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DOMAIN DECOMPOSITION METHODS FOR SOLVING

THE BURGERS EQUATION

Robert Cimrman, Plzeň

Abstract. This article presents some results of numerical tests of solving the two-
dimensional non-linear unsteady viscous Burgers equation. We have compared the known
convergence and parallel performance properties of the additive Schwarz domain decom-
position method with or without a coarse grid for the model Poisson problem with those
obtained by experiments for the Burgers problem.
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1. Introduction

The numerical resolution of most of the problems is equivalent to solving large

systems of linear algebraic equations with sparse matrices with high condition num-
bers. Their size prevents them from being solved by direct solvers and their condition

numbers complicate a usage of iterative solvers. The domain decomposition methods
can solve this dilemma—they are a hybrid class of methods staying between the di-

rect and the iterative approach. Moreover, they have a built-in parallelism and thus
they meet perfectly the demands on the parallel performance.

A great scientific effort in this field has led to many performance and convergence
estimates for linear elliptic PDEs (stationary problems)—see, for example, [5] or

[3]. However, in many areas of the research, for example in the fluid dynamics, the
mathematical description is evolutionary (involves time) and non-linear.

The goal of this work was to perform various numerical tests for a two-dimensional

non-linear unsteady viscous system of two equations called the Burgers system, which
appears to be a decent model system for the fluid dynamics description. The same

tests were run for the model Poisson equation too, to “calibrate” the solver used.
Then the corresponding results were compared and a conclusion was made about
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possible convergence properties of the particular domain decomposition method

which was used for the Burgers problem.

We must emphasize here that there are no theoretical results yet, describing the
convergence of the domain decomposition methods in connection with the Burgers

problem. Thus this work could be used as a starting point of some deeper research
which might lead to convergence estimates.

2. Test Problems

Let us denote by x = (x, y) the space coordinates and by t the time. Then

we describe a fluid flow by functions u = u(x, t), v = v(x, t), p = p(x, t), fu =
fu(x, t), fv = fv(x, t), where u, v are velocity components in x and y directions

respectively, p is a pressure and fu, fv are body forces. Let � be a mass density, η a
kinematic viscosity. A two-dimensional incompressible flow with constant properties

in rectangular coordinates in the Eulerian frame of reference can be described by the
set of equations (see e.g. [4])
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(1) and (2) are the Navier-Stokes equations (momentum equations), (3) is the con-

tinuity equation.

The Burgers equation is a decent model for studying the properties of the Navier-
Stokes equations, like shock-waves and turbulences. In the subsequent sections we

will deal with the two-dimensional unsteady viscous Burgers equation in the Carte-
sian coordinates in the bounded simple domain Ω for the time interval [0, T ]. The

Burgers system resembles the Navier-Stokes system (1,2)—it is non-linear and has
both the advection and the diffusion terms. However, the pressure terms are missing.

It means, in fact, that we assume the pressure to be kept constant. Therefore the
continuity equation (3) is omitted as well—the pressure changes are eliminated by a

non-zero divergence (i.e. the appearance or disappearance of new matter particles).
Another difference lies in more general coefficients of the diffusion terms—νx and νy

are in our case possibly non-continuous functions of (x, t).

Let Ω be a unit square domain ]0, 1[× ]0, 1[ and Ω its enclosure. On this domain
we want to solve the following Burgers system with Dirichlet boundary conditions
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on the boundary ∂Ω in the time interval [0, T ]:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
−∇ · (νx∇u) = fu,(4)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
−∇ · (νy∇v) = fv(5)

for x ∈ Ω, t ∈ [0, T ],
u(x, t) = gu(x, t), v(x, t) = gv(x, t)(6)

for x ∈ ∂Ω, t ∈ [0, T ],
u(x, 0) = u0(x), v(x, 0) = v0(x) for x ∈ Ω,(7)

where u0, v0, fu, fv, gu, gv are given sufficiently regular functions of space and

time variables, νx and νy are given possibly non-smooth functions of space and time
variables. We suppose u and v to be smooth enough for the above relations to have

sense.
The Poisson problem

−∇ · (ν∇u) = f for x ∈ Ω,(8)

u = g for x ∈ ∂Ω

has been used for comparing the results, since its convergence properties are well
known, unlike those of the Burgers problem. The coefficient ν is a given possibly non-
smooth function of space and time variables chosen so that its properties correspond

to those of νx, νy of the Burgers problem.
A numerical resolution of the systems mentioned above consists usually of two

steps. The first step is a discretization of the original system. Its result is a cor-
responding system of algebraic equations. The second step involves solving the re-

sulting system numerically. Basic methods accomplishing the first step are the finite
difference method (FDM), the finite element method (FEM) and the finite volume

method (FVM). We have chosen the FVM for its conservative properties.
Our discretization procedure for the Burgers problem was as follows: First we

divided the computational domain into regular rectangular disjoint elements called
finite volumes. Then we integrated the equations (4,5) over all finite volumes. After

that we used the Rothe method to discretize the integral equations with respect
to time and linearized the advection terms. In the end we replaced the integrals

and derivatives by numerical formulas. As a result we obtained a system of linear
algebraic equations for every discrete time step.

Let xi, yi for i = 0, . . . , N − 1 be the coordinates of the centers of the finite
volumes (nodes). After denoting ui := u(xi, yi), vi := v(xi, yi) we can form vectors
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û = [u0, . . . , uN−1]T and v̂ = [v0, . . . , vN−1]T . The corresponding nodal values of

the right-hand side functions are stored in vectors f̂u and f̂v. Then the discretized
Burgers system has the following form in all time steps:

(9)

[
Au 0

0 Av

]

︸ ︷︷ ︸
A

[
û

v̂

]

︸︷︷︸
x

=

[
f̂u

f̂v

]

︸ ︷︷ ︸
b

,

where Au and Av are pentadiagonal (⇐ space discretization scheme)N×N matrices.

The equations for û and v̂ are mutually independent in our case because of the
advection terms’ linearization—we considered the non-differentiated variables of the

advection terms to be known from the previous time step. Nevertheless, we could
obtain also an interconnected system for a different treatment of the advection terms.

The matrix of the system (9) is non-symmetric in the general case.

3. Domain Decomposition Methods

The domain decomposition methods (DDM) were originally meant for solving el-
liptic boundary value problems on complicated domains by solving the same problem

restricted to simpler subdomains of the original domain (Schwarz, 1870). In their
discrete versions they can be used to efficiently solve large sparse systems of linear

equations arising from a discretization of elliptic problems. Their convergence prop-
erties depend on the mutual overlap δ and the size H of the subdomains. They are

independent on the discretization parameter h, i.e. on the size of the discrete system
being solved. See Figure 1.

A detailed description of multiplicative and additive Schwarz domain decomposi-
tion methods and of their usage as preconditioners can be found in [5]. Other useful

information can be found in [3] or [1].

It is easy to accelerate the DDM by the so-called Krylov subspace methods (for
example the conjugate gradient method for symmetric positive definite matrices,

GMRES, BiCGSTAB for non-symmetric ones). The DDM are then used as precon-
ditioners of the Krylov methods. We have used the BiCGSTAB method (cf. [6])

preconditioned by the additive Schwarz method with or without a coarse grid.

This combination has the following properties, as concerns the model Poisson

problem:

• The number of iterations is proportional to the square root of the mutual con-
dition number cond(BA), where B is the additive or multiplicative Schwarz
preconditioner.
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• The additive Schwarz method satisfies

(10) cond(BA) � C1(1 + max
i

ki)
(
1 + C2max

i

1
H2i

Hi

δi

)
,

where ki is the number of neighbours of the subdomain Ωi, Hi = O(H) its
diameter and δi = O(δ) the minimum overlap between Ωi and

⋃
j �=i

Ωj . Since

1/H is proportional to the number of subdomains, the convergence gets worse
when we increase the number of subdomains and keep the relative overlap δ/H

constant. As the number of subdomains is equal to the number of parallel tasks
in our case, this convergence property is very unpleasant, because we want to
use as many processors as possible.

• The additive Schwarz method with a coarse grid satisfies

(11) cond(BA) � C′
1(1 + max

i
ki)

(
1 + C2max

i

Hi

δi

)
.

We can see here that the unwanted dependence on the number of subdomains

has disappeared. This is the reason of adding the coarse grids to the Schwarz
domain decomposition methods. The methods obtained are then called multi-

level domain decomposition methods.

0,1

0,0 1,0

1,1

H

h δ

y

x

Figure 1. Our domain and its parameters.
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4. Software Equipment

All computations were made with help of our own software calledD3S (Distributed

Domain Decomposition Solver). It is tailored for distributed memory machines—it is
built over the PVM message passing interface. It is based on the philosophy of UN-

COL (United Communication Library) proposed by Kortas and Angot in [2], which
is an efficient and portable library for parallel programming. The current version

of our C program contains a parallel implementation of the BiCGSTAB method,
preconditioned by the additive Schwarz method combined either additively or mul-

tiplicatively with a coarse grid solver. The restriction and prolongation operators
used are described below in Section 5.

Also scripts for the gnuplot (a free Unix drawing program) were created to visualize
the results. To allow a pseudo-dynamical visualization of the 2D fluid flow, a simple

visualization tool called PFV (Particle Flow Visualization) was developed. This
program animates a particle flow on a rectangular domain described by a velocity

vector field. It displays both the particles flowing from outer regions over the border
and the particles born in inner divergence sources. The latter ones are devoured by

inner divergence holes. It is written in C++ and requires the Qt GUI toolkit, version
1.30 or higher.

5. Restriction and Prolongation Operators in D3S

To remove the unwanted dependence on the number of subdomains we used a

global coarse grid correction. The coarse grid was nested into the fine grid (i.e. all
coarse grid points were fine grid points in some subdomain as well) to simplify the

coarse—fine grid mappings. However, it was global and independent on subdomains.
We have used two simple restriction operators—the trivial (T ) restriction and the

residual conservation (RC) restriction operator. The T operator simply takes the
value of the fine grid node and maps it to the coarse grid node with the same

coordinates. The RC operator is based upon the relation

(12)
∫

VH(M)

rH dV =
∫

VH(M)

rh dV ,

where VH(M) is a coarse grid finite volume (a rectangle) around the node M , rh is
the fine grid residual and rH is the coarse grid residual (the coarse volume contains

several fine volumes). We denote the sizes of VH by Hx, Hy and the sizes of Vh by
hx, hy. See Figure 2. After the approximation of the integrals in (12) we get the
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relation defining the RC operator:

(13) rH(M) =
1

HxHy

∑

Vhi∈VH

rh(i)hxhy.

Here i means the fine node in the fine volume Vhi. Our prolongation operator from
the coarse grid back to the fine grid was the bilinear interpolation.

A

C

B

D
V

V

W

NW N NE

E

SESSW

M

h

H

Figure 2. Coarse and fine volumes.

6. Performed Tests

All tests were run under the following conditions:

• Our domain was the unit square (0 < x, y < 1) (see Figure 1).

• The convergence was declared when the initial residual was reduced by the
factor 10−8 in the classical Euclidean (l2) norm.

• The subdomain solutions were pseudo-exact. We used for them again the
BiCGSTAB method. We required the reduction of the initial residual by 10−10

in this case.

• The RC operator was used for the restriction to the coarse grid.

• The computer used was AlphaServer 8400 5/300 TurboLaser with eight CPUs
Alpha 21164 on 300 MHz. Since it had eight processors, the tests for more than

8 subdomains were run, in fact, in pseudo-parallel. That is why we did not
include the elapsed times into our results.

• The programs were compiled using the gcc 2.7.2.3 compiler with -O2 flag.
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We will not write the actual right-hand sides here. They were chosen so that we

obtained the test solutions presented below.
The test solution for the Burgers problem was a dipole diagonally crossing the

domain. It can be described by the set of equations

u(x, y) = 10(t− y) exp (−1/νx((t− x)2 + (t− y)2)),

v(x, y) = 10(x− t) exp (−1/νy((t− x)2 + (t− y)2)).

The coefficients νx, νy from (4,5) were equal to 1 (homogeneous case), unless specified

otherwise. The Dirichlet boundary conditions were created according to the test
solution. We used zeros or the test solution at the initial time as the initial condition.

The average convergence properties for all time steps did not differ for these two
cases. The latter option is indicated explicitly whenever applied. The tests were run

for the time interval [0, 0.05] with the step 0.01. To use more time steps was not
required—the number of iterations was always almost the same. The average results

of all time steps are shown. The initial guess in every time step was a vector filled
with ones.

For the Poisson problem we have used an exponential test solution

u(x, y) = exp (2x+ 2y).

The coefficient ν from (8) was equal to 1 (homogeneous case), unless specified other-

wise. The Dirichlet boundary conditions were created according to the test solution.

6.1. Dependence on 1/H

6.1.1. Description. Recall that h is the discretization parameter and H is the
subdomain diameter. See Section 3 and Figure 1. According to the estimate of

the condition number of the additive Schwarz method without the coarse grid (10),
the number of iterations should not depend on h and should depend linearly on

1/H , when the relative overlap δ/H is kept constant. On the other hand, when
the coarse grid is used, the number of iterations should not depend on the number

of subdomains (∼ 1/H) (see the estimate (11)). We measure the mesh size in 1/h

units. For example, the mesh size 72 means that there are 72 nodes per side of the

unit square domain.
This test was run with the following parameters: The relative overlap was δ/H =

44.44%. The coarse grid preconditioner (CGP) was combined with the additive
Schwarz preconditioner multiplicatively. It is denoted “add-mul” in the tables. There

were 81 fine nodes per one coarse node, i.e. one coarse finite volume contained a 9×9
cluster of fine finite volumes.
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6.1.2. Results.

No. of subdomains Mesh size (1/h) No. of iterations No. of iterations
without CGP with CGP

2 72 6 7
4 72 9 8
8 72 11 9
16 72 17 8
2 144 5 7
4 144 9 9
8 144 10 10
16 144 15 9
2 216 5 6
4 216 9 9
8 216 10 9
16 216 15 9

Table 1. Poisson problem—results for the constant relative overlap δ/H = 44.44%.

No. of subdomains Mesh size (1/h) No. of iterations No. of iterations
without CGP with CGP

2 72 4 6
4 72 7 9
8 72 8 10
16 72 11 10
2 144 4 (4) 6 (6)
4 144 7 (7) 10 (9)
8 144 8 (8) 10 (10)
16 144 10 (10) 9 (9)
2 216 4 7
4 216 7 10
8 216 8 9
16 216 10 9

Table 2. Burgers problem—results for the constant relative overlap δ/H = 44.44%.

The results are presented in Table 1 for the Poisson problem and in Table 2 for the

Burgers problem. The numbers in brackets concern the divergence free discretization
of the Burgers system.

Table 1 clearly indicates the correctness of our software. The behaviour of the
parallel additive Schwarz solver without the coarse grid is as it has been expected—

there is no dependence of the number of iterations on the mesh size h and there is
a linear dependence on the number of subdomains (∼ 1/H). When the coarse grid

has been used, the dependence on the number of subdomains disappeared, which is
again in accordance with the theory.
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From Table 2 we can see that the Burgers problem shows a similar behaviour as

the Poisson problem. However, there are some differences here. In the case without
the coarse grid the dependence on 1/H is weaker than it was for the Poisson problem.
Another difference is that the version with the coarse grid needs more iterations than

the version without one, when less then 16 subdomains is used, while in the Poisson
problem case this holds only for two subdomains. This behaviour could indicate that

the restriction and prolongation operators used are not the very best for our problem.
However, if we used a smaller relative overlap, the version with the coarse grid would

be better even for a small number of subdomains, as is shown in Section 6.2.

6.2. Dependence on Relative Overlap

6.2.1. Description. This test shows the dependence of the convergence on
changes of the relative overlap δ/H . It was run using the following parameters: The
mesh size was 1/h = 168. There were 441 fine nodes per one coarse node. The

add-mul preconditioner was used. The test solution at the initial time was used as
the initial condition for the Burgers problem.

6.2.2. Results. The results for both the Poisson and Burgers problems are shown
in Table 3.

Number of iterations
Relative overlap Poisson problem Burgers problem

without CGP with CGP without CGP with CGP
4.76 % 30 13 21 14
14.29 % 15 8 10 9
28.57 % 11 9 8 9
47.62 % 9 9 7 9
71.43 % 8 9 7 9

Table 3. Poisson and Burgers problems — dependence on the relative overlap.

We have obtained a classical result for the Poisson problem without the coarse grid
(see e.g. [5])—the convergence improves rapidly when the relative overlap increases

for small overlaps, while for bigger overlaps the improvement slows down. Another
fact to point out is the influence of the coarse grid. When it was used, we obtained a

good convergence even for very small overlaps. The behaviour of the Burgers problem
was very similar to that of the Poisson problem. Since our test problems were not

very large, it seemed that the bigger the overlap the better the results even in terms
of the elapsed time. However, for bigger problems, the elapsed time increases again

after crossing a certain border. We did not pursue this effect because of inexact
subdomain solutions and a bad load balance on a generally used parallel computer.
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6.3. Various Two-level Preconditionings

6.3.1. Description. Here we compare the convergence properties of three two-
level Schwarz preconditioners, namely the pure additive (called add-add), and the

hybrid add-mul and mul-add preconditioners (these two are distinguished only by the
ordering) (see e.g. [5]). It was expected that the hybrid approach would give better

results than the pure additive. Another task of this test was to reveal a possible
dependence of the convergence on the coarseness of the coarse grid. The parameters

were as follows: The mesh size was 1/h = 210 for 4 subdomains and 1/h = 168
for 16 subdomains. The relative overlap was δ/H = 44.44% and δ/H = 42.80%

respectively.

6.3.2. Results. The results are presented in Table 4 for the Poisson problem and
in Tables 5, 6 for the Burgers problem. The numbers in brackets are the convergence
rates. We have included them to see better the differences among the methods. They

were computed as

convergence rate = k

√
‖rk‖/‖r0‖,

where k is the number of iterations.

No. of fine nodes Number of iterations (convergence rate)
per coarse node add-add mul-add add-mul

9 11 (0.1611) 9 (0.1003) 9 (0.1206)
49 11 (0.1401) 8 (0.0936) 8 (0.0832)
225 10 (0.1548) 9 (0.1276) 9 (0.1105)
441 12 (0.1872) 10 (0.1135) 9 (0.1083)

Table 4. Poisson problem—results for various two-level preconditionings, 4 subdomains.

No. of fine nodes Number of iterations (convergence rate)
per coarse node add-add mul-add add-mul

9 10 (0.1496) 9 (0.0963) 9 (0.1267)
49 11 (0.1555) 8 (0.0922) 9 (0.0934)
225 11 (0.1739) 9 (0.1233) 9 (0.1156)
441 11 (0.1629) 9 (0.0955) 9 (0.0988)

Table 5. Burgers problem—results for various two-level preconditionings, 4 subdomains.

No. of fine nodes Number of iterations (convergence rate)
per coarse node add-add mul-add add-mul

9 12 (0.1811) 9 (0.1280) 9 (0.1203)
49 10 (0.1537) 8 (0.0916) 9 (0.1210)
441 9 (0.1256) 9 (0.1119) 9 (0.1138)

Table 6. Burgers problem—results for various two-level preconditionings,
16 subdomains.
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We can clearly see that there are almost no differences between the two problems

in this case. The hybrid add-mul and mul-add methods are equivalent and, as was
expected, they perform better than the pure additive one. A bit surprising is the
independence on the coarseness of the coarse grid, even for the Burgers problem.

6.4. Coefficient Jump Influence

6.4.1. Description. Here we modified the coefficient functions ν, νx and νy in

the following manner:

ν∗ =

{
0.01 for x < 0.5 and y < 0.5,

1 otherwise,

where ν∗ ∈ {ν, νx, νy}. The other parameters were as follows: The mesh size was
1/h = 168 and the relative overlap was δ/H = 42.80%. There were 441 fine nodes
per one coarse node. The add-mul preconditioner was used. The test solution in the

initial time was used as the initial condition for the Burgers problem.

6.4.2. Results. The results are presented in Table 7 for both the Poisson problem
and the Burgers problem.

Problem No. of subdomains No. of iterations No. of iterations
without CGP with CGP

Poisson 4 9 9
Poisson 16 14 9
Burgers 4 7 10
Burgers 16 12 10

Table 7. Results for the solution with coefficient jumps.

This test was done only to see whether the algorithm converges in the non-

homogeneous case. We can see that it may have a similar behaviour as in the
homogeneous case for the jumps towards zero. However, for the jump from 1 to 100

the algorithm did not converge.
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7. Conclusion

We have compared numerically the known convergence properties of two-level

domain decomposition methods for the linear elliptic problems with those obtained
by experiments for the non-linear parabolic Burgers system.

We can say in general that the multi-level domain decomposition methods can
be used even for the Burgers problem, though they are designed primarily for lin-

ear elliptic problems. We have shown several interesting properties of our simple
two-level Schwarz preconditioners. We have demonstrated the independence of their

convergence on the number of subdomains and moreover, even for the Burgers prob-
lem, the independence of their convergence on the coarseness of the coarse grid. The

latter fact was really surprising—we do not know its reason and we suspect that
it might disappear for great numbers of subdomains (≈ 1000), complicated domain
geometries or non-smooth coefficients.

Then we have shown the similar behaviour of both our problems when increasing

the relative overlap of subdomains. The convergence improves rapidly when increas-
ing small overlaps, while the improvement is not very fast for increasing already big

overlaps.

The hybrid two-level Schwarz methods (add-mul or mul-add) converged better

than the pure additive method.

A deeper research must be done concerning the influence of the size and smooth-

ness of the coefficients νx, νy, since we have put them equal to 1 in the majority of
our tests. These coefficients are in a close relation to the Reynolds number that char-

acterizes the properties of a fluid described by the Navier-Stokes system. Therefore
the results may be directly useful in the computational fluid dynamics.

Acknowledgements. The research was supported by Grant MSM 235200003
and Grant 106/97/0397 of GA ČR.

References

[1] P. Angot: Parallel Multi-Level and Domain Decomposition Methods. Calculateurs Par-
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