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Abstract. In this paper we introduce two mappings associated with the lower and up-
per semi-inner product (·, ·)i and (·, ·)s and with semi-inner products [·, ·] (in the sense of
Lumer) which generate the norm of a real normed linear space, and study properties of
monotonicity and boundedness of these mappings. We give a refinement of the Schwarz
inequality, applications to the Birkhoff orthogonality, to smoothness of normed linear spaces
as well as to the characterization of best approximants.
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1. Introduction and preliminaries

In this paper we continue the study of mappings associated with the lower and
upper semi-inner product in a normed space that started in [9], [10] and [11]. The
main reason for studying these mappings is to obtain sharper estimates than those
available using only the norm, and to attempt a clearer geometrical description of
the normed space in the absence of a true inner product. We also consider semi-inner
products in the sense of Lumer, which lie between the lower and upper semi-inner
product, and define our mappings Ψ[ , ]x,y in dependence on a particular semi-inner
product. It turns out that the previously studied mappings Φi

x,y and Φ
s
x,y (see [10])

form the lower and upper envelope, respectively, for Ψ[ , ]x,y.

Our results will provide, in particular, refinements of the Schwarz inequality based
on the lower and upper semi-inner product, and a characterization of best approxi-
mants.
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Let (X, ‖·‖) be a real normed linear space. We define the lower and upper semi-
inner product by

(y, x)i = lim
t→0−

‖x+ ty‖2 − ‖x‖2
2t

and (y, x)s = lim
t→0+

‖x+ ty‖2 − ‖x‖2
2t

,

respectively. These limits are well defined for every pair x, y ∈ X (see for example
[5], [13]); the subscripts i and s stand for inferior and superior, respectively. We
mention that (·, ·)i and (·, ·)s are not semi-inner products in the sense of Lumer since
they are not additive in the first variable (see (VII) below).
For the sake of completeness we list here some of the main properties of these

products that will be used in the sequel (see [2], [5], [7], [8]), assuming that p, q ∈
{s, i} and p �= q:

(I) (x, x)p = ‖x‖2 for all x ∈ X ;
(II) (αx, βy)p = αβ(x, y)p if αβ � 0 and x, y ∈ X ;
(III) |(x, y)p| � ‖x‖ ‖y‖ for all x, y ∈ X ;
(IV) (αx + y, x)p = α(x, x)p + (y, x)p if x, y belong to X and α is a real number;
(V) (−x, y)p = −(x, y)q for all x, y ∈ X ;
(VI) (x+ y, z)p � ‖x‖ ‖z‖+ (y, z)p for all x, y, z ∈ X ;
(VII) The mapping (·, ·)p is continuous and subadditive (superadditive) in the

first variable for p = s (or p = i);
(VIII) The element x ∈ X is Birkhoff orthogonal to the element y ∈ X (that is,

‖x+ ty‖ � ‖x‖ for all t ∈ �)

if and only if
(y, x)i � 0 � (y, x)s;

(IX) The normed linear space (X, ‖·‖) is smooth at the point x0 ∈ X \ {0} if and
only if the mapping y �→ (y, x0)p is linear, or if and only if (y, x0)s = (y, x0)i for all
y ∈ X ;
(X) Let J be the normalized duality mapping on X , that is, let

J (x) = {f ∈ X∗ | f(x) = ‖x‖2 and ‖f‖ = ‖x‖};

note that, for every x ∈ X , J (x) is a nonempty convex subset of X∗, and

J (αx) = αJ (x) for all α ∈ � and all x ∈ X.

Then for every pair x, y ∈ X there exist w1, w2 ∈ J (x) so that

(y, x)s = w1(y), (y, x)i = w2(y);
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(XI) We have the representations

(y, x)s = sup{w(y) | w ∈ J (x)}, (y, x)i = inf{w(y) | w ∈ J (x)}.

Therefore

(y, x)i � (y, x)s for all x, y ∈ X.

(XII) If the norm ‖·‖ is induced by an inner product (·, ·), then

(y, x)i = (y, x) = (y, x)s for all x, y ∈ X.

The normalized duality maping is discussed in [2]; for other properties of (·, ·)p see
[1], [2], [5], [7], [8], [13], where further references are given.

The terminology throughout the paper is standard. We mention that for functions
we use the terms ‘increasing’ (and ‘strictly increasing’), ‘decreasing’ (and ‘strictly
decreasing’), thus avoiding ‘nondecreasing’ and ‘nonincreasing’.

2. Properties of the mappings Φ[ , ]x,y and Ψ
[ , ]
x,y

First of all, let us recall the concept of semi-inner products on a real normed linear
space introduced by Lumer [14].

Definition 2.1. Let X be a real linear space. A mapping [·, ·] : X ×X → � is
called a semi-inner product on X if it satisfies the following conditions:

(a) [x, x] � 0 for all x ∈ X , and [x, x] = 0 implies x = 0;

(b) [αx+ βy, z] = α[x, z] + β[y, z] for all α, β ∈ � and all x, y, z ∈ X ;

(c) [x, αy] = α[x, y] for all α ∈ � and all x, y ∈ X ;

(d) |[x, y]|2 � [x, x][y, y] for all x, y ∈ X .

It is easy to see that if [·, ·] is a semi-inner product on X , then the mapping
‖·‖ : x �→ [x, x]1/2 for all x ∈ X is a norm on X . Moreover, for any y ∈ X , the
functional fy : x �→ [x, y] for all x ∈ X is linear and continuous in the norm topology
of (X, ‖·‖), with ‖fy‖ = ‖y‖.
Conversely, if (X, ‖·‖) is a normed linear space, then the norm can be always

represented through a semi-inner product (Lumer [14]) in the form

[x, y] = 〈J̃ (y), x〉 for all x, y ∈ X,

where J̃ is a section of the normalized duality mapping J defined in the introduction.
For the sake of completeness, we give a simple proof of the following known lemma.
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Lemma 2.2. Let (X, ‖·‖) be a real normed linear space and [·, ·] a semi-inner
product which generates the norm ‖·‖. Then

(2.1) (x, y)i � [x, y] � (x, y)s for all x, y ∈ X.

�����. We may assume that y �= 0. The functional fy : X → � defined by
fy(x) = [x, y] is linear, and

|fy(x)| = |[x, y]| � ‖x‖ ‖y‖ , that is, ‖fy‖ � ‖y‖ .

Further,

‖fy‖ � |fy(x)|
‖y‖ =

‖y‖2
‖y‖ = ‖y‖ ,

which proves ‖fy‖ = ‖y‖. Also, fy(y) = ‖fy‖ ‖y‖, and fy ∈ J (y).
By property (XI) of the introduction,

(x, y)s = sup{w(x) | w ∈ J (y)}, x ∈ X,

and thus
(x, y)s � fy(x) = [x, y] for all x ∈ X.

The inequality (x, y)i � [x, y] for all x ∈ X follows from fact that

(x, y)i = inf{w(x) | w ∈ J (y)}, x ∈ X,

and the lemma is proved. �

For a given semi-inner product on X generating the norm of X we define the
mappings

Φ[ , ]x,y : � → �, Φ[ , ]x,y (t) :=
[y, x+ ty]
‖x+ ty‖ ,

and

Ψ[ , ]x,y : � → �, Ψ[ , ]x,y (t) :=
[x, x+ ty]
‖x+ ty‖ ,

where x, y are assumed to be linearly independent in X . We will also make use of
the mappings

Φp
x,y (t) =

(y, x+ ty)p
‖x+ ty‖ , Ψp

x,y (t) =
(x, x+ ty)p
‖x+ ty‖ ,

where p ∈ {i, s}. (For more detailed properties of these functions see [10] and [17].)
The following proposition explores connections between all these mappings.
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Proposition 2.3. Let (X, ‖·‖) be a real normed linear space, [·, ·] a semi-inner
product generating the norm in X and x, y two linearly independent vectors in X .
Then

(2.2) ‖x+ ty‖ = Ψ[ , ]x,y (t) + tΦ[ , ]x,y (t) for all t ∈ �,

and

(2.3) Φ[ , ]x,y (1/t) = sgn(t)Ψ[ , ]y,x (t) for all t ∈ � \ {0}.

�����. Let t ∈ �. Then

‖x+ ty‖ = ‖x+ ty‖2
‖x+ ty‖ =

[x+ ty, x+ ty]
‖x+ ty‖

=
[x, x+ ty] + t[y, x+ ty]

‖x+ ty‖ = Ψ[ , ]x,y (t) + tΦ[ , ]x,y (t) ,

and equality (2.2) is proved.
Let t ∈ � \ {0}. Then

Φ[ , ]x,y (1/t) =
[y, x+ y/t]
‖x+ y/t‖ =

[y, y + tx]/t

‖y + tx‖ /|t| = sgn(t)
[y, y + tx]
‖y + tx‖

= sgn(t)Ψ[ , ]y,x (t) ,

where sgn(t) = |t|/t for t ∈ � \ {0}. �

The following theorem summarizes the main properties of the mapping Φ[ , ]x,y.

Theorem 2.4. Let (X, ‖·‖) be a real normed linear space, [·, ·] a semi-inner prod-
uct which generates the norm of X , and x, y two linearly independent vectors in X .

Then:

(i) The mapping Φ[ , ]x,y is bounded, and

(2.4)
∣∣∣Φ[ , ]x,y (t)

∣∣∣ � ‖y‖ for all t ∈ �;

(ii) We have the inequalities

(2.5) Φi
x,y (t) � Φ[ , ]x,y (t) � Φs

x,y (t) for all t ∈ �,

and the bounds

Φi
x,y (t) = inf{Φ[ , ]x,y (t) | [·, ·] ∈ J (X)},(2.6)

Φs
x,y (t) = sup{Φ[ , ]x,y (t) | [·, ·] ∈ J (X)},(2.7)
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where J (X) is the class of all semi-inner products generating the norm of X ;
(iii) We have the limits

(2.8) lim
u→0−

Φ[ , ]x,y (u) =
(y, x)i
‖x‖ , lim

t→0+
Φ[ , ]x,y (t) =

(y, x)s
‖x‖

and

(2.9) lim
u→−∞

Φ[ , ]x,y (u) = −‖y‖ , lim
t→+∞

Φ[ , ]x,y (t) = ‖y‖ ;

(iv) The mapping Φ[ , ]x,y is increasing on �.

�����. (i) Follows from the Schwarz inequality (III).
(ii) Follows from Lemma 2.2.
(iii) According to Theorem 2.1 of [10],

(2.10) lim
t→0+

Φp
x,y (t) =

(y, x)s
‖x‖ , p ∈ {s, i}.

Then an application of the inequalities (2.5) yields the second limit in (2.8). The
first limit follows from Φ[ , ]x,y (−t) = −Φ[ , ]x,−y (t).
The limits in (2.9) similarly follow from Theorem 2.1 of [10] by an application

of (2.5).
(iv) Let t2 > t1. By the Schwarz inequality,

[x+ t2y, x+ t1y] � ‖x+ t2y‖ ‖x+ t1y‖ .

By the linearity of the semi-inner product in the first variable,

[x+ t2y, x+ t1y] = [(t2 − t1)y + x+ t1y, x+ t1y]

= ‖x+ t1y‖2 + (t2 − t1)[y, x+ t1y],

and so, by the above inequality, we get

‖x+ t2y‖ ‖x+ t1y‖ � ‖x+ t1y‖2 + (t2 − t1)[y, x+ t1y],

that is,
‖x+ t1y‖ (‖x+ t2y‖ − ‖x+ t1y‖) � (t2 − t1)[y, x+ t1y],

which implies

Φ[ , ]x,y (t1) =
[y, x+ t1y]
‖x+ t1y‖

� ‖x+ t2y‖ − ‖x+ t1y‖
t2 − t1

.
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On the other hand, for any t > 0 we have

‖x‖ ‖x+ ty‖ � (x, x+ ty)s = (x+ ty − ty, x+ ty)s

= ‖x+ ty‖2 + (−ty, x+ ty)s = ‖x+ ty‖2 − t(y, x+ ty)i;

this implies

(2.11)
‖x+ ty‖ − ‖x‖

t
� Φi

x,y (t) (t > 0).

In this inequality replace x by x+ t1y and set t := t2 − t1; then

‖x+ t2y‖ − ‖x+ t1y‖
t2 − t1

=
‖x+ t1y + ty‖ − ‖x+ t1y‖

t

� Φi
x+t1y,y (t) = Φ

i
x,y (t2) .

As Φi
x,y (t2) � Φ[ , ]x,y (t2), we conclude that

Φ[ , ]x,y (t1) � Φ[ , ]x,y (t2) ,

which shows that Φ[ , ]x,y is increasing. �

The following theorem summarizes properties of Ψ[ , ]x,y.

Theorem 2.5. Let (X, ‖·‖) be real normed linear space, [·, ·] a semi-inner product
which generates the norm of X , and x, y linearly independent vectors in X . Then:

(i) The mapping Ψ[ , ]x,y is bounded, and

(2.12)
∣∣∣Ψ[ , ]x,y (t)

∣∣∣ � ‖x‖ for all t ∈ �;

(ii) We have the inequalitites

(2.13) Ψi
x,y (t) � Ψ[ , ]x,y (t) � Ψs

x,y (t) for all t ∈ �,

and the bounds

Ψi
x,y (t) = inf{Ψ[ , ]x,y (t) | [·, ·] ∈ J (X)},(2.14)

Ψs
x,y (t) = sup{Ψ[ , ]x,y (t) | [·, ·] ∈ J (X)};(2.15)

(iii) We have the limits

(2.16) lim
t→+∞

Ψ[ , ]x,y (t) =
(x, y)s
‖y‖ , lim

u→−∞
Ψ[ , ]x,y (u) = −

(x, y)i
‖y‖ ;

(iv) The mapping Ψ[ , ]x,y is continuous at 0;
(v) Ψ[ , ]x,y is increasing on (−∞, 0] and decreasing on (0,∞).
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�����. (i) Follows from the Schwarz inequality.

(ii) Can be deduced from Lemma 2.2; we omit the details.

(iii) We have

lim
t→+∞

Ψp
x,y (t) = lim

t→+∞
(x, x+ ty)p
‖x+ ty‖ = lim

t→+∞
t(x, y + x/t)p
t ‖y + x/t‖

= lim
α→0+

(x, y + αx)p
‖y + αx‖ = lim

α→0+
Φp

y,x (α) .

By (2.10), lim
α→0+

Φp
y,x (α) = (x, y)s/ ‖y‖, and the result follows from inequality (2.13).

(iv) First we observe that

(2.17) Ψ[ , ]x,y (t) = ‖x+ ty‖ − tΦ[ , ]x,y (t) for all t ∈ �

by Proposition 2.3. By (2.8) and the definition of Ψ[ , ]x,y,

lim
t→0
Ψ[ , ]x,y (t) = ‖x‖ = Ψ[ , ]x,y (0) .

(v) Let t1 < t2 � 0. Using (2.17), we deduce

Ψ[ , ]x,y (t2)−Ψ[ , ]x,y (t1)
t2 − t1

=
‖x+ t2y‖ − ‖x+ t1y‖

t2 − t1
− t2Φ

[ , ]
x,y (t2)− t1Φ

[ , ]
x,y (t1)

t2 − t1
.

In the proof of Theorem 2.5 we established that

Φ[ , ]x,y (t1) �
‖x+ t2y‖ − ‖x+ t1y‖

t2 − t1
� Φ[ , ]x,y (t2)

for all t1 < t2; by (2.2) we get

Ψ[ , ]x,y (t2)−Ψ[ , ]x,y (t1)
t2 − t1

� Φ[ , ]x,y (t1)−
t2Φ

[ , ]
x,y (t2)− t1Φ

[ , ]
x,y (t1)

t2 − t1

=
t2Φ

[ , ]
x,y (t1)− t1Φ

[ , ]
x,y (t1)− t2Φ

[ , ]
x,y (t2) + t1Φ

[ , ]
x,y (t1)

t2 − t1

=
t2(Φ

[ , ]
x,y (t1)− Φ[ , ]x,y (t2))

t2 − t1
� 0

as t2 � 0 and Φ[ , ]x,y (t1) � Φ[ , ]x,y (t2).
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If t2 > t1 > 0, then by (2.2)

Ψ[ , ]x,y (t2)−Ψ[ , ]x,y (t1)
t2 − t1

� Φ[ , ]x,y (t2)−
t2Φ

[ , ]
x,y (t2)− t1Φ

[ , ]
x,y (t1)

t2 − t1

=
t2Φ

[ , ]
x,y (t2)− t1Φ

[ , ]
x,y (t2)− t2Φ

[ , ]
x,y (t2) + t1Φ

[ , ]
x,y (t1)

t2 − t1

=
t1(Φ

[ , ]
x,y (t1)− Φ[ , ]x,y (t2))

t2 − t1
� 0

as t1 > 0 and Φ[ , ]x,y (t1) � Φ[ , ]x,y (t2).

The theorem is thus proved. �

In the case that (X, ‖·‖) is a real inner product space, the mappings Φ[ , ]x,y and Ψ
[ , ]
x,y

assume the following form:

Φx,y (t) =
(y, x) + t ‖y‖2
‖x+ ty‖ , Ψx,y (t) =

‖x‖2 + t(x, y)
‖x+ ty‖ .

It is then possible to calculate the second derivatives of these mappings, and deter-
mine their convexity and concavity. The details of this investigation appeared in [10]
and [17].

Proposition 2.6 ([10], [17]). Let (X ; (·, ·)) be a real inner product space, and
x, y two linearly independent vectors in X . Then:

(i) Φp
x,y is strictly convex on the interval (−∞,−(x, y)/ ‖y‖2), and strictly concave

on the interval (−(x, y)/ ‖y‖2 ,+∞).
(ii) Ψp

x,y is strictly convex on the set (−∞, t1) ∪ (t2,+∞) and strictly concave on
the interval (t1, t2), where

t1 =
−(x, y)−

√
∆x,y

4 ‖y‖2
, t2 =

−(x, y) +
√
∆x,y

4 ‖y‖2

and ∆x,y = 8 ‖x‖2 ‖y‖2 + (x, y)2 > 0.
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3. A refinement of the Schwarz inequality

Using the results of the preceding sections, it is possible to give a refinement of
the Schwarz inequality involving a semi-inner product generating the norm of the
given normed linear space. First we observe that, for any t > 0,

‖x+ 2ty‖ ‖x+ ty‖ � (x+ 2ty, x+ ty)s = (x+ ty + ty, x+ ty)s

= ‖x+ ty‖2 + (ty, x+ ty)s,

and

(3.1) Φs
x,y (t) �

‖x+ 2ty‖ − ‖x+ ty‖
t

(t > 0).

The following theorem is then a direct consequence of Theorem 2.4, (2.11) and (3.1).

Theorem 3.1. Let (X, ‖·‖) be a normed linear space and [·, ·] a semi-inner product
generating the norm of X . Given two linearly independent vectors x, y ∈ X , then

for all t > 0 > u we have the following inequalities:

‖x‖ ‖y‖ � ‖x+ 2ty‖ − ‖x+ ty‖
t

‖x‖ � (y, x+ ty)s
‖x+ ty‖ ‖x‖(3.2)

� [y, x+ ty]
‖x+ ty‖ ‖x‖ � (y, x+ ty)i

‖x+ ty‖ ‖x‖ � ‖x+ ty‖ − ‖x‖
t

‖x‖

� (y, x)s � [y, x] � (y, x)i � ‖x+ uy‖ − ‖x‖
u

‖x‖

� (y, x+ uy)s
‖x+ uy‖ ‖x‖ � [y, x+ uy]

‖x+ uy‖ ‖x‖ � (y, x+ uy)i
‖x+ uy‖ ‖x‖

� ‖x+ 2uy‖ − ‖x+ uy‖
u

� −‖x‖ ‖y‖ .

�����	
 3.2. Let Ω be a compact metric space and C(Ω) the space of all real
valued functions on Ω equipped with the norm ‖x‖ = sup

s∈Ω
|x(s)|. For any x ∈ C(Ω)

write
Ωx = {s ∈ Ω: |x(s)| = ‖x‖}.

For each x ∈ C(Ω) select a finite Borel measure µx on Ω satisfying

|µx|(Ω) = ‖x‖ , suppµx ⊂ Ωx, µx sgn(x) � 0.

In view of [2], Example 12.2,

[y, x] =
∫

Ω
y dµx

346



is a semi-inner product in C(Ω) generating the norm of C(Ω). Also,

(y, x)i = inf {x(s)y(s) : s ∈ Ωx}, (y, x)s = sup {x(s)y(s) : s ∈ Ωx}.

If x, y are linearly independent elements of C(Ω) and t > 0, we have the inequalities

sup
s∈Ω

|x(s)| sup
s∈Ω

|y(s)| �
sup
s∈Ω

|x(s) + 2ty(s)| − sup
s∈Ω

|x(s) + ty(s)|

t
sup
s∈Ω

|x(s)|

�
sup

s∈Ωx+ty

y(s)(x(s) + ty(s))

sup
s∈Ω

|x(s) + ty(s)| sup
s∈Ω

|x(s)|

�
∫
Ω y dµx+ty

sup
s∈Ω

|x(s) + ty(s)| sups∈Ω
|x(s)|

�
inf

s∈Ωx+ty

y(s)(x(s) + ty(s))

sup
s∈Ω

|x(s) + ty(s)| sup
s∈Ω

|x(s)|

�
sup
s∈Ω

|x(s) + ty(s)| − sup
s∈Ω

|x(s)|

t
sup
s∈Ω

|x(s)|

� sup
s∈Ωx

x(s)y(s) �
∫

Ω
y dµx � inf

s∈Ωx

x(s)y(s).

Analogous inequalities hold for u < 0.

A specialization of Theorem 3.1 to a real inner product space yields the following
result.

Corollary 3.3. Let (X ; (·, ·)) be a real inner product space. For any two linearly
independent vectors x, y ∈ X and any t > 0 > u we have the following refinement of

the Schwarz inequality:

‖x‖ ‖y‖ � [3t ‖y‖
2 + 2(x, y)] ‖x‖

‖x+ 2ty‖+ ‖x+ ty‖ � [t ‖y‖
2 + (x, y)] ‖x‖
‖x+ ty‖

� [t ‖y‖
2 + 2(x, y)] ‖x‖

‖x+ ty‖+ ‖x‖
� (x, y)

� [u ‖y‖
2 + 2(x, y)] ‖x‖

‖x+ uy‖+ ‖x‖ � [u ‖y‖
2 + 2(x, y)] ‖x‖
‖x+ uy‖

� [3u ‖y‖
2 + 2(x, y)] ‖x‖

‖x+ 2uy‖+ ‖x+ uy‖
� −‖x‖ ‖y‖ .
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4. A property of a semi-inner product

Suppose that (X, ‖·‖) is a normed space, and [·, ·] a semi-inner product generating
the norm of X . In this section we consider the following problem regarding a condi-
tion which involves the second (nonlinear) argument of the semi-inner product:

(Q) Does [y, x+ ty] = 0 for all t ∈ � imply y = 0?

If [·, ·] is a true inner product (linear in the second argument), then the preceding
question has a positive answer as

0 = [y, x+ ty] = [y, x] + t ‖y‖2 for all t ∈ �,

which obviously implies y = 0. We show that the mappings introduced and studied
in the present paper, in particular the refinement of the Schwarz inequality obtained
in the preceding section, can be used to provide an affirmative answer to (Q) in the
general case of a semi-inner product.

We start by proving the following theorem.

Theorem 4.1. Let (X, ‖·‖) be a normed linear space and [·, ·] a semi-inner product
generating the norm of X . Given two linearly independent vectors x, y ∈ X , the

following statements are equivalent:

(i) ‖x+ ty‖ = ‖x‖ for all t ∈ �;
(ii) ‖x+ 2ty‖ = ‖x+ ty‖ for all t ∈ �;
(iii) (y, x+ ty)i = 0 for all t ∈ �;
(iv) [y, x+ ty] = 0 for all t ∈ �;
(v) (y, x+ ty)s = 0 for all t ∈ �.

�����. In the proof we use Theorem 3.1.

(i) ⇐⇒ (ii). If ‖x+ ty‖ = ‖x‖ for all t ∈ �, then also ‖x+ 2ty‖ = ‖x‖ for all
t ∈ �, and (ii) holds. Conversely, if (ii) holds, then (3.2) gives

0 � ‖x+ ty‖ − ‖x‖
t

� ‖x+ uy‖ − ‖x‖
u

� 0,

which implies ‖x+ ty‖ = ‖x‖ for all t ∈ � \ {0}; the latter equality is true also for
t = 0, and (i) holds.

From (3.2) we deduce that (ii) implies (iii), (iv) and (v), while any of the conditions
(iii), (iv), (v) implies (i). This completes the proof. �
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The theorem enables us to give an answer to the problem (Q).

Theorem 4.2. Let (X, ‖·‖) be a normed linear space, and [·, ·] a semi-inner prod-
uct that generates the norm of X . Then the following is true:

(4.1) [y, x+ ty] = 0 for all t ∈ � implies y = 0.

More generally, any of the conditions (i)–(v) of Theorem 4.1 implies y = 0.

�����. (a) If x, y are linearly dependent, then y = αx for some α �= 0. If
[y, x+ ty] = 0 for all t ∈ �, then

0 = [y, x+ ty] = [y, (α+ t)y] = (α+ t) ‖y‖2 for all t ∈ �,

which implies y = 0.
(b) Suppose that x, y are linearly independent and that [y, x+ ty] = 0 for all t ∈ �.

By the preceding theorem ‖x+ ty‖ = ‖x‖ for all t ∈ �. But

‖x+ ty‖ = ‖x− (−t)y‖ � | ‖x‖ − |t| ‖y‖ |,

and ‖x‖ � | ‖x‖ − |t| ‖y‖ | for all t ∈ �, which implies

|t| ‖y‖ � 2 ‖x‖ for all t ∈ �;

hence y = 0. �

5. New characterizations of the Birkhoff orthogonality

Let us recall the concept of orthogonality in the sense of Birkhoff which can be
defined in normed linear spaces.

Definition 5.1. Let (X, ‖·‖) be a real normed linear space and x, y two elements
of X . The vector x is called Birkhoff orthogonal to y if

(5.1) ‖x+ αy‖ � ‖x‖ for all α ∈ �.

We use notation x ⊥ y (B).

We know that in each real normed linear space (X, ‖·‖) there exists at least one
semi-inner product [·, ·] which generates the norm ‖·‖, that is, ‖x‖ = [x, x]1/2 for all
x ∈ X , and that such semi-inner product is unique if and only if X is smooth.
The following concept of orthogonality is well known (see [14], [12]).
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Definition 5.2. Let [·, ·] be a semi-inner product which generates the norm of
X , and let x, y ∈ X . The vector x is said to be orthogonal to y in the sense of Lumer
(relative to the semi-inner product [·, ·]) if [y, x] = 0. We denote this by x ⊥ y (L).

The following connection between Birkhoff’s and Lumer’s orthogonality holds.

Proposition 5.3. Let (X, ‖·‖) be a real normed linear space, and x, y two vectors
in X . Then x ⊥ y (B) if and only if x ⊥ y (L) relative to some semi-inner product
[·, ·] which generates the norm ‖·‖.

�����. Assume that [·, ·] is a semi-inner product which generates the norm of
X , and that x ⊥ y (L), that is, [y, x] = 0. Then

‖x‖2 = [x, x] = [x+ λy, x] � ‖x‖ ‖x+ λy‖

for all λ ∈ �, that is, ‖x‖ � ‖x+ λy‖ for λ ∈ �, which is equivalent to x ⊥ y (B).
Conversely suppose that x ⊥ y (B). Then (5.1) holds, and by the Hahn-Banach

theorem there is fx ∈ X∗ such that

fx(y) = 0, fx(x) = ‖x‖2 , ‖fx‖ = ‖x‖ .

Hence we can choose a section J̃ of the normalized duality mapping J (see (X)) so
that J̃ (x) = fx. The semi-inner product

[u, v] = 〈J̃ (v), u〉, u, v ∈ X,

generates the norm of X , and

[y, x] = 〈J̃ (x), y〉 = fx(y) = 0.

Consequently x ⊥ y (L) relative to [·, ·]. �

The following counterexample shows that x ⊥ y (B) need not imply [y, x] = 0 for
every semi-inner product generating the norm of X .

�����	
 5.4. Let us consider the normed linear space (�3 , ‖·‖1). It is easy to
check that

[y, x] = ‖x‖1
∑

xk �=0

xkyk

|xk|

is a semi-inner product which generates the norm ‖·‖1. Consider the vectors x =
(1, 0, 0) and y = (1, 1, 0). We have

‖x‖1 = 1, x+ λy = (1 + λ, λ, 0), ‖x+ λy‖1 = |1 + λ|+ |λ|.
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Now it is clear that

‖x+ λy‖1 = |1 + λ|+ |λ| � 1 = ‖x‖1 for all λ ∈ �,

that is, x ⊥ y (B). On the other hand,

[y, x] = 1 �= 0,

which shows that x is not Lumer orthogonal to y.

�
���� 5.5. For a given y ∈ X define

B(y) = {x ∈ X | x ⊥ y (B)} and L[ , ](y) = {x ∈ X | [y, x] = 0},

where [·, ·] belongs to J (X), the class of all semi-inner products generating the norm
of X . With this notation, Proposition 5.3 can be expressed as

B(y) =
⋃

[ , ]∈J (X)
L[ , ](y).

The following proposition also holds.

Proposition 5.6. Let (X, ‖·‖) be a real normed linear space and x, y two elements

of X . The following statements are equivalent:

(i) x ⊥ y (B);

(ii) For every semi-inner product [·, ·] which generates the norm of X we have the
inequalities

(5.2) [y, x+ uy] � 0 � [y, x+ ty] for all u < 0 < t.

�����. (i) =⇒ (ii) If x ⊥ y (B), then we have (y, x)i � 0 � (y, x)s. By (2.5)
we have that

Φi
x,y (t) � Φ[ , ]x,y (t) � Φs

x,y (t) , t ∈ �,

that is,
(y, x+ ty)i
‖x+ ty‖ � [y, x+ ty]

‖x+ ty‖ � (y, x+ ty)s
‖x+ ty‖ , t ∈ �.

If u < 0, then
[y, x+ uy]
‖x+ uy‖ � (y, x+ uy)s

‖x+ uy‖ � (y, x)i � 0;
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if t > 0, then
[y, x+ ty]
‖x+ ty‖ � (y, x+ ty)i

‖x+ ty‖ � (y, x)s � 0,

and the inequality (5.2) is obtained.
(ii) =⇒ (i) Suppose that (5.2) holds. Since

lim
u→0−

[y, x+ uy]
‖x+ uy‖ =

(y, x)i
‖y‖ , lim

t→0+
[y, x+ ty]
‖x+ ty‖ =

(y, x)s
‖y‖

by Theorem 2.4 (ii), we get (y, x)i � 0 � (y, x)s, and the proposition is proved. �

�
���� 5.7. Condition (ii) of the above theorem can be replaced by the fol-
lowing weaker condition.
(ii′) There exists a semi-inner product which generates the norm of X and ε > 0

such that

(5.2′) [y, x+ uy] � 0 � [y, x+ ty] for − ε < u < 0 < t < ε.

This follows from the monotonicity of the mapping Φ[ , ]x,y (see Theorem 2.4).

The mapping Φ[ , ]x,y provides a new characterization of smoothness.

Theorem 5.8. Let (X, ‖·‖) be a real normed linear space and let x0 ∈ X \ {0}.
Then the following conditions on x0 are equivalent:

(i) X is smooth at the point x0;

(ii) For some semi-inner product [·, ·] generating the norm of X , the mapping

Φ[ , ]x0,y is continuous at 0 for all y ∈ X .

�����. The equivalence follows from the equations

lim
u→0−

Φ[ , ]x,y (u) =
(y, x)i
‖x‖ , lim

t→0+
Φ[ , ]x,y (t) =

(y, x)s
‖x‖

established in Theorem 2.4. �

Birkhoff orthogonality has applications in the theory of best approximation in
normed linear spaces. The preceding results can be used to give new characterizations
of best approximants.

Definition 5.9. Let X be a normed linear space, G a set in X , and x ∈ X . An
element g0 ∈ G is called an element of best approximation of x (by the elements of
the set G) if

(5.3) ‖x− g0‖ = inf
g∈G

‖x− g‖ .
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We denote by PG(x) the set of all such elements g0, that is,

(5.4) PG(x) = {g0 ∈ G | ‖x− g0‖ = inf
g∈G

‖x− g‖}.

For classical results on best approximation see the books [15], [16] by I. Singer. For
some new results concerning the characterization of best approximants, proximinal,
semičebyševian or čebyševian subspaces in terms of the upper and lower (as well
as ordinary) semi-inner products we refer to the recent papers [3], [4], [6] of S. S.
Dragomir.
We state here the following characterization of best approximants in terms of

Birkhoff’s orthogonality due to Singer [15], p. 92.

Lemma 5.10. Let (X, ‖·‖) be a normed linear space, G a linear subspace of X ,
x ∈ X \G and g0 ∈ G. Then

g0 ∈ PG(x) if and only if x− g0 ⊥ G (B).

Combining this lemma with preceding characterizations of Birkhoff orthogonality,
we obtain the following characterization of best approximants.

Theorem 5.11. Let X , G, x and g0 be as in Lemma 5.10. The following state-
ments are equivalent:

(i) g0 ∈ PG(x);
(ii) For some (in fact any) semi-inner product [·, ·] generating the norm of X , g0

and x satisfy the inequality

(5.5) [x− g0, x− g0 + w] � ‖x− g0 + w‖2 for all w ∈ G.

�����. By Lemma 5.10, (i) is equivalent to x− g0 ⊥ g (B) = 0 for all g ∈ G,
which in turn is equivalent to

(5.6) [g, x− g0 + ug] � 0 � [g, x− g0 + tg] if u < 0 < t

by Proposition 5.6. But

(5.7) [g, x− g0 + tg] � 0, t > 0,

is equivalent to [tg, x− g0 + tg] � 0 for all t > 0. As

[tg, x− g0 + tg] = [x− g0 + tg − x+ g0, x− g0 + tg]

= ‖x− g0 + tg‖2 − [x− g0, x− g0 + tg],
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(5.7) is equivalent to

(5.8) [x− g0, x− g0 + tg] � ‖x− g0 + tg‖2

for all g ∈ G, t > 0. Similarly, the relation

[g, x− g0 + ug] � 0, u < 0,

is equivalent to [ug, x− g0 + ug] � 0 for all u < 0 in view of the linearity of [·, ·] in
the first argument, and consequently to

(5.9) [x− g0, x− g0 + ug] � ‖x− g0 + ug‖2

for all g ∈ G, u < 0.
Combining (5.8) and (5.9) and observing that (5.8) holds (with equality) also for

t = 0, we conclude that

[x− g0, x− g0 + tg] � ‖x− g0 + tg‖2

for all g ∈ G and all t ∈ �.
As g ∈ G if and only if tg ∈ G for t �= 0, we deduce the desired equivalence, and

the theorem is proved. �
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