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Abstract. In this paper, we study the global convergence for the numerical solutions of
nonlinear Volterra integral equations of the second kind by means of Galerkin finite ele-
ment methods. Global superconvergence properties are discussed by iterated finite element
methods and interpolated finite element methods. Local superconvergence and iterative
correction schemes are also considered by iterated finite element methods. We improve
the corresponding results obtained by collocation methods in the recent papers [6] and [9]
by H. Brunner, Q. Lin and N. Yan. Moreover, using an interpolation post-processing tech-
nique, we obtain a global superconvergence of the O(h2r)-convergence rate in the piecewise-
polynomial space of degree not exceeding (r − 1). As a by-product of our results, all these
higher order numerical methods can also provide an a posteriori error estimator, which gives
critical and useful information in the code development.
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1. Introduction

In this note we are concerned with finite element methods for the Volterra integral
equation of the second kind,

(1.1) y(t) = g(t) +
∫ t

0
k(t, s, y(s)) ds, t ∈ I := [0, 1],

where g : I → R and k : D × R → R (with D := {(t, s) : 0 � s � t � 1}) denote
given functions. In our analysis we sometimes employ the linear counterpart of (1.1),

(1.2) y(t) = g(t) +
∫ t

0
K(t, s)y(s) ds, t ∈ I := [0, 1].
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It will always be assumed that both the problem (1.1) and its finite element numer-

ical method possess a unique solution, namely, the given functions g(t) and k(t, s, y)
will be subject to the conditions that g ∈ C(I) and k, which is continuous for all
(t, s) ∈ D and all y, satisfies the (uniform) Lipschitz conditions (compare also [5]

and [8]):

|k(t, s, y1)− k(t, s, y2)| � L1|y1 − y2|,(V1)

|kt(t, s, y1)− kt(t, s, y2)| � L2|y1 − y2|(V2)

for all t ∈ I, (t, s) ∈ D, and y1, y2 ∈ R, with Lipschitz constants L1 and L2 being

independent of y1 and y2.

The study of convergence properties of collocation methods for the Volterra in-

tegral equation (1.1) (as well as for the second-kind Fredholm integral equations)
and of methods for accelerating the convergence orders has received considerable

attention since the early 1980s (compare, for example, [1], [2], [5], [12] and [16]), and
the literature is now quite extensive. See, for example, the survey paper [4] and the

references cited therein. The recent progress in this research area has been achieved
in [6], [8] and [9] for collocation methods, and in [7] for the finite element methods.

However, to the authors’ knowledge, finite element methods for the nonlinear

Volterra integral equation (1.1) have few results, even for the general convergence
to be proved in the coming Section 2 of the paper. The main motivation of this

paper derives from [6] and [9]: by means of Galerkin methods we will improve the
corresponding results given in [6] and [9] not only for the linear version (1.2), which

has been analyzed in [6] and [9] by collocation methods, but also for the nonlinear
case (1.1).

The paper is organized in the following way. In Section 2 we give some necessary
preliminaries and study global convergence properties by finite element methods for

the problem (1.1). Section 3 is devoted to obtaining global superconvergence by
virtue of iterated finite element methods and interpolated finite element methods.

In Section 4 we study local superconvergence by means of iterated finite element
methods. Here, using an interpolation post-processing technique, we can also get

higher approximations of the O(h2r)-convergence rate in the piecewise-polynomial
space of degree at most (r−1) for the problem (1.1). In addition, as an application of
these superconvergence properties, some a posteriori error estimators, by which the
finite element error bound can be determined, are obtained. In Section 5 we discuss

iterative correction approximations and some a posteriori error estimators based on
the iterative correction method.
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2. Global convergence of finite element solutions

In this section we formulate the Galerkin finite element schemes and investigate

the global convergence properties for the problem (1.1). For this purpose, we first
define a nonlinear integral operator G : C(I)→ C(I) by

(Gϕ)(t) := g(t) +
∫ t

0
k(t, s, ϕ(s)) ds.

Then, the problem (1.1) reads: Find y = y(t) such that

(2.1) y(t) = (Gy)(t), t ∈ I,

and its weak form is to find y ∈ L2(I) such that

(2.2) (y, v) = (Gy, v), v ∈ L2(I),

where (·, ·) denotes the usual inner product in the L2-space.

Let Th : 0 = t0 < t1 < . . . < tM = 1 be a given mesh for the interval I, and denote
the finite element space by

S
(−1)
r−1 (Th) := {u : u|σk

∈ Pr−1(0 � k � M − 1)}.

Here Pm denotes the space of (real) polynomials of degree not exceeding m, and we

have set

σk :=

{
[t0, t1], if k = 0,

(tk, tk+1], if 1 � k � M − 1,
hk := tk+1−tk, h := max

(k)
{hk}. Note that we use the superscript (-1) in the notation

for the above finite element space to emphasize that it is not a subspace of C(I).

Our Galerkin approximation of (2.2) is now defined as: Find uN ∈ S
(−1)
r−1 (Th) such

that

(2.3) (uN , v) = (GuN , v), v ∈ S
(−1)
r−1 (Th).

Let Ph : L2(I)→ S
(−1)
r−1 (Th) be the L2-projection operator defined by

(y, v) = (Phy, v), ∀v ∈ S
(−1)
r−1 (Th).

Then, the problem (2.3) can be equivalently written as: Find uN ∈ S
(−1)
r−1 (Th) such

that

(2.4) uN = PhGuN .
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Since S
(−1)
r−1 (Th) is a discontinuous piecewise-polynomial space, and Ph possesses

localization, we have

(2.5)
∫

σk

vPhu dt =
∫

σk

vu dt, ∀v ∈ Pr−1

with
‖Phy − y‖0,∞ � Chr‖y‖r,∞,

where, for nonnegative integer m,

‖v‖m,∞ := max
0�k�m

{‖v(k)‖∞}.

In this case, Ph is defined on every element, and it can be regarded as an interpolation
operator of degree r (it is a kind of interpolation in average which is different from

the standard Lagrange interpolation) associated with the mesh Th.
Here and below, C denotes a generic constant whose particular meaning will be-

come clear by the context in which it arises.

Lemma 2.1. If the conditions (V 1) and (V 2) are fulfilled, then the problem (2.3)
(or (2.4)) is uniquely solvable whenever the mesh size h is sufficiently small.

�����. Define an operator E : S
(−1)
r−1 (Th) → S

(−1)
r−1 (Th) by E := PhG. Then,

in order to prove Lemma 2.1, it is sufficient to show that the operator E has a

unique fixed point uN ∈ S
(−1)
r−1 (Th), which is the unique solution of (2.4). To this

end, by the standard contraction mapping principle, we need only to prove that the

operator En : S
(−1)
r−1 (Th) → S

(−1)
r−1 (Th) is a contraction as n is sufficiently large so

that operators E and En have the identical fixed points.

Decompose the operator E into

E = PhG = (Ph − I)G+G := E1 + E2,

where I is the identity operator. For the operator E1, by the approximation property

of the L2-projection operator Ph, from the conditions (V 1) and (V 2) we find that
for any u1, u2 ∈ S

(−1)
r−1 (Th) we have

(2.6) ‖E1u1 − E1u2‖0,∞ = ‖(Ph − I)(Gu1 −Gu2)‖0,∞
� Ch‖Gu1 −Gu2‖1,∞ � Ch‖u1 − u2‖0,∞.

For the operator E2, from the condition (V 1) we obtain that for any u1, u2 ∈
S
(−1)
r−1 (Th) we have

|(E2u1)(t) − (E2u2)(t)| �
∫ t

0
|k(t, s, u1(s))− k(t, s, u2(s))| ds

� L1

∫ t

0
|u1(s)− u2(s)| ds � L1t‖u1 − u2‖0,∞,
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and then

|(E22u1)(t)− (E22u2)(t)| = |(E2(E2u1))(t) − (E2(E2u2))(t)|

� L1

∫ t

0
|(E2u1)(s)− (E2u2)(s)| ds

� L1

∫ t

0
Ls‖u1 − u2‖0,∞ ds =

L21
2!

t2‖u1 − u2‖0,∞.

This recurrently leads to

|(En
2 u1)(t) − (En

2 u2)(t)| � Ln
1

n!
tn‖u1 − u2‖0,∞ � Ln

1

n!
‖u1 − u2‖0,∞

or

(2.7) ‖En
2 u1 − En

2 u2‖0,∞ � Ln
1

n!
‖u1 − u2‖0,∞,

which yields that there exists a positive integer N0 such that

(2.8) ‖EN0
2 u1 − EN0

2 u2‖0,∞ � 1
3
‖u1 − u2‖0,∞.

Thus, it follows from (2.6) through (2.8) and the identity

EN0 = (E1 + E2)N0 =
N0∑

j=1

Cj
N0

Ej
1E

N0−j
2 + EN0

2

that when 0 < h < min
{
1,

(
3

N0∑
j=1

Cj
N0

L
N0−j
1

(N0−j)!

)−1}
,

‖EN0u1 − EN0u2‖0,∞ �
N0∑

j=1

Cj
N0
‖(Ej

1E
N0−j
2 )u1 − (Ej

1E
N0−j
2 )u2‖0,∞

+ ‖EN0
2 u1 − EN0

2 u2‖0,∞

�
N0∑

j=1

Cj
N0

hj LN0−j
1

(N0 − j)!
‖u1 − u2‖0,∞ +

1
3
‖u1 − u2‖0,∞

� 2
3
‖u1 − u2‖0,∞,

where Cj
N0
:=

N0!
j!(N0 − j)!

; that is, EN0 : S
(−1)
r−1 (Th) → S

(−1)
r−1 (Th) is a contraction

whenever h is sufficiently small. Thus, we complete the proof of Lemma 2.1. �
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Let eN := y − uN be the finite element error corresponding to the finite element

solution uN of (1.1). Then, for the kernel function k(t, s, y) in (1.1), the Mean-Value
Theorem implies that there exists a function ξ, whose value ξ(t) at t is between y(t)
and uN (t), such that

(2.9) k(t, s, y)− k(t, s, uN) = ky(t, s, ξ)eN (t).

Set

(2.10) (G′ϕ)(t) :=
∫ t

0
ky(t, s, y(s))ϕ(s) ds,

(G′hϕ)(t) :=
∫ t

0
ky(t, s, ξ(s))ϕ(s) ds.

Thus, we have the following lemma [10]:

Lemma 2.2. We have

lim
h→0

‖G′h −G′‖C(I)→C(I) = 0,

where

‖A‖C(I)→C(I) := sup
ϕ∈C(I)

‖Aϕ‖0,∞
‖ϕ‖0,∞

.

Throughout this paper, we resort to the standard hypothesis that the problem

(1.2) is well-posed, such that (I −G′)−1 always exists and is bounded on C(I). Now
we are prepared to get our global convergence result for the problem (1.1). In fact,

we have

Theorem 2.1. In (1.1), assume that g ∈ Cr(I) and k ∈ Cr(D × R) such that

the Volterra integral equation (1.1) possesses a unique solution y ∈ Cr(I). Then the
finite element error eN satisfies

‖eN‖0,∞ � Chr‖y‖r,∞.

�����. From (2.1) one obtains that

Phy = PhGy,

which together with (2.4), (2.9) and (2.10) leads to

(2.11) Phy − uN = Ph(Gy −GuN ) = PhG′heN .
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Thus, from (2.11) and the definition of eN one finds the identity

eN − PhG′heN = y − Phy

or

(2.12) (I − PhG′h)e
N = (I − Ph)y.

It is easy to see that

(2.13) lim
h→0

‖(I − Ph)G
′‖C(I)→C(I) = 0.

Since the operator (I −G′) has a continuous inverse operator (I −G′)−1, we get the
identity

I − PhG′h = (I − PhG′) + Ph(G′ −G′h)

= (I −G′) + (I − Ph)G′ + Ph(G′ −G′h)

= (I −G′){I + (I −G′)−1[(I − Ph)G
′ + Ph(G

′ −G′h)]},

which together with (2.13), Lemma 2.2 and the uniform boundedness of the
L2-projection operator Ph,

(2.14) ‖Phϕ‖0,∞ � C‖ϕ‖0,∞,

demonstrates that (I − PhG′h)
−1 exists and is bounded uniformly on C(I) for all

h ∈ (0, h0), h0 > 0 sufficiently small. Therefore, from (2.12) we finally obtain

‖eN‖0,∞ � ‖(I − PhG′h)
−1‖C(I)→C(I) · ‖(I − Ph)y‖0,∞ � Chr‖y‖r,∞.

Thus, the proof of Theorem 2.1 is completed. �
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3. Global superconvergence

3.1. Global superconvergence of iterated finite element solutions.
The iterated finite element solution uN

it corresponding to the finite element solution

uN given by (2.3), is defined as follows:

(3.1) uN
it (t) := g(t) +

∫ t

0
k(t, s, uN(s)) ds

with

(3.2) PhuN
it = uN .

Here we shall prove that the iterated finite element solution uN
it has the global su-

perconvergence properties. First of all, we need ([5])

Lemma 3.1. Let the functions g and K characterizing the integral equation (1.2)
be continuous on I and D, respectively. Then this equation has a unique solution

y ∈ C(I) given by

y(t) = g(t) +
∫ t

0
R(t, s)g(s) ds, t ∈ I,

where R ∈ C(D) is the resolvent kernel associated with the given kernel K and

defined by R(t, s) :=
∞∑

m=1
Km(t, s), (t, s) ∈ D withK1(t, s) := K(t, s) andKn(t, s) :=

∫ t

s K1(t, τ)Kn−1(τ, s) dτ , (t, s) ∈ D (n � 2). Moreover, the resolvent kernel satisfies
the identities (usually called the Fredholm identities)

R(t, s) = K(t, s) +
∫ t

s

K(t, τ)R(τ, s) dτ, (t, s) ∈ D,

and

R(t, s) = K(t, s) +
∫ t

s

R(t, τ)K(τ, s) dτ, (t, s) ∈ D.

Let δN be the residual (or: defect) function defined by

(3.3) δN (t) := −uN(t) + g(t) +
∫ t

0
k(t, s, uN(s)) ds.

Then we know from (3.1) and (3.2) that

(3.4) δN = (I − Ph)uN
it , uN = GuN − δN .
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Assume that kyy(t, s, y) is bounded uniformly on D×R. Then it follows from (2.1),

(2.10), (3.4), Theorem 2.1 and Taylor’s formula that

eN = δN + (Gy −GuN )

= δN +G′eN +
1
2

∫ t

0
kyy(t, s, η(s))(eN (s))2 ds,

= δN +G′eN +O(h2r)‖y‖2r,∞,

where η is a function whose value η(s) at s is between uN(s) and y(s). Thus, setting

F := δN +O(h2r)‖y‖2r,∞, we derive from Lemma 3.1 that

(3.5) eN = F (t) +
∫ t

0
R∗(t, s)F (s) ds

= δN (t) +
∫ t

0
R∗(t, s)δN (s) ds+O(h2r)‖y‖2r,∞,

where R∗(t, s) is the resolvent kernel associated with K∗(t, s) := ky(t, s, y(s)), which
inherits the same smoothness of K∗(t, s) and satisfies the Fredholm identity

R∗(t, s) = K∗(t, s) +
∫ t

s

K∗(t, τ)R∗(τ, s) dτ, (t, s) ∈ D.

Therefore, using the Fredholm identity we obtain by exchanging the order of inte-
gration with respect to s and τ , (3.4) and (3.5) that

(3.6) eN
it := y − uN

it = Gy −GuN = G′eN +O(h2r)‖y‖2r,∞

=
∫ t

0
K∗(t, s)δN (s) ds+

∫ t

0
K∗(t, s)

(∫ s

0
R∗(s, τ)δN (τ) dτ

)
ds

+O(h2r)‖y‖2r,∞

=
∫ t

0
R∗(t, s)δN (s) ds+O(h2r)‖y‖2r,∞

=
∫ t

0
R∗(t, s)(I − Ph)uN

it (s) ds+O(h2r)‖y‖2r,∞.

Setting

(3.7) (R∗hϕ)(t) :=
∫ t

0
R∗(t, s)(Ph − I)ϕ(s) ds

one finds from (3.6) that

(3.8) eN
it = −R∗huN

it +O(h2r)‖y‖2r,∞
= −R∗h(u

N
it − y + y) +O(h2r)‖y‖2r,∞

= R∗heN
it −R∗hy +O(h2r)‖y‖2r,∞.
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Lemma 3.2. The operator (I −R∗h)
−1 exists and is bounded uniformly on C(I),

where the operator R∗h is given by (3.7).

�����. For any t ∈ σk (0 � k � M − 1), from (2.5) one derives that

(3.9) |(R∗hϕ)(t)| =
∣∣∣∣
∫ tk

0
R∗(t, s)(I − Ph)ϕ(s) ds+

∫ t

tk

R∗(t, s)(I − Ph)ϕ(s) ds

∣∣∣∣

�
k−1∑

j=0

∣∣∣∣
∫

σj

(I − Ph)R∗(t, s)(I − Ph)ϕ(s) ds

∣∣∣∣

+

∣∣∣∣
∫ t

tk

R∗(t, s)(I − Ph)ϕ(s) ds

∣∣∣∣
� Chr‖ϕ‖0,∞ + C(t− tk)‖ϕ‖0,∞ � Ch‖ϕ‖0,∞,

which implies

(3.10) ‖R∗h‖C(I)→C(I) � Ch.

Therefore, (I − R∗h)
−1 exists and is bounded uniformly on C(I) for all h ∈ (0, σ),

with σ > 0 sufficiently small. �

Theorem 3.1. In (1.1), assume that g ∈ Cr(I), k ∈ Cr(D×R) and kyy(t, s, y) is
bounded uniformly on D × R. Then the iterated finite element error eN

it := y − uN
it

satisfies

(3.11) ‖eN
it ‖0,∞ � Chr+1‖y‖r,∞.

�����. From the procedure of obtaining (3.9) we can also derive the estimate

(3.12) ‖R∗hy‖0,∞ � Ch2r‖y‖r,∞ + Chr+1‖y‖r,∞ � Chr+1‖y‖r,∞

which, together with (3.8) and Lemma 3.2, leads to

‖eN
it ‖0,∞ = ‖ − (I −R∗h)

−1R∗hy‖0,∞ +O(h2r)‖y‖2r,∞
� ‖(I −Rh)−1‖C(I)→C(I) · ‖R∗hy‖0,∞ + Ch2r‖y‖2r,∞ � Chr+1‖y‖r,∞.

Thus, Theorem 3.1 is proved. �

We would like to point out that a simple and direct proof of Theorem 3.1 for
the linear version (1.2) is available. In fact, it is easy to see from (3.1) and (3.2)

corresponding to (1.2) that
(I −KPh)uL

it = g,
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where uL
it is the iterated finite element solution corresponding to the finite element

solution uL of (1.2) and K : L2(I) → C(I) is the linear Volterra integral operator
associated with the known kernel K(t, s) in (1.2):

(Kϕ)(t) :=
∫ t

0
K(t, s)ϕ(s) ds, t ∈ I.

This together with (1.2) implies that

(I − KPh)(y − uL
it) = (I −KPh)y − g

= (I −KPh)y − (I −K)y

= K(I − Ph)y.

Assume that 1 is not an eigenvalue of the Volterra integral operator K so that

(I − K)−1 always exists. Then the inverse operator (I − KPh)−1 exists and is
uniformly bounded on C(I) for all h ∈ (0, σ) with σ > 0 sufficiently small. And

thus, from (3.12) we have

(3.13) y − uL
it = (I −KPh)−1K(I − Ph)y.

Also, it follows from the procedure of obtaining (3.9) that

‖K(I − Ph)y‖0,∞ � Chr+1‖y‖r,∞,

which together with (3.13) leads to

(3.14) ‖y− uL
it‖0,∞ � ‖(I −KPh)−1‖C(I)→C(I) · ‖K(I −Ph)y‖0,∞ � Chr+1‖y‖r,∞.

������ 3.1. In [9], where the global superconvergence for (1.2) was studied by

collocation methods, it is assumed for the exact solution y of (1.2) that y ∈ Cr+1(I)
to get (3.14). However, here we need a weaker regularity, y ∈ Cr(I), for the exact

solution y of (1.2), which is a merit of the finite element method. In addition, in the
following section, we will obtain a global superconvergence of the O(h2r)-convergence

rate by means of an interpolation post-processing technique.

The following discussions will involve how to get a posteriori error estimators for
the finite element solution of the problem (1.1). We know that it is very important

for the finite element computations to have a computable a posteriori error bound
by which we can determine the finite element error bound. As an application of The-

orem 3.1, we will show that the resulting superconvergence property in the theorem
can provide a useful a posteriori error estimator.
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Theorem 3.2. Under the conditions of Theorem 3.1 we have

(3.15) ‖y − uN‖0,∞ = ‖uN − uN
it ‖0,∞ +O(hr+1).

In addition, if there exist positive constant C0 and small ε ∈ (0, 1) such that

(3.16) ‖y − uN‖0,∞ � C0h
r+1−ε,

then we have

(3.17) lim
h→0

‖y − uN‖0,∞
‖uN − uN

it ‖0,∞
= 1.

�����. It follows from Theorem 3.1 and

y − uN = (uN
it − uN ) + (y − uN

it )

that

‖y − uN‖0,∞ = ‖uN − uN
it ‖0,∞ +O(hr+1).

Thus, by (3.16) we obtain

‖uN − uN
it ‖0,∞

‖y − uN‖0,∞
+ Chε � 1

or

(3.18) lim
h→0

‖uN − uN
it ‖0,∞

‖y − uN‖0,∞
� 1.

Similarly, it follows from (3.16) and

‖uN
it − uN‖0,∞ = ‖y − uN‖0,∞ +O(hr+1)

that

lim
h→0

‖uN − uN
it ‖0,∞

‖y − uN‖0,∞
� 1,

which, together with (3.18), leads to (3.17). Hence, we complete the proof of Theo-
rem 3.2. �

30



We know from (3.15) that the computable estimate bound
∥∥uN − uN

it

∥∥
0,∞ is the

principal part of the finite element error ‖y − uN‖0,∞, and can be used as an a
posteriori error estimator to obtain the bound of the finite element error. From (3.17)
we further see that under the condition (3.16), which is a reasonable assumption since

hr is the optimal convergence rate of the finite element solution uN ∈ S
(−1)
r−1 (Th) from

the view point of the approximation theory,
∥∥uN − uN

it

∥∥
0,∞ is a reliable a posteriori

error estimator.

3.2. Global superconvergence of interpolated finite element solutions.
In the previous subsection, the iteration post-processing method has been used

to accelerate the approximation procedure. This method is efficacious, and preva-
lent. However, we will find that another acceleration method, the interpolation

post-processing method which has been utilized many times for various partial dif-
ferential equations and integro-differential equations in our previous work (see, for

example, [7], [13], [14], [15]), can also be used to attain the same goal. Such an
interpolation post-processing method is simpler than the iteration post-processing.

Theorem 3.3. In (1.1), assume that g ∈ Cr(I), k ∈ Cr(D × R) and kyy(t, s, y)

is bounded uniformly on D ×R. Then we have

‖Phy − uN‖0,∞ � Chr+1‖y‖r,∞.

�����. From (2.1) we get that

(3.19) Phy = PhGy

which, together with (2.4), (2.14) and Theorem 2.1, leads to

(3.20) Phy − uN = Ph(Gy −GuN ) = PhG′eN +O(h2r)‖y‖2r,∞.

Therefore, we find from (3.20) that

(3.21) (Phy − uN)− PhG′(Phy − uN) = PhG′(I − Ph)y +O(h2r)‖y‖2r,∞.

And thus, it follows from the standard assumption that I − G′ has a continuous

inverse operator such that (I−PhG′)−1 exists and is uniformly bounded on C(I) for
all h ∈ (0, σ), with σ > 0 sufficiently small so that

(3.22) Phy − uN = (I − PhG′)−1PhG′(I − Ph)y +O(h2r)‖y‖2r,∞.
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Following the steps to obtain (3.9), we can also get that

‖G′(I − Ph)y‖0,∞ � Chr+1‖y‖r,∞

which together with (3.22) yields

‖Phy − uN‖0,∞ � ‖(I − PhG)−1Ph‖C(I)→C(I) · ‖G′(I − Ph)y‖0,∞ + Ch2r‖y‖2r,∞
� Chr+1‖y‖r,∞.

�

������ 3.2. The above proof of Theorem 3.3 has nothing to do with Theo-
rem 3.1 in order to emphasize that the interpolation post-processing and the iteration
post-processing are two independent post-processing methods. However, if we utilize

the result of Theorem 3.1, the proof of Theorem 3.3 is much simpler. In fact, we find
from (3.2), (2.14) and Theorem 3.1 that

‖Phy − uN‖0,∞ = ‖Ph(y − uN
it )‖0,∞ � C‖y − uN

it ‖0,∞ � Chr+1‖y‖r,∞.

By virtue of Theorem 3.3, we can obtain global superconvergence of order r + 1

by an interpolation post-processing method instead of the iteration post-processing
method. To this end, we assume that Th has been obtained from T2h with mesh size

2h by subdividing each element of T2h into two elements (i.e., each element of T2h is
obtained by a combination of each 2-element in Th), so that the number of elements

M for Th is even. Then, we can define a higher interpolation operator Ir
2h of degree

r associated with the mesh T2h according to the following conditions:

Ir
2hu

∣∣
σi∪σi+1 ∈ Pr, i = 0, 2, 4, . . . , M − 2, such that

∫

σi

Ir
2hu ds =

∫

σi

u ds,
∫

σi+1

Ir
2hu ds =

∫

σi+1

u ds

and ∫

σi∪σi+1

vIr
2hu ds =

∫

σi∪σi+1

vu ds, ∀v ∈ Pr−1(σi ∪ σi+1).

It is easy to check that

Ir
2hPh = Ir

2h,

‖Ir
2hv‖0,∞ � C‖v‖0,∞, ∀v ∈ S

(−1)
r−1 (Th),

‖Ir
2hv − v‖0,∞ � Chr+1‖v‖r+1,∞.
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Theorem 3.4. In (1.1), assume that g ∈ Cr+1(I) and k ∈ Cr+1(D×R) such that

the Volterra integral equation (1.1) possesses a unique solution y ∈ Cr+1(I). Then,
we have the superconvergence property

‖Ir
2huN − y‖0,∞ � Chr+1‖y‖r+1,∞.

�����. Due to the properties of the operator Ir
2h, we have

Ir
2huN − y = Ir

2h(u
N − Phy) + (Ir

2hy − y).

Therefore, it follows from Theorem 3.3 and the interpolation theorem that

‖Ir
2huN − y‖0,∞ � C‖uN − Phy‖0,∞ + ‖Ir

2hy − y‖0,∞ � Chr+1‖y‖r+1,∞.

�

As a by-product of Theorem 3.4 we have

‖y − uN‖0,∞ = ‖Ir
2huN − uN‖0,∞ +O(hr+1),

in which the estimator ‖Ir
2huN − uN‖0,∞ is easier to compute than that in Theo-

rem 3.2.

4. Local superconvergence of iterated finite element solutions

In this section we are concerned with the study of the local superconvergence
property for the iterated finite element solution of the problem (1.1).

Theorem 4.1. In (1.1) assume that g ∈ Cr(I), k ∈ Cr(D×R) and kyy is bounded

uniformly on D × R. Then there is the following superconvergence at the points of

the mesh Th:

(4.1) max
1�k�M

|y(tk)− uN
it (tk)| � Ch2r‖y‖r,∞.

�����. From (2.5) and (3.7) one obtains that

|(R∗hy)(tk)| =
∣∣∣∣
∫ tk

0
R∗(tk, s)(I − Ph)y(s) ds

∣∣∣∣

=

∣∣∣∣
k−1∑

j=0

∫

σj

R∗(tk, s)(I − Ph)y(s) ds

∣∣∣∣

=

∣∣∣∣
k−1∑

j=0

∫

σj

(I − Ph)R∗(tk, s)(I − Ph)y(s)

∣∣∣∣ � Ch2r‖y‖r,∞.
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Now, it is easy to find from (2.5), (3.7) and (3.11) that

∣∣(R∗heN
it )(tk)

∣∣ =
∣∣∣∣
∫ tk

0
R∗(tk, s)(I − Ph)eN

it (s) ds

∣∣∣∣

=

∣∣∣∣
∫ tk

0
(I − Ph)R

∗(tk, s)(I − Ph)e
N
it (s) ds

∣∣∣∣
� Chr‖eN

it ‖0,∞ � Ch2r+1‖y‖r,∞,

which together with (3.8) leads to

|eN
it (tk)| �

∣∣(R∗heN
it )(tk)

∣∣+ |(R∗hy)(tk)|+ Ch2r‖y‖2r,∞ � Ch2r‖y‖r,∞.

Thus, Theorem 4.1 follows. �

������ 4.1. In Theorem 4.1 we only need that the exact solution of the problem
(1.1) satisfies y ∈ Cr(I) to obtain (4.1). However, for the collocation method, the
case is quite different in that y ∈ C2r(I) is assumed. This is the main difference

between the two numerical methods.

Notice that the superconvergence property (4.1) holds only at the points of the
mesh Th. However, it will be shown that by virtue of (4.1), one can obtain the

global superconvergence approximation of order 2r by using the interpolation post-
processing technique. For this reason, we need to define a higher interpolation oper-

ator.

For easy exposition, we demonstrate our idea mainly for the case of r = 2. Let the

numberM of elements for Th be a multiple of 3 so that we can define an interpolation
operator I33h of degree 3 associated with T3h as follows:

I33hu|σk−1∪σk∪σk+1 ∈ P3, k = 3l+ 1, l = 0, 1, . . . ,
M

3
− 1

and

I33hu(ti) = u(ti), i = k − 1, k, k + 1, k + 2 (1 � k � M − 2).

Similarly, we can also define an interpolation operator I2r−1(2r−1)h of degree (2r − 1)
associated with the mesh T(2r−1)h.

Theorem 4.2. In (1.1), assume that g ∈ C2r(I), k ∈ C2r(D ×R). Then we have

‖I2r−1(2r−1)huN
it − y‖0,∞ � Ch2r‖y‖2r,∞.
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�����. Denoting the basis function corresponding to {tj} by {ϕj}(1 � j � M),

we have

I33h(u
N
it − y)(t) =

M∑

j=1

(uN
it − y)(tj)ϕj(t),

which together with (4.1) and the uniform boundedness of {ϕj}M
1 leads to

‖I33h(uN
it − y)‖0,∞ �

M∑

j=1

Ch4‖y‖2,∞‖ϕj‖0,∞ � Ch4‖y‖2,∞.

Thus, using the interpolation property ‖I33hy − y‖0,∞ � Ch4‖y‖4,∞ we obtain that

‖I33huN
it − y‖0,∞ � ‖I33h(uN

it − y)‖0,∞ + ‖I33hy − y‖0,∞ � Ch4‖y‖4,∞.

For the general case r � 3 the proof is similar to that given above, so we omit it. �

By the way, we point out that for a posteriori estimators we can also obtain from

Theorems 4.1 and 4.2 by means of arguments analogous to those in Theorem 3.2
that

(4.2) max
1�j�M

|y(tj)− uN(tj)| = max
1�j�M

|uN (tj)− uN
it (tj)|+O(h2r)

under the conditions of Theorem 4.1, and

(4.3) ‖y − uN‖0,∞ =
∥∥∥uN − I2r−1(2r−1)huN

it

∥∥∥
0,∞
+O(h2r)

under the conditions of Theorem 4.2.

Since hr is the optimal convergence rate of the finite element solution uN in the
finite element space S

(−1)
r−1 (Th), the a posteriori error estimators provided by (4.2)

and (4.3) are more practical than that obtained in Theorem 3.2.

5. The iterative correction of finite element solutions

In this section, we will study an iterative correction method, of which the scheme

proposed in [6] is a special case. In addition, by virtue of the superconvergence
analysis technique used before, we can improve the iterative correction approximation

obtained in [6].
From (3.8) one derives a recurrence formula of the form

(5.1) eN
it = −

r∑

k=1

(R∗h)
ky + (R∗h)

reN
it +O(h2r)‖y‖2r,∞.
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Lemma 5.1. Under the conditions of Theorem 3.1 we have

‖(R∗h)reN
it ‖0,∞ � Ch2r+1‖y‖r,∞.

�����. We know from (3.10) and Theorem 3.1 that

‖(R∗h)reN
it ‖0,∞ � ‖(R∗h)r‖C(I)→C(I) · ‖eN

it ‖0,∞ � Ch2r+1‖y‖r,∞,

and hence Lemma 5.1 is proved. �

According to Lemma 5.1 we can write (5.1) as

(5.2) eN
it = −

r∑

k=1

(R∗h)
ky +O(h2r)‖y‖2r,∞.

Theorem 5.1. In (1.1), assume that the conditions of Theorem 3.1 hold. Then,
the (n − 1)st iterative correction ũN

n of the iterated finite element solution uN
it cor-

responding to the finite element solution uN ∈ S
(−1)
r−1 (Th) satisfies

‖y − ũN
n ‖0,∞ � Chr+n‖y‖r,∞, 1 � n � r,

where ũN
n :=

n∑

k=1

(−1)k−1Ck
n(A

N
1 )

ky, and AN
1 : C(I) → C(I) is the iterated finite

element operator corresponding to the problem (1.1), defined by AN
1 y := uN

it .

�����. From (5.2) we derive that

(I −AN
1 )y = −

r∑

k=1

(R∗h)
ky +O(h2r)‖y‖2r,∞.

Therefore, we obtain from the boundedness of the operator (I −AN
1 ) that

(5.3) (I −AN
1 )
2y = −(I −AN

1 )

( r∑

k=1

(R∗h)
ky

)
+O(h2r)‖y‖2r,∞

=
r∑

k=1

r∑

j=1

(R∗h)
k+jy +O(h2r)‖y‖2r,∞.

By virtue of (3.10) and (3.12) we know that

‖R∗h‖C(I)→C(I) � Ch and ‖R∗hy‖0,∞ � Chr+1‖y‖r,∞.
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Therefore, we derive

‖(R∗h)2y‖0,∞ � ‖R∗h‖C(I)→C(I) · ‖R∗hy‖0,∞ � Chr+2‖y‖r,∞.

Now, this implies by (5.3) that

(I −AN
1 )
2y = O(hr+2)‖y‖r,∞.

Inductively, we can eventually conclude

(I −AN
1 )

ny = O(hr+n)‖y‖r,∞, 1 � n � r,

and the left-hand side is exactly

(I −AN
1 )

ny = y − ũN
n .

�

From Theorem 5.1 we know that for the nonlinear problem (1.1) the iterative cor-

rection method is valid subject to the iterative number n not exceeding r. However,
for the linear problem (1.2), the case is quite different in that this iterative process

can be continued to generate approximations of higher and higher orders. In fact,
following the procedure for obtaining (3.8) one can get

(5.4) eL
it := y − uL

it = RheL
it −Rhy,

where Rh is a linear Volterra integral operator defined by

(Rhϕ)(t) :=
∫ t

0
R(t, s)(I − Ph)ϕ(s) ds.

This implies a recurrence formula

eL
it = −

n∑

k=1

Rk
hy +Rn

heit.

Consequently, we obtain

(5.5) ‖y − ũL
n‖0,∞ � Chn+r‖y‖r,∞, n � 1,

where ũL
n :=

n−1∑

k=0

(−1)kCk+1
n (AL

1 )
k+1y with AL

1 : C(I) → C(I) being the iterated

finite element operator corresponding to the problem (1.2), defined by AL
1 y := uL

it.
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������ 5.1. From (5.5) we observe that when uL ∈ S
(−1)
0 (Th), that is r = 1,

the convergence rate of the (n− 1)st iterative correction ũL
n is hn+1, which improves

the corresponding result in [6] where the convergence rate of ũL
n is hn.

Like the superconvergence properties in the previous section, the convergence re-

sults in Theorem 5.1 and (5.5) can also provide us with some a posteriori error
estimators:

‖y − ũL
n‖0,∞ = ‖ũL

n+1 − ũL
n‖0,∞ +O(hr+n+1), n � 1,

and ∥∥y − ũN
n

∥∥
0,∞ =

∥∥ũN
n+1 − ũN

n

∥∥
0,∞ +O(hr+n+1), 1 � n � r.
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