ∂D, then this

function can be extended with keeping its class onto the whole plane (s, t).

��		
. The proof of this theorem is presented, for example, in [Fi1, Appendix].
�

13.5. Theorem (Gauss-Ostrogradskij). Let Ω be a three-dimensional
bounded closed domain whose boundary ∂Ω is the union of a finite number of parts

with property (R∗), which have mutually disjoint interiors. Let functions

P, Q, R, ∂P/∂x, ∂Q/∂y, ∂R/∂z

be continuous and bounded in a bounded three-dimensional domain Ω̃ satisfying

Ω̃ ⊃ Ω. Let the unit normal n of the boundary ∂Ω be oriented in the direction of
the outer normal of ∂Ω, which exists at almost all points of ∂Ω. Then

(13.4)
∫∫∫

Ω

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdy dz =

∫∫

∂Ω
(P dy dz +Q dxdz +R dxdy).

��		
. First we prove the theorem in the case that the parts forming ∂Ω have

property (R∗∗). At the end we show how to change the proof when these parts have
only property (R∗).

A) Let us choose δ > 0 arbitrarily but fixed (δ < 1). In this part of the proof
we show how we shall approximate a part with property (R∗∗) by a “panel-shaped”

surface which consists of triangular panels whose longest side is less or equal to δ.
This approximation will be constructed in such a way that if

(13.5) ∂Ω =
n⋃

i=1

Si, Si ∩ Sj = ∅ (i 
= j)

is a decomposition of ∂Ω into parts with property (R∗∗) and Sδ
i is a panel-shaped

surface approximating Si, then

(13.6) ∂Ωδ :=
n⋃

i=1

Sδ
i

is a polyhedron (or a union of polyhedrons if the domain Ω is multiply connected)
satisfying

(13.7) Sδ
i ∩ Sδ

j = ∅ (i 
= j; i, j = 1, . . . , n)
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and with vertices lying on ∂Ω. The closed bounded three-dimensional domain with

the boundary ∂Ωδ will be denoted Ωδ.

Let us consider one part S := Si appearing in the decomposition (13.5) and let,
for example, its orthogonal projection Sxy onto the plane (x, y) be a starlike plane

domain. The part S can be analytically expressed in the form

(13.8) z = f(x, y), [x, y] ∈ Sxy.

If meas2 Sxz > 0 then we can express S also in the form

(13.9) y = g(x, z), [x, z] ∈ Sxz,

and if meas2 Syz > 0, then also in the form

(13.10) x = h(y, z), [y, z] ∈ Syz.

Let us choose the nodal points on the boundary ∂S so dense that the distance of

two adjacent nodal points is not greater than δ. (If ∂S has corners, i.e., if ∂Sxy is
a piecewise smooth curve, then these corners are also nodal points. Also each point

P ∈ ∂S at which at least two “edges” of the decomposition (13.6) meet will be a
nodal point; the expression “edge” is in quotation marks because the surface ∂Ω

can be smooth—for example, if Ω is a sphere.) We obtain in such a way a closed
curve ∂Sδ, which is the union of a finite number of segments of lengths not greater

than δ. The orthogonal projection of the curve ∂Sδ onto the plane (x, y) will be
denoted ∂Sδ

xy. It is the boundary of a simply connected polygonal domain S
δ
xy.

As the domain Sxy is starlike, the domain Sδ
xy is also starlike (with respect to the

same point Q). Connecting all nodal points lying on ∂Sδ
xy (they are the orthogonal

projections of the nodal points lying on ∂Sδ onto the plane (x, y)) with the point
Q we obtain a rough triangulation of the domain Sδ

xy. Choosing a sufficiently great
integer s, dividing each segment which has the point Q as one end point into 2s equal

parts and triangulating each triangle which has the point Q as one vertex in such
a way that each quadrilateral, which has arisen by connecting two opposite points,

will be divided by two diagonals into four triangles, we obtain a sufficiently fine
triangulation T (Sδ

xy) of the domain S
δ
xy. The nodal points on S which correspond,

according to (13.8), to the nodal points of this triangulation, determine uniquely a
panel-shaped surface Sδ. This panel-shaped surface can be analytically expressed in

the form

(13.11) z = f δ(x, y), [x, y] ∈ Sδ
xy,
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where f δ : Sδ
xy → �

1 is a continuous function which is linear on triangles of the

triangulation T (Sδ
xy).

If meas2 Sxz > 0 (or meas2 Syz > 0) then the orthogonal projection of the surface
Sδ onto the plane (x, z) (or (y, z)) defines the triangulation T (Sδ

xz) (or T (Sδ
yz)) of

the polygonal domain Sδ
xz (or S

δ
yz) and the surface S

δ can be expressed analytically
in the form

(13.12) y = gδ(x, z), [x, z] ∈ Sδ
xz,

or

(13.13) x = hδ(y, z), [y, z] ∈ Sδ
yz,

where gδ : Sδ
xz → �

1 (or hδ : Sδ
yz → �

1 ) is a continuous function which is linear on
triangles of the corresponding triangulation.

B) As Ωδ is a polyhedron, we can express Ωδ by [Že, Lemma 4.2] in the form

(13.14) Ωδ =
m⋃

j=1

U j ,

where U1, . . . , Um are closed convex polyhedrons. (It was Křížek who inspired the
very idea of the proof of this lemma—see [Kř].) Let us orientate the normal to ∂Uj

as the outer normal of U j (j = 1, . . . ,m). Relation (13.14) and Theorem 12.4 yield

∫∫∫

Ωδ

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdy dz(13.15)

=
m∑

j=1

∫∫∫

Uj

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdy dz

=
m∑

j=1

∫∫

∂Uj

(P dy dz +Q dxdz +R dxdy)

=
∫∫

∂Ωδ

(P dy dz +Q dxdz +R dxdy),

because the surface integrals over ∂Uj ∩Ωδ altogether cancel.

C) Now we prove that

(13.16) lim
δ→0

∫∫∫

Ωδ

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdy dz =

∫∫∫

Ω

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdy dz.
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We have

∣∣∣∣
∫∫∫

Ω

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdy dz(13.17)

−
∫∫∫

Ωδ

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdy dz

∣∣∣∣

=

∣∣∣∣
∫∫∫

Ω−Ωδ

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdy dz

−
∫∫∫

Ωδ−Ω

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdy dz

∣∣∣∣

�
{
max
Ω̃

(∣∣∣∣
∂P

∂x

∣∣∣∣+
∣∣∣∣
∂Q

∂y

∣∣∣∣+
∣∣∣∣
∂R

∂z

∣∣∣∣
)}{

meas3(Ω− Ωδ) + meas3(Ωδ − Ω)
}
.

By Lemma 13.3 we have

(13.18) meas3(Ω− Ωδ) �
n∑

i=1

∑

T⊂Siδ
st

M̃2δ
2meas2 T +∆(δ),

where Si ≡ Si and Si
st is the one from the orthogonal projections S

i
xy, S

i
xz, S

i
yz

which satisfies both the inequality meas2 Si
st > 0 and condition b) from Definition

13.1. (The first term on the right-hand side of (13.18) can be split into two or three

terms with different meanings of s, t.) The constant M̃2 is given by the relation

M̃2 = max
i=1,...,n

max
S̃i

st

(∣∣∣∣
∂2ϕ̃i

∂s2

∣∣∣∣,
∣∣∣∣
∂2ϕ̃i

∂s∂t

∣∣∣∣,
∣∣∣∣
∂2ϕ̃i

∂t2

∣∣∣∣
)
,

where S̃i
st ⊃ Si

st ∪ Siδ
st for all δ, ϕ̃

i is the extension of the function ϕi (see Lemma
13.4) and ϕi denotes that of the functions f i, gi, hi which belongs to the variables

s, t.

As it is not guaranteed that the first term on the right-hand side of (13.18) is the

upper bound of meas3(Ω−Ωδ) (in general, this term does not cover neighbourhoods
of edges and “edges” in which the parts Si meet), we also have the term ∆(δ) on the

right-hand side of (13.18). A rough estimate of this term is

∆(δ) � |∂Ω|δ;

thus relation (13.18) implies

(13.19) meas3(Ω− Ωδ) � (1 + 2M̃2δ)|∂Ω|δ.
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Similarly

(13.20) meas3(Ωδ − Ω) � (1 + 2M̃2δ)|∂Ω|δ.

Relations (13.17), (13.19) and (13.20) yield (13.16).

D) Now we show that
(13.21)

lim
δ→0

∫∫

∂Ωδ

(P dy dz +Q dxdz +R dxdy) =
∫∫

∂Ω
(P dy dz +Q dxdz +R dxdy).

We prove only

(13.22) lim
δ→0

∫∫

∂Ωδ

R dxdy =
∫∫

∂Ω
R dxdy

since the remaining two relations

lim
δ→0

∫∫

∂Ωδ

P dy dz =
∫∫

∂Ω
P dy dz, lim

δ→0

∫∫

∂Ωδ

Q dxdz =
∫∫

∂Ω
Q dxdz,

which together with (13.22) give (13.21), can be derived in the same way.

By (13.5)–(13.7) we have

∫∫

∂Ωδ

R dxdy =
n∑

i=1

∫∫

Sδ
i

R dxdy,(13.23)

∫∫

∂Ω
R dxdy =

n∑

i=1

∫∫

Si

R dxdy.(13.24)

Thus, it is sufficient to prove that

(13.25) lim
δ→0

∫∫

Sδ
i

R dxdy =
∫∫

Si

R dxdy.

In this part of the proof we restrict ourselves to the case meas2 Si
xy > 0; the case

meas2 Si
xy = 0 will be analyzed in the next part of the proof.

Let meas2 Sxy > 0, where we set S := Si. Then
∣∣∣∣
∫∫

S

R(x, y, z) dxdy −
∫∫

Sδ

R(x, y, z) dxdy

∣∣∣∣(13.26)

=

∣∣∣∣εz

∫∫

Sxy

R(x, y, f(x, y)) dxdy − εz

∫∫

Sδ
xy

R(x, y, f δ(x, y)) dxdy

∣∣∣∣

� |I1|+ |I2|+ |I3| :=
∫∫

Sxy∩Sδ
xy

|R(x, y, f(x, y))−R(x, y, f δ(x, y))| dxdy

+
∫∫

Sxy−Sδ
xy

|R(x, y, f(x, y))| dxdy +
∫∫

Sδ
xy−Sxy

|R(x, y, f δ(x, y))| dxdy.
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According to the Lagrange theorem on the increment, we have

|I1| =
∫∫

Sxy∩Sδ
xy

∣∣∣∣
∂R

∂z
(x, y, f δ(x, y) + ϑ(f(x, y)− f δ(x, y))

∣∣∣∣(13.27)

× |f(x, y)− f δ(x, y)| dxdy

� max
Ω̃

∣∣∣∣
∂R

∂z

∣∣∣∣meas2 Sxy · max
Sxy∩Sδ

xy

|f(x, y)− f δ(x, y)|,

where 0 < ϑ < 1. Further,

|I2| � max
Ω̃

|R|meas2(Sxy − Sδ
xy),(13.28)

|I3| � max
Ω̃

|R|meas2(Sδ
xy − Sxy).(13.29)

Let [x, y] ∈ Sxy ∩ Sδ
xy be arbitrary but fixed. Let the line perpendicular to the

plane (x, y) which passes through the point [x, y] intersect the part S (or Sδ) at the
point P1 (or P2). If f ∈ C2(Sxy) then

(13.30) dist (P1, P2) �
1
2
M̃2δ

2.

If f /∈ C2(Sxy) then either g ∈ C2(Sxz), or h ∈ C2(Syz). Let, for example, g ∈
C2(Sxz). Then the line perpendicular to the plane (x, z) which passes through the

point P1 will intersect the part Sδ at a point, which will be denoted by P3, and we
have, according to Lemma 13.3,

dist (P1, P3) �
1
2
M̃∗
2 δ
2.

For a small δ the distance between S and Sδ is very small and the point P3 belongs

either to the same triangle T ⊂ Sδ as P2, or to a very near triangle. We deduce from
here that dist (P2, P3) � Cδ (where C � 5); hence

(13.31) dist (P1, P2) � Cδ,

because P1, P2, P3 are the vertices of the right triangle with the hypotenuse P2P3.

Thus (13.30) and (13.31) yield

(13.32) max
Sxy∩Sδ

xy

|f(x, y)− f δ(x, y)| � Cδ.

Assumption 13.1c, Lemma 13.2 (with η1 = η2 = 0) and the fact that the number of

segments which form ∂Sδ
xy is O(δ

−1) imply

(13.33) meas2(Sxy − Sδ
xy) � Cδ, meas2(Sδ

xy − Sxy) � Cδ.
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Relations (13.27)–(13.29), (13.32) and (13.33) give

(13.34) |I1|+ |I2|+ |I3| � Cδ.

Using (13.26) and (13.34), we obtain (13.25) provided meas2 Sxy > 0.
E) Let now meas2 Sxy = 0. In this case

∫∫

S

R dxdy = 0

and we have to prove

(13.35) lim
δ→0

∫∫

Sδ

R dxdy = 0.

In this part of the proof we shall need the following property of triangles T ⊂ Sδ

(0 < δ < 1 is arbitrary): There exist

(13.36) 0 < ϑ0 < γ0 < �

such that for every 0 < δ < 1 we can find in every triangle T ⊂ Sδ an angle ϑT

satisfying

(13.37) ϑ0 � ϑT � γ0.

This requirement can be easily achieved: Let us consider a panel-shaped part Sδ∗ . If

a triangle T ⊂ Sδ∗ has two angles smaller than ϑ0 and the remaining angle greater
than γ0 then we refine locally the triangulation T (Sδ∗

st ) in such a way that the

orthogonal projection T st of T is divided into two right angled triangles. Thus we
can assume that all triangles T ⊂ Sδ∗ satisfy (13.37). Panel-shaped parts Sδi with

δi < δ∗ (i = 1, 2, . . .) can be obtained if we refine T (Sδ∗
st ) by the bisection process.

We have
∣∣∣∣
∫∫

Sδ

R dxdy

∣∣∣∣ =
∣∣∣∣

∑

T⊂Sδ

∫∫

T

R dxdy

∣∣∣∣ =
∣∣∣∣

∑

T⊂Sδ

∫∫

T

R cos γT dσ

∣∣∣∣(13.38)

� max
Ω̃
|R|

∑

T⊂Sδ

meas2 T |cos γT |

� 2|S|max
Ω̃

|R| max
T⊂Sδ

|cos γT |.

If we show that

(13.39) max
T⊂Sδ

|cos γT | → 0 for δ → 0,

then (13.35) will follow from (13.38).
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As we assume that the part S has property (R∗), Definitions 13.1, 11.8 and 11.7

guarantee that at least one of the following inequalities holds:

|g′(x)| � K1, x ∈
〈
a1, a2

〉
,(13.40)

|h′(y)| � K2, y ∈
〈
b1, b2

〉
.(13.41)

Let, for example, (13.40) hold. Let us consider an arbitrary triangle T ⊂ Sδ and
let Pi(xi, g(xi), zi) (i = 1, 2, 3) be its vertices, P1 being the vertex at ϑT . The

z-coordinate τ of the vector product
−−→
P1P2 ×

−−→
P1P3 is of the form

τ = (g(x3)− g(x1))x21 − (g(x2)− g(x1))x31

= x21x31(g
′(x1 + ϑ1x31)− g′(x1 + ϑ2x21)),

where 0 < ϑ1 < 1, 0 < ϑ2 < 1 and xjk = xj − xk. Hence

|cos γT | =
|τ |

2meas2 T
=

|τ |
|−−→P1P2| · |

−−→
P1P3| sinϑT

� |g′(x1 + ϑ1x31)− g′(x1 + ϑ2x21)| sin−1 ϑ0.

From here and from the uniform continuity of g′(x) on
〈
a1, a2

〉
relation (13.39)

follows.
F) Passing to the limit in (13.15) for δ → 0 and taking into acccount (13.16) and

(13.21), we obtain (13.4).
G) As we have not had any requirements as far as the triangulation T (Sst) is

concerned, we have used the assumption of the starlikeness of Sst only for the sake

of greater simplicity of part A). Now we show that it is sufficient to assume property
(R∗) in the case of parts of surfaces forming ∂Ω.

On edges and “edges” of the boundary ∂Ω we choose nodal points so dense that
the distance of two adjacent nodal points is less than δ. We triangulate now the

simply connected and bounded polygonal domain Sδ
st as follows: The vertices of the

domain Sδ
st will be denoted by A1, . . . , Am. As the number of vertices Ai is finite it

is easy to see that if m > 3 then there exist at least two vertices Ai, Aj such that

the interior of the segment AiAj lies in the interior Sδ
st of S

δ
st. The segment AiAj

divides the closed domain Sδ
st into two closed domains S

δ1
st and S

δ2
st . If S

δi
st is not

a triangle we can divide it again into two polygonal domains without dividing the

sides. After a finite number of steps the domain Sδ
st is divided into triangles in such

a way that each side AiAj of Sδ
st is a side of some triangle.

Every triangle is a starlike domain. Hence, we can triangulate it in the same way
as in part A). Thus the polygonal domain Sδ

st is triangulated in such a way that the

corresponding panel-shaped surface Sδ has edges of a length which is less than δ.
The proof of Theorem 13.5 is complete. �
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�������. In the case of a cheese ball with many bubbles the assumption of

Theorem 13.5 concerning ∂Ω can be easily verified.

Similarly as in the case of Green’s theorem we shall reduce the assumption of The-

orem 13.5 concerning the functions P , Q, R and their derivatives to the assumption
that they are continuous on a closed bounded three-dimensional domain Ω. This will

be done in Subsections 13.6–13.9.

13.6. Definition. a) We say that a domain Ω has an R-continuous boundary
if Ω has a continuous boundary ∂Ω in the sense of Nečas (see [Ne, pp. 14–15]) and if

∂Ω is the union of a finite number of parts with property (R∗).
b) We say that a domain Ω has an R-Lipschitz continuous boundary if Ω has a

Lipschitz continuous boundary ∂Ω in the sense of Nečas and Hlaváček (see [NH,
p. 17]) and if ∂Ω is the union of a finite number of parts with property (R∗).

13.7. ������. If a domain Ω has an R-Lipschitz continuous boundary (or an

R-continuous boundary) then it has an S-Lipschitz continuous boundary (or an S-
continuous boundary).

According to [Fi1, p. 676], the following theorem holds:

13.8. Theorem. Let a domain Ω ⊂ �
3 have an R-Lipschitz continuous bound-

ary ∂Ω and let a function f : Ω→ �
1 belong to C1(Ω). Then the function f(x, y, z)

can be continuously extended to the whole space �3 with keeping its class.

The following theorem is a consequence of Theorems 13.5 and 13.8:

13.9. Theorem (Gauss-Ostrogradskij). Let a (simply or multiply connected)
domain Ω have an R-Lipschitz continuous boundary ∂Ω. Let the unit normal n of
the boundary ∂Ω be oriented in the direction of the outer normal of Ω, which exists
at almost all points of ∂Ω. Finally, let P,Q,R ∈ C1(Ω). Then

∫∫∫

Ω

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdy dz =

∫∫

∂Ω
(P dy dz +Q dxdz +R dxdy).

Using Theorem 11.4 and denoting

(13.42) n = (n1, n2, n3) = (cosα, cosβ, cos γ),

we can reformulate Theorem 13.9 as follows:

13.10. Theorem. Let the assumptions of Theorem 13.9 be satisfied. Then

(13.43)
∫∫∫

Ω

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdy dz =

∫∫

∂Ω
(P cosα+Q cosβ +R cos γ) dσ.
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Setting one of the functions P , Q, R equal to uv, where u, v ∈ C1(Ω), and the

other two functions equal to zero, denoting x1 := x, x2 := y, x3 := z and using
(13.42), we obtain from Theorem 13.10:

13.11. Theorem (Gauss-Ostrogradskij formula). Let a (simply or multi-
ply connected) domain Ω have an R-Lipschitz continuous boundary. Then for all

functions u ∈ C1(Ω), v ∈ C1(Ω) we have

(13.44)
∫∫∫

Ω

∂u

∂xi
v dx1 dx2 dx3 =

∫∫

∂Ω
uvni dσ −

∫∫∫

Ω
u
∂v

∂xi
dx1 dx2 dx3,

where (n1, n2, n3) is the outer unit normal vector.

14. The Gauss-Ostrogradskij theorem in Sobolev spaces

14.1. Theorem (Gauss-Ostrogradskij formula in H1). Let a (simply or
multiply connected) domain Ω have an R-Lipschitz continuous boundary. Then for
all functions u ∈ H1(Ω), v ∈ H1(Ω) we have

(14.1)
∫∫∫

Ω

∂u

∂xi
v dx1 dx2 dx3 =

∫∫

∂Ω
uvni dσ −

∫∫∫

Ω
u
∂v

∂xi
dx1 dx2 dx3,

where (n1, n2, n3) is the outer unit normal vector.

��		
. Let {un} ⊂ C∞(Ω), {vn} ⊂ C∞(Ω) be such sequences that

(14.2) un → u, vn → v in H1(Ω).

It should be noted that these sequences exist, by virtue of Lemma 10.2. By Theo-

rem 13.11,

(14.3)
∫∫∫

Ω

∂un

∂xi
vn dx1 dx2 dx3 =

∫∫

∂Ω
unvnni dσ −

∫∫∫

Ω
un
∂vn

∂xi
dx1 dx2 dx3.

We have
∫∫

∂Ω
unvnni dσ =

∫∫

∂Ω
(un − u+ u)(vn − v + v)ni dσ(14.4)

=
∫∫

∂Ω
(un − u)(vn − v)ni dσ +

∫∫

∂Ω
u(vn − v)ni dσ

+
∫∫

∂Ω
(un − u)vni dσ +

∫∫

∂Ω
uvni dσ.
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As by Theorem 10.9b

‖un − u‖L2(∂Ω) � C‖un − u‖H1(Ω) → 0,
‖vn − v‖L2(∂Ω) � C‖vn − v‖H1(Ω) → 0,

the first three terms on the right-hand side of (14.4) tend to zero with n→∞. Hence

(14.5)
∫∫

∂Ω
unvnni dσ →

∫∫

∂Ω
uvni dσ for n→∞.

Similarly we find

∫∫∫

Ω

∂un

∂xi
vn dx1 dx2 dx3 →

∫∫∫

Ω

∂u

∂xi
v dx1 dx2 dx3,(14.6)

∫∫∫

Ω
un
∂vn

∂xi
dx1 dx2 dx3 →

∫∫∫

Ω
u
∂v

∂xi
dx1 dx2 dx3.(14.7)

Passing to the limit in (14.3) with n → ∞ we obtain, by virtue of (14.5)–(14.7),
relation (14.1). �

14.2. Theorem (divergence form of the Gauss-Ostrogradskij theorem).
Let a (simply or multiply connected) domain Ω have an R-Lipschitz continuous

boundary. Then for all functions Pi ∈ H1(Ω) (i = 1, 2, 3) we have

(14.8)
∫∫∫

Ω

(
∂P1
∂x
+
∂P2
∂y
+
∂P3
∂z

)
dxdy dz =

∫∫

∂Ω
(P1n1 + P2n2 + P3n3) dσ,

where (n1, n2, n3) is the unit vector of the outer normal to the boundary ∂Ω.

��		
. Let us set u := Pi, v ≡ 1 in (14.1). Summing up the result from i = 1
to i = 3, we obtain relation (14.8). �

The most general form of the Gauss-Ostrogradskij formula is introduced in the

following theorem:

14.3. Theorem (the general Gauss-Ostrogradskij formula). Let a (simply
or multiply connected) domain Ω have an R-Lipschitz continuous boundary. Let
u ∈ H1,p(Ω), v ∈ H1,q(Ω) with one of the following possibilities:
a) 1p +

1
q � 1 + 1

N , where 1 � p < N , 1 � q < N with N = 3;

b) p > 1, q � N (N = 3);

c) p � N , q > 1 (N = 3).
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Then (γu)(γv) ∈ L1(∂Ω) and we have

(14.9)
∫∫∫

Ω

∂u

∂xi
v dx1 dx2 dx3 =

∫∫

∂Ω
uvni dσ −

∫∫∫

Ω
u
∂v

∂xi
dx1 dx2 dx3,

where (n1, n2, n3) is the outer unit normal vector.

��		
. The proof is long and complicated; thus we divide it into several parts.

(We use the symbol N instead of 3 because the assertion and its proof hold also in
the case of N = 2.)

A) First we prove (14.9) in the case

(14.10)
1
p
+
1
q

� 1, 1 � p < N, 1 � q < N (N = 3).

Let {un} ⊂ C∞(Ω), {vn} ⊂ C∞(Ω) be such sequences that

(14.11) un → u in H1,p(Ω), vn → v in H1,q(Ω).

Then by Theorem 13.11

(14.12)
∫∫∫

Ω

∂un

∂xi
vn dx1 dx2 dx3 =

∫∫

∂Ω
unvnni dσ −

∫∫∫

Ω
un
∂vn

∂xi
dx1 dx2 dx3.

We have
∫∫∫

Ω

∂un

∂xi
vn dx1 dx2 dx3(14.13)

=
∫∫∫

Ω

(
∂un

∂xi
− ∂u

∂xi

)
(vn − v) dx1 dx2 dx3

+
∫∫∫

Ω

∂u

∂xi
(vn − v) dx1 dx2 dx3 +

∫∫∫

Ω

(
∂un

∂xi
− ∂u

∂xi

)
v dx1 dx2 dx3

+
∫∫∫

Ω

∂u

∂xi
v dx1 dx2 dx3.

A generalized Hölder inequality (see [KJF, p. 67]) can be written in the following

form: Let fi ∈ H1,pi(Ω), where
n∑

i=1

1
pi
= 1. Then f1f2 . . . fn ∈ L1(Ω) and

∫∫∫

Ω
|f1f2 . . . fn| dx1 dx2 dx3 � Np1(f1)Np2(f2) . . .Npn(fn)

with

Npi(fi) :=

(∫∫∫

Ω
|fi|pi dx1 dx2 dx3

)1/pi

.
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Setting here n = 3, f3 ≡ 1, p1 = p, p2 = q, where 1p + 1q < 1, and 1
p3
= 1− 1

p − 1
q we

obtain

(14.14)
∫∫∫

Ω
|f1f2| dx1 dx2 dx3 � (meas3Ω)1/p3‖f1‖Lp(Ω)‖f2‖Lq(Ω).

If 1p +
1
q = 1 then we can use the standard Hölder inequality

(14.15)
∫∫∫

Ω
|f1f2| dx1 dx2 dx3 � ‖f1‖Lp(Ω)‖f2‖Lq(Ω).

Relations (14.11), (14.14), (14.15) enable us to prove that the first three terms on

the right-hand side of (14.13) tend to zero with n→∞. Hence

(14.16)
∫∫∫

Ω

∂un

∂xi
vn dx1 dx2 dx3 →

∫∫∫

Ω

∂u

∂xi
v dx1 dx2 dx3 for n→∞.

Similarly

(14.17)
∫∫∫

Ω
un
∂vn

∂xi
dx1 dx2 dx3 →

∫∫∫

Ω
u
∂v

∂xi
dx1 dx2 dx3 for n→∞.

Now we use the restrictions 1 � p < N , 1 � q < N (with N = 3) which enable us
to set

(14.18)
1
p∗
=
1
p
− p− 1
(N − 1)p =

N − p

(N − 1)p,
1
q∗
=
1
q
− q − 1
(N − 1)q =

N − q

(N − 1)q .

Then, according to Theorem 10.8, we have

(14.19) γu ∈ Lp∗(∂Ω) if u ∈ H1,p(Ω), γv ∈ Lq∗(∂Ω) if v ∈ H1,q(Ω).

By (14.18)

1
p∗
+
1
q∗
=
1
p
+
1
q
− 1
N − 1

(
1− 1

p
+ 1− 1

q

)
=

(
1 +

1
N − 1

)(
1
p
+
1
q

)
− 2
N − 1 < 1

because we assume that 1p+
1
q � 1. Hence by an analogy to (14.14) (γu)(γv) ∈ L1(∂Ω)

and ∫∫

∂Ω
γuγv dσ � |∂Ω|1−1/p∗−1/q∗‖γu‖Lp∗(∂Ω)‖γv‖Lq∗(∂Ω).

We can write
∫∫

∂Ω
unvnni dσ =

∫∫

∂Ω
(un − u)(vn − v)ni dσ +

∫∫

∂Ω
u(vn − v)ni dσ(14.20)

∫∫

∂Ω
(un − u)vni dσ +

∫∫

∂Ω
uvni dσ.
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As ∂Ω is piecewise smooth we have

∣∣∣∣
∫∫

∂Ω
(un − u)(vn − v)ni dσ

∣∣∣∣ � C

∣∣∣∣
∫∫

∂Ω
(un − u)(vn − v) dσ

∣∣∣∣.

Hence, according to the generalized Hölder inequality (14.14), Theorem 10.8 (which
guarantees the trace inequalities) and (14.11), we obtain

∣∣∣∣
∫∫

∂Ω
(un − u)(vn − v)ni dσ

∣∣∣∣(14.21)

� C‖un − u‖Lp∗(∂Ω)‖vn − v‖Lq∗ (∂Ω)

� C‖un − u‖H1,p(∂Ω)‖vn − v‖H1,q(∂Ω) → 0 for n→∞.

Similarly

(14.22)

∣∣∣∣
∫∫

∂Ω
u(vn − v)ni dσ

∣∣∣∣ → 0,
∣∣∣∣
∫∫

∂Ω
(un − u)vni dσ

∣∣∣∣ → 0 for n→∞.

Hence by (14.20)–(14.22)

(14.23)
∫∫

∂Ω
unvnni dσ →

∫∫

∂Ω
uvni dσ.

Passing to the limit for n→∞ in relation (14.12) and using (14.16), (14.17), (14.23),
we obtain (14.9) under the assumption (14.10).

B) Now we shall prove (14.9) under the assumption

(14.24)
1
p
+
1
q

� 1 + 1
N
, 1 � p < N, 1 � q < N (N = 3).

The proof is a modification of part A). If

(14.25) q < N,
1
q∗
=
1
q
− 1
N

then (see Lemma 10.4)

(14.26) H1,q(Ω) ⊂ Lq∗(Ω) algebraically and topologically;

this means that

‖vn − v‖Lq∗ (Ω) � C‖vn − v‖H1,q(Ω).
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The inequality 1
q∗ +

1
p � 1 (i.e., the inequality 1q +

1
p � 1 + 1

N ) implies, by virtue of

(14.14), (14.15) and (14.11),
∣∣∣∣
∫∫∫

Ω

(
∂un

∂xi
− ∂u

∂xi

)
(vn − v) dx1 dx2 dx3

∣∣∣∣(14.27)

� C

∥∥∥∥
∂un

∂xi
− ∂u

∂xi

∥∥∥∥
Lp(Ω)

‖vn − v‖Lq∗ (Ω)

� C‖un − u‖H1,p(Ω)‖vn − v‖H1,q(Ω) → 0 for n→∞.

Similarly we prove that for n→∞

(14.28)

∣∣∣∣
∫∫∫

Ω

∂u

∂xi
(vn − v) dx1 dx2 dx3

∣∣∣∣ → 0,
∣∣∣∣
∫∫∫

Ω

(
∂un

∂xi
− ∂u

∂xi

)
v dx1 dx2 dx3

∣∣∣∣ → 0.

Hence relation (14.16) follows; relation (14.17) can be proved similarly.
The proof of (14.23) in the case q < N , p < N remains without changes. Passing

to the limit for n → ∞ in relation (14.12) and using (14.16), (14.17), (14.23) we
obtain (14.9) under the assumption (14.24).

C) In the remaining parts we prove Theorem 14.3 for possibility b). In the case
of possibility c) the proof is similar. First we prove (14.16) and (14.17) in the case

q = N .
By [KJF, Th. 5.7.7(ii)], for any 1 � q∗ <∞ we have

(14.29) H1,N (Ω) ⊂ Lq∗(Ω) algebraically and topologically.

Let us choose q∗ = p
p−1 ; hence

H1,N(Ω) ⊂ Lp/(p−1)(Ω) algebraically and topologically;

this means (setting q = N in (14.11))

‖vn − v‖Lp/(p−1)(Ω) � C‖vn − v‖H1,N (Ω) → 0.

As ∥∥∥∥
∂un

∂xi
− ∂u

∂xi

∥∥∥∥
Lp(Ω)

� ‖un − u‖H1,p(Ω) → 0

we have by (14.15)
∣∣∣∣
∫∫∫

Ω

(
∂un

∂xi
− ∂u

∂xi

)
(vn − v) dx1 dx2 dx3

∣∣∣∣

� C

∥∥∥∥
∂un

∂xi
− ∂u

∂xi

∥∥∥∥
Lp(Ω)

‖vn − v‖Lp/(p−1)(Ω) → 0 for n→∞,
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which results in (14.27). Similarly we prove convergences (14.28). Hence relation

(14.16) follows.
To prove (14.17) let us write

∫∫∫

Ω
un
∂vn

∂xi
dx1 dx2 dx3(14.30)

=
∫∫∫

Ω
(un − u)

(
∂vn

∂xi
− ∂v

∂xi

)
dx1 dx2 dx3

+
∫∫∫

Ω
u

(
∂vn

∂xi
− ∂v

∂xi

)
dx1 dx2 dx3 +

∫∫∫

Ω
(un − u)

∂v

∂xi
dx1 dx2 dx3

+
∫∫∫

Ω
u
∂v

∂xi
dx1 dx2 dx3.

If p � N then 1p +
1
N < 1. Hence by (14.14)

∣∣∣∣
∫∫∫

Ω
(un − u)

(
∂vn

∂xi
− ∂v

∂xi

)
dx1 dx2 dx3

∣∣∣∣ � C‖un − u‖Lp(Ω)

∥∥∥∥
∂vn

∂xi
− ∂v

∂xi

∥∥∥∥
LN(Ω)

� C‖un − u‖H1,p(Ω)

∥∥∥∥
∂vn

∂xi
− ∂v

∂xi

∥∥∥∥
H1,N (Ω)

→ 0 for n→∞.

Similarly we prove that for n→∞
∣∣∣∣
∫∫∫

Ω
u

(
∂vn

∂xi
− ∂v

∂xi

)
dx1 dx2 dx3

∣∣∣∣ → 0,
∣∣∣∣
∫∫∫

Ω
(un − u)

∂v

∂xi
dx1 dx2 dx3

∣∣∣∣ → 0.

Thus (14.30) implies (14.17) in the case p � N .
Let now p < N . Similarly as in (14.25) we set

1
p∗
=
1
p
− 1
N
;

then we have by (14.26)

H1,p(Ω) ⊂ Lp∗(Ω) algebraically and topologically.

This means that
‖un − u‖Lp∗(Ω) � C‖un − u‖H1,p(Ω).

The inequality 1
p∗ +

1
N =

1
p − 1

N +
1
N < 1 implies, by virtue of (14.14),

∣∣∣∣
∫∫∫

Ω
(un − u)

(
∂vn

∂xi
− ∂v

∂xi

)
dx1 dx2 dx3

∣∣∣∣ � C‖un − u‖Lp∗(Ω)

∥∥∥∥
∂vn

∂xi
− ∂v

∂xi

∥∥∥∥
LN (Ω)

� C‖un − u‖H1,p(Ω)‖vn − v‖H1,N (Ω) → 0 for n→∞.
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Similarly we prove that for n→∞
∣∣∣∣
∫∫∫

Ω
u

(
∂vn

∂xi
− ∂v

∂xi

)
dx1 dx2 dx3

∣∣∣∣ → 0,
∣∣∣∣
∫∫∫

Ω
(un − u)

∂v

∂xi
dx1 dx2 dx3

∣∣∣∣ → 0.

Thus (14.30) implies (14.17) in the case p < N .
D) The proof of (14.16) and (14.17) in the case q > N follows from part C) because

(14.31) H1,q(Ω) ⊂ H1,N(Ω) algebraically and topologically.

The proof of (14.31) is a consequence of Hölder’s inequality (14.15):

‖v‖LN(Ω) =

(∫∫∫

Ω
|v|N dx1 dx2 dx3

) 1
N

�
((∫∫∫

Ω
dx1 dx2 dx3

)1−N
q
(∫∫∫

Ω

(
|v|N

) q
N dx1 dx2 dx3

)N
q
) 1

N

= (measN Ω)
1
N − 1q ‖v‖Lq(Ω) ∀v ∈ Lq(Ω).

E) It remains to prove (14.23) in the case p > 1 and q � N (N = 3). If q � N

then, according to Theorem 10.9, for any 1 � q∗ <∞ we have

(14.32) ‖γv‖Lq∗(∂Ω) � C‖v‖H1,q(Ω) ∀v ∈ H1,q(Ω).

Let us choose p > 1 arbitrary but fixed and let us distinguish between two cases:
a) The case 1 < p < N . Using Theorem 10.8 we set p∗ = Np−p

N−p ; then

(14.33) ‖γu‖Lp∗(∂Ω) � C‖u‖H1,p(Ω) ∀u ∈ H1,p(Ω).

Let us choose q∗ in this case such that

(14.34)
1
q∗
+
1
p∗
= 1.

This means that
1
q∗
= 1− N − p

Np− p
=
Np−N

Np− p
.

Hence q∗ > 1 and by (14.34), (14.15), (14.32), (14.33) and (14.11) we have

∣∣∣∣
∫∫

∂Ω
(un − u)(vn − v)ni

∣∣∣∣dσ � C

∣∣∣∣
∫∫

∂Ω
(un − u)(vn − v) dσ

∣∣∣∣(14.35)

� C‖un − u‖Lp∗(∂Ω)‖vn − v‖Lq∗ (∂Ω)

� C‖un − u‖H1,p(Ω)‖vn − v‖H1,q(Ω) → 0
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which yields (14.21). Relations (14.22) can be derived similarly. Hence (14.23)

follows in the case 1 < p < N .
b) The case p � N . Using Theorem 10.9, for any 1 � p∗ <∞ we have

(14.36) ‖γu‖Lp∗(∂Ω) � C‖u‖H1,p(Ω) ∀u ∈ H1,p(Ω).

By (14.32) and (14.36) we can choose p∗ = q∗ = 2 and derive again (14.35) and then

(14.23).
F) Using (14.16), (14.17) and (14.23) proved in parts C)–E), we obtain (14.9) in

the case p > 1, q � N . �
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