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FOR NONLINEAR COMPOSITES
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Abstract. In this paper we derive lower bounds and upper bounds on the effective prop-
erties for nonlinear heterogeneous systems. The key result to obtain these bounds is to
derive a variational principle, which generalizes the variational principle by P. Ponte Cas-
taneda from 1992. In general, when the Ponte Castaneda variational principle is used one
only gets either a lower or an upper bound depending on the growth conditions. In this
paper we overcome this problem by using our new variational principle together with the
bounds presented by Lukkassen, Persson and Wall in 1995. Moreover, we also present some
examples where the bounds are so tight that they may be used as a good estimate of the
effective behavior.

Keywords: homogenization, effective properties, variational methods, nonlinear compos-
ites
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1. Introduction

A composite material consists of two ore more distinct materials which are inti-

mately mixed. Even if the composite material is strongly heterogeneous on a local
level it will behave as a homogeneous medium when the size of the typical hetero-

geneity becomes small compared to the specimen under consideration. To find the
effective properties which describe the composite by using the knowledge the physical

properties of the constituents is an extremely difficult task. The field of mathemat-
ics that rigorously defines the notion of effective properties is called homogenization.

Mathematical models of different physical phenomena in composite materials often
involve functions of the form g(xε , ξ) where ε is a small parameter. The function
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g(x, ξ) is assumed to be periodic, almost periodic, or to be a realization of a sta-

tionary random field in the first variable. In this paper we will consider the periodic
case and we will denote the cell of periodicity by Y . This means that g(xε , ξ) is a
rapidly oscillating function for small values of ε. Many problems in homogenization

are concerned with the asymptotic behavior as ε tends to 0 of integral functionals of
the form ∫

Ω
g
(x
ε
, Du(x)

)
dx, Ω ⊂ �

N ,

where u belongs to some subset of the space H1,p(Ω) and represents the state of the

material. Functionals of this form appear naturally when the physical problem is
described by some minimum energy principle of the form

Eε = min

{∫

Ω
g
(x

ε
, Du(x)

)
dx+

∫

Ω
fu dx

}
.

It is well known that if g(x, ·) satisfies suitable growth conditions, then the energy
Eε → Ehom as ε → 0, where

Ehom = min

{∫

Ω
ghom(Du(x)) dx+

∫

Ω
fu dx

}

with

(1) ghom(ξ) = min
u∈H1,p

per(Y )

∫

Y

g(x, ξ +Du) dx.

Note that ghom does not depend on x, i.e., ghom describes a homogeneous material.

Moreover, ghom is given by a minimum problem where the underlying domain is
the periodic cell Y . This means that Ehom approximates the actual energy Eε for

small values of ε. We say that the effective properties or homogenized properties are
defined by ghom. The limit process Eε → Ehom is usually studied by the so called

Γ-convergence. For more information concerning Γ-convergence the reader is referred
e.g. to [4] and [6].

When the distribution of the different materials is known it is possible to use some
numerical method to compute ghom(ξ) by the formula (1). Another approach is to

find lower and upper bounds of ghom(ξ) for different classes of material distributions.
In this paper we will be concerned with the latter approach. The study of estimat-

ing the effective behavior of heterogeneous systems is a classical problem that has
attracted the attention of numerous investigators in many fields of applications. It

is well known that the effective properties of a composite material are strongly de-
pendent on the microstructure and that they are not given by any simple weighted
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average of the properties of the constituent materials. Most of the efforts so far have

been concentrated on the effective behavior of linear systems. For linear problems
very much is known about bounds for different problems and classes of materials.
There are also many results concerning microstructures for which the bounds are

attained. Many of the results in this direction can be found in the book [6]. For
nonlinear material behavior much less is known.

Many of the results in this direction are based on an extension of the Hashin-

Shtrikman variational principle to nonlinear problems, see [10] and [11], or on the
variational principle by Ponte Castaneda which makes it possible to obtain nonlinear

bounds from any bounds known for the corresponding linear problem, see e.g. [2] and
[3]. For the p-Poisson equation some bounds were presented in [9]. These bounds

have played a central role in the recently developed optimal structures obtained by
using reiterated homogenization, i.e. introducing g in the form g(xε , . . . , x

εm , ξ), see
[1], [7] and [13].

In this paper we will derive new bounds and present some examples where these

bounds are very tight. The main idea in the proofs is to combine the results in [9]
with a generalized form of the Ponte Castaneda variational principle. We remark

that in general when the Ponte Castaneda variational principle is used one only gets
either a lower bound or an upper bound, while the new upper and lower bounds are

valid at the same time for some ξ.

This paper is organized in the following way: In order not to disturb our discus-

sion later on we present some necessary preliminaries in Section 2. The announced
variational principles are derived in Section 3. The new bounds are presented and

proved in Section 4. Finally, Section 5 is reserved for some concrete applications and
examples.

2. Preliminaries

Let Ω be an open subset of �N and let Y denote the unit cube in �N . We say

that a function ϕ : �N → � is Y -periodic if ϕ(x) = ϕ(x + ei) for every x ∈ �
N

and for every i = 1, . . . , N , where {e1, . . . , en} is the canonical basis in �N and we
call Y a cell of periodicity. We denote the Lebesgue measure of Q ⊂ �

n by m(Q).

The characteristic function of the set Q is denoted by χQ. Let A−j = {A−
j,kj

}, kj =
1, . . . , Kj, be a partition of the unit cube with sides {e1, . . . , ej−i, ej+1, . . . , eN} and
let E−

j,kj
= A−

j,kj
× (0, 1). Let {A−

k } be a partition of Y where A−
k is of the form

A−
k = Ωi ∩ E−

1,k1
∩ . . . ∩ E−

N,kN
.
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By I we mean the index set such that Y = ∪k∈IA
−
k and

Ii
j,kj
= {k ∈ I : A−

k ⊂ Ωi, A−
k ⊂ E−

j,kj
}.

In the corresponding way we define A+j = {A+j,kj
}, kj = 1, . . . , Kj, to be a partition

of the unit cube with sides {ej}, E+j,kj
= A+j,kj

× (0, 1)N−1 and {A+k } is a partition
of Y where A+k are of the form

A+k = Ωi ∩E+1,k1 ∩ . . . ∩ E+N,kN
.

By J we mean the index set such that Y = ∪k∈JA+k and we denote

J i
j,kj
= {k ∈ I : A+k ⊂ Ωi, A+k ⊂ E+j,kj

}.

Moreover, let g denote a function from Ω× � into � and assume that g satisfies the

following conditions:
(i) The function x �→ g(x, s) is measurable and Y -periodic for every s.

(ii) The function s �→ g(x, s) is convex for every x.
(iii) g(x, 0) = 0 for every x.

(iv) c1|s|p � g(x, s) � c0 + c2|s|p for every x and s where c0, c1, c2 > 0 and
1 < p < ∞.

In [9] some new upper and lower bounds for the p-Poisson equation were presented,
i.e. when g(x, s) = a(x) |s|p. Below we review some of these results. The main result
was that ghom defined by [1] satisfies the following bounds:

(2) q−j (a, k, p) � ghom(kej) � q+j (a, k, p),

where

q−j (a, k, p) = |k|p
∫

Y

(∫ 1

0
a

1
1−p dxj

)1−p

dx,

q+j (a, k, p) = |k|p
(∫

Y

(∫ 1

0
. . .

∫ 1

0
a dx1 . . . dxj−1 dxj+1 . . . dxn

) 1
1−p

dx

)1−p

.

The result reads that for the lower bound we first calculate the p-harmonic mean
of a along each line in the ej direction to obtain a function which only depends on

the variables x1, . . . , xj−1, xj+1, . . . , xN and then we compute the arithmetic mean
of this function. The upper bound is given by first calculating the arithmetic mean

of a for each fixed xj to obtain a function which only depends on the variable xj and
then computing the p-harmonic mean of this function.
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In the isotropic and linear case, p = 2, this implies that we have an estimate of

ghom(ξ) for arbitrary ξ, namely

|ξ|2q−j (a, 1, 2) � ghom(ξ) � |ξ|2q+j (a, 1, 2)

for j = 1, . . . , N . It was also shown that it is possible to obtain approximations Q−
j

and Q+j of the bounds q−j and q+j respectively, where the p-harmonic mean and the
arithmetic mean are calculated only finitely many times. Indeed,

Q−
j (a, k, p,A−j ) � q−j (a, k, p) � ghom(kej) � q+j (a, k, p) � Q+j (a, k, p,A+j ),

where the approximative bounds have the form

Q−
j (a, k, p,A−j ) = |k|p

∫

Y

a− dx,(3)

Q+j (a, k, p,A+j ) = |k|p
(∫

Y

(a+)
1
1−p dx

)1−p

(4)

with

a−(x) =
Kj∑

kj=1

χE−j,kj

(x)

(
1

m(E−
j,kj
)

∫

E−j,kj

a
1
1−p dx

)1−p

,

a+(x) =
Kj∑

kj=1

χE+j,kj

(x)
1

m(E+j,kj
)

∫

E+j,kj

a dx.

It was also shown that if B−j and B+j are refinements of A−j and A+j respectively,
then

Q−
j (a, k, p,A−j ) � Q−

j (a, k, p,B−j ) � Q+j (a, k, p,B+j ) � Q+j (a, k, p,A+j ).

This means that the approximation of the bounds will be better and better for finer
and finer partition. In the special case p = 2 a more general result was proved in [8],

namely

(5)
N∑

j=1

ξ2j q−j (a, 1, 2) � ghom(ξ) �
N∑

j=1

ξ2j q+j (a, 1, 2).

More results concerning bounds of this type can be found in [7]. Especially, there
are some very interesting results concerning optimal micro structures in the sense

that the bounds are attained.
We will use the bounds presented above in combination with an extension of the

Ponte Castaneda variational principle to obtain more general nonlinear bounds for
the homogenized operator ghom.
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3. Variational principles

In this section we derive some new variational principles which generalize the
variational principles presented by Ponte Castaneda, see [3], in such a way that it

is possible to use a nonlinear reference medium. We will present the variational
principle using homogenization to define the effective properties while Castaneda

presented the variational principle using the definition of effective properties by Hill.
Let us now define a function fr : Ω× � → � by

fr(x, s) =

{
g(x, s

1
r ), s � 0,

∞, s < 0,

where r � 1. The function s �→ fr(x, s) is continuous for every x and s > 0 but not
necessarily convex, f(x, 0) = 0 for every x and f(x, s) � 0 for every x and s. The

polar function, f∗r : Ω× � → �, corresponding to fr is defined by

(6) f∗r (x, t) = sup
s∈�
[st− fr(x, s)] = sup

s�0

[
st− g(x, s

1
r )
]
.

We note that f∗ satisfies

(7) f∗r (x, t) � 0 and f∗r (x, 0) = 0.

The bipolar function, f∗∗r : Ω× � → �, is defined by

(8) f∗∗r (x, s) = sup
t∈�
[ts− f∗r (x, t)].

By (7) it follows that it is enough to take the supremum over t � 0 in (8) for s � 0,
i.e.,

(9) f∗∗r (x, s) = sup
t�0
[ts− f∗r (x, t)] for s � 0.

It turns out that this fact will be important further on. If r is chosen such that

s �→ fr(x, s) is convex we have the equality

(10) f∗∗r (x, s) = fr(x, s).

For a proof of this equality see e.g. [12], p. 91. Moreover, we define a nonnegative

function Fr on Lα(Ω), 1 � α � ∞, by

Fr(u) =
∫

Ω
fr(x, u(x)) dx.
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The corresponding polar F ∗
r on Lά(Ω), α′ = α

α−1 , is then defined by

F ∗
r (u

∗) = sup
u∈Lα(Ω)

[∫

Ω
u(x)u∗(x) dx−

∫

Ω
fr(x, u(x)) dx

]
.

It can also be proved that for all u∗ ∈ Lά(Ω) we have

(11) F ∗
r (u

∗) =
∫

Ω
f∗r (x, u∗(x)) dx.

A proof of this statement can be found e.g. in [5], p. 271. The bipolar F ∗∗
r on LαΩ

is defined by

(12) F ∗∗
r (u) = sup

u∗∈Lά(Ω)

[∫

Ω
u(x)u∗(x) dx−

∫

Ω
f∗r (x, u∗(x)) dx

]
.

Moreover, F ∗∗
r (u) can be written as

(13) F ∗∗
r (u) =

∫

Ω
f∗∗r (x, u(x)) dx.

For a proof see [5], p. 273. Let us now study the minimization problem which appears
in the definition of the homogenized energy density function ghom, see (1):

ghom(ξ) = inf
u∈H1,p

per(Y )

∫

Y

g(x, |ξ +Du(x)|) dx,

where H1,pper(Y ) = {u ∈ H1,p(Y ) : u is Y -periodic}. Note that the assumptions on g

guarantee existence and uniqueness of the problem. We are now able to state a

variational principle suitable for obtaining lower bounds.

Theorem 1. If r is chosen such that s �→ fr(x, s) is convex, then

ghom(ξ) = inf
u∈H1,p

per(Y )

∫

Y

g(x, |ξ +Du(x)|) dx

= sup
a�0

[
inf

u∈H1,r
per(Y )

∫

Y

a(x)|ξ +Du(x)|r dx−
∫

Y

f∗r (x, a(x)) dx

]
,

where a ∈ L∞(Y ).

�����. First we note that

inf
u∈H1,t

per(Y )

∫

Y

g(x, |ξ +Du(x)|) dx
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is independent of the choice of t ∈ [1,∞), for a proof of this fact see e.g. [6], p. 423.
From (10), (13), and (12) it follows that

inf
u∈H1,p

per(Y )

∫

Y

g(x, |ξ +Du(x)|) dx

= inf
u∈H1,r

per(Y )

∫

Y

fr(x, |ξ +Du(x)|r) dx

= inf
u∈H1,r

per(Y )

∫

Y

f∗∗r (x, |ξ +Du(x)|r) dx

= inf
u∈H1,r

per(Y )
F ∗∗

r (|ξ +Du(x)|r)

= inf
u∈H1,r

per(Y )
sup

a∈L∞(Y )
a�0

[∫

Y

a(x)|ξ +Du(x)|r dx−
∫

Y

f∗r (x, a(x)) dx

]
.

The homogenized operator ghom can thus be written as

ghom(ξ) = inf
u∈H1,p

per(Y )
sup

a∈L∞(Y )
a�0

{∫

Y

a(x)|ξ +Du(x)|r dx−
∫

Y

f∗r (x, a(x)) dx

}
.

By using an appropriate version of the saddle point theorem, see [5], p. 175, it is
possible to change the order of infimum and supremum obtaining

ghom(ξ) = sup
a∈L∞(Y )

a�0

{
inf

u∈H1,r
per(Y )

∫

Y

a(x)|ξ +Du(x)|r dx−
∫

Y

f∗r (x, a(x)) dx

}
,

and the proof is complete. �

������ 	
 Theorem 1 holds with an inequality for all r, since we always have

that fr(x, t) � f∗∗r (x, t).

We can now proceed in a similar way to obtain a variational principle suitable for

obtaining upper bounds on ghom(ξ). Let us define function hr : Ω× � → � by

hr(x, s) =

{
g(x, s

1
r ), s � 0,

−∞, s < 0,

where r � 1. Let the superscript ∗ denote the corresponding concave polar. The
variational principle can then be formulated as
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Theorem 2. If r is chosen such that s �→ hr(x, s) is concave, then

ghom(ξ) = inf
u∈H1,p

per(Y )

∫

Y

g(x, |ξ +Du(x)|) dx

= inf
a∈L∞(Y )

a�0

[
inf

u∈H1,r
per(Y )

∫

Y

a(x)|ξ +Du(x)|r dx−
∫

Y

h∗r(x, a(x)) dx

]
.

�����. The proof follows by similar arguments as in the proof of Theorem 1.

�

������ �. Theorem 2 is valid with an inequality for all r, since we always
have that hr(x, t) � h∗∗r (x, t).

4. Bounds

In this section we will derive some bounds on the homogenized energy-density
function ghom. The main idea is to use the variational principles in Theorem 1 and

Theorem 2 in combination with the known bounds for the p-Poisson equation, see
(2) and (4), to obtain bounds for more general types of energy-density functions. We

will study n-phase composites, i.e. the energy-density function g(x, s) will be of the
form

(14) g(x, s) =
n∑

i=1

χi(x)gi(s),

where χi is the characteristic function of Ωi = {x ∈ Y : x is in the i phase}. First
we give some results concerning lower bounds.

Theorem 3. Let ξ = ξjej and assume that the local energy density function g is

such that the function s �→ fr(x, s) is convex. Then

ghom(ξ) � sup
a∈V

{
q−j (a, ξj , r)−

n∑

i=1

m(Ωi)vi(ai)

}
,

where

V =

{
a ∈ L∞ : a(x) =

n∑

i=1

aiχi(x), 0 < k1 � ai � k2 < ∞
}

and

vi(ai) = sup
s�0

{
sai − gi(s

1
r )
}

.
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�����. By taking the supremum over the smaller set V in the variational

principle in Theorem 1 we obtain that

ghom(ξ) � sup
a∈V

{
inf

u∈H1,r
per(Y )

∫

Y

a(x)|ξ +Du(x)|r dx−
∫

Y

f∗r (x, a(x)) dx

}
.

From (6) and (14) it follows that

ghom(ξ) � sup
a∈V

{
inf

u∈H1,r
per(Y )

∫

Y

a(x)|ξ +Du(x)|r dx−
n∑

i=1

m(Ωi)vi(ai)

}
.

Next, by applying the lower bound in (2) to the first term we get that

ghom(ξ) � sup
a∈V

{
q−j (a, ξj , r)−

n∑

i=1

m(Ωi)vi(ai)

}
,

and the theorem is proved. �

If we restrict ourselves to the case when r = 2 is a possible choice we can even
obtain a lower bound in a general direction ξ.

Theorem 4. Assume that the local energy density function g is such that the

function s �→ f2(x, s) is convex. Then

ghom(ξ) � sup
a∈V

{ N∑

j=1

ξ2j q−j (a, 1, 2)−
n∑

i=1

m(Ωi)vi(ai)

}
,

where

V =

{
a ∈ L∞ : a(x) =

n∑

i=1

aiχi(x), 0 < k1 � ai � k2 < ∞
}

and

vi(ai) = sup
s�0

{
sai − gi(s

1
2 )
}
.

�����. By using the variational principle in Theorem 1 with r = 2 in combi-
nation with the lower bound in (4) we obtain that

ghom(ξ) � sup
a∈L∞(Y )

a�0

{ N∑

j=1

ξ2j q−j (a, 1, 2)−
∫

Y

f∗2 (x, a(x)) dx

}
.

From (6) and (14) it follows that

ghom(ξ) � sup
a∈L∞(Y )

a�0

{ N∑

j=1

ξ2j q−j (a, 1, 2)−
n∑

i=1

m(Ωi)vi(ai)

}
.

The theorem follows by taking the supremum over all a in the smaller set V . �
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������ �. For the special case of powerlaw materials, i.e., when

g(x, s) =
n∑

i=1

χi(x)λis
p = λ(x)sp,

we can choose r = p in Theorem 3 and find that

vi(ai) = sup
s�0

{ais− λis} =
{
0 if ai � λi,

∞ if ai > λi.

This means that the optimal choice of a ∈ V is

a(x) =
n∑

i=1

χi(x)λi,

and we get that

ghom(ξ) � q−j (λ, ξj , p),

i.e. we recover the bound in (2).

We can now, by using the same ideas, derive upper bounds corresponding to
Theorem 4 and Theorem 3.

Theorem 5. Let ξ = ξjej and assume that the local energy density function g is

such that the function s �→ hr(x, s) is concave. Then

ghom(ξ) � inf
a∈V

{
q+j (a, ξj , r)−

n∑

i=1

m(Ωi)vi(ai)

}
,

where

V =

{
a ∈ L∞ : a(x) =

n∑

i=1

aiχi(x), 0 < k1 � ai � k2 < ∞
}

and

vi(ai) = inf
s�0

{
sai − gi(s

1
r )
}
.

Theorem 6. Assume that the local energy density function g is such that the

function s �→ h2(x, s) is concave. Then

ghom(ξ) � inf
a∈V

{ N∑

j=1

ξ2j q+j (a, 1, 2)−
n∑

i=1

m(Ωi)vi(ai)

}
,
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where

V =

{
a ∈ L∞ : a(x) =

n∑

i=1

aiχi(x), 0 < k1 � ai � k2 < ∞
}

and

vi(ai) = inf
s�0

{
sai − gi(s

1
2 )
}

.

������ 
. For powerlaw materials we find that

ghom(ξ) � q+j (λ, ξj , p),

i.e. we recover the bound in 2, cf. Remark 3.

������ �. The computations of the bounds in Theorems 3–6 involve an opti-
mization problem with 2n variables which in general has to be done numerically.

������ �. By using the approximative bounds in (3) and (4) we can obtain

bounds corresponding to those in Theorems 3–6.

To obtain the bounds, a has so far been chosen to be constant in each phase. We
will now study the question how a should be chosen to recover the bounds in (2) for

the special case of powerlaw materials. To do this we need the following lemma of
independent interest:

Lemma 7. Let w ∈ Lp(E), p > 1 and assume that 0 < k1 � a(x) � k2 < ∞.
Then

inf
w∈W

1
|E|

∫

E

a(k + w)p dx = kp

(
1
|E|

∫

E

a
1
1−p dx

)1−p

,

where

W =

{
w ∈ Lp(E) : w � −k,

∫

E

w dx = 0

}
,

and the infimum is attained for

w(x) = k|E|
(∫

E

a
1
1−p dx

)−1
a

1
1−p (x) − k.

�����. By the reversed Hölder inequality and the zero average constraint we
have

1
|E|

∫

E

a(k + w)p dx � 1
|E|

(∫

E

a
1
1−p dx

)1−p(∫

E

(k + w) dx

)p

(15)

= kp

(
1
|E|

∫

E

a
1
1−p dx

)1−p

.
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We have equality in (15) if

ca
1
1−p = k + w.

Moreover, in order to satisfy the zero average constraint, the constant c must be
given by

c = k|E|
(∫

E

a
1
1−p dx

)−1
,

and the proof of the lemma is complete. �

Theorem 8. If g(x, s) =
n∑

i=1
χi(x)λis

p, ξ = ξjej , 1 � j � N , and p � 2. Then

ghom(ξ) � sup
a∈V1

{
|ξj |2Q−

j (a, 1, 2,A−j )−
∫

Y

f∗2 (x, a) dx

}

= |ξj |pQ−
j (λ, 1, p,A−j ),

where

V1 =

{
a ∈ L∞ : a(x) =

∑

k∈Ik

akχA−k
(x), 0 < k1 � ak � k2 < ∞

}
.

�����. Fix 1 � j � N . Theorem 1 and the lower bound in (3) imply that

ghom(ξ) � sup
a∈V1

{
ξ2j Q−

j (a, 1, 2,A−j )−
∫

Y

f∗2 (x, a) dx

}
.

We have to show that the right hand side is equal to Q−
j (λ, ξj , p,A−j ). An application

of Lemma 7 with k = 1 and p = 2, yields

Q−
j (a, 1, 2,A−j ) =

Kj∑

kj=1

(
1

m(E−
j,kj
)

∫

E−
j,kj

a−1 dx

)−1
m(E−

j,kj
)(16)

=
Kj∑

kj=1

inf
w∈W1

1

m(E−
j,kj
)

∫

E−j,kj

a(1 + w)2 dxm(E−
j,kj
)

= inf
w∈W1

Kj∑

kj=1

∫

E−j,kj

a(1 + w)2 dx

= inf
w∈W1

Kj∑

kj=1

n∑

i=1

∑

k∈Ii
j,kj

ak(1 + wk)2m(A
−
k ),
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where

W1 =

{
w ∈ L2(Y ) : w =

∑

k∈I

wkχA−k
,

∫

E−j,kj

w dx = 0, w � 1
}

.

We also have
∫

Y

f∗2 (x, a) dx =
∫

Y

sup
s�0

{
s
∑

k=I

akχA−k
−

n∑

i=1

χΩigi(s
1
2 )

}
dx(17)

=
∫

Y

Kj∑

kj=1

n∑

i=1

∑

k∈Ii
j,kj

χA−k
sup
s�0

{
sak − gi(s

1
2 )
}
dx

=
Kj∑

kj=1

n∑

i=1

∑

k∈Ii
j,kj

vi(ak)m(A
−
k ).

By (16), (17) and a saddle point theorem, see [5], we obtain

sup
a∈V1

{
ξ2j Q−

j (a, 1, 2,A−j )−
∫

Y

f∗2 (x, a) dx

}

= sup
a∈V1

{
inf

w∈W1

Kj∑

kj=1

n∑

i=1

∑

k∈Ii
j,kj

akξ2j (1 + wk)2m(A−
k )

−
Kj∑

kj=1

n∑

i=1

∑

k∈Ii
j,kj

vi(ak)m(A
−
k )

}

= inf
w∈W1

{ Kj∑

kj=1

n∑

i=1

∑

k∈Ii
j,kj

sup
t�0
[tξ2j (1 + wk)2 − vi(t)]m(A

−
k )

}
.

From (10) and Lemma 7 it follows that

sup
a∈V1

{
ξ2j Q−

j (a, 1, 2,A−j )−
∫

Y

f∗2 (x, a) dx

}

=
Kj∑

kj=1

inf
w∈W1

1

m(E−
j,kj
)

∫

E−j,kj

g(x, |ξj | |1 + w|) dxm(E−
j,kj
)

= |ξj |p
Kj∑

kj=1

inf
w∈W1

1

m(E−
j,kj
)

∫

E−j,kj

λ|1 + w|p dxm(E−
j,kj
)

= |ξj |p
Kj∑

kj=1

∫

E−j,kj

(
1

m(E−
j,kj
)

∫

E−j,kj

λ
1
1−p dx

)1−p

dx,

and the proof is complete. �
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Theorem 9. If g(x, s) =
n∑

i=1
χi(x)λis

p, ξ = ξjej , 1 � j � N and 1 < p � 2, then

ghom(ξ) � sup
a∈V2

{
|ξj |2Q−

j (a, 1, 2,A+j )−
∫

Y

h∗2(x, a) dx

}

= |ξj |pQ−
j (λ, 1, p,A+j ),

where

V2 =

{
a ∈ L∞ : a(x) =

∑

k∈Jk

akχA+k
(x), 0 < k1 � ak � k2 < ∞

}
.

�����. The proof follows by similar arguments as in the proof of Theorem 8.

5. Examples

In this section we will use the results derived above to study some concrete exam-

ples where the bounds provide a very good information about the effective behavior
of a composite with nonlinear material behavior. We will restrict ourselves to two-

phase problems in �2 , it is clear that the same arguments would hold for n-phase
problems in �N .

������� 1. Let the unit cell be a coated square in �2 , where the square

inclusion has side length b = 0.8. The local energy density function gi is of the form

gi(s) =
1
2
λis
2 +
1
p
κis

p,

where p = 4, i = 1 represents the matrix material and i = 2 the inclusions. Let

λ1 = 20, λ2 = 10, κ1 = 1 and κ2 be variable. Then Theorem 4 and an application
of Lemma 7 implies that

ghom(ξ) � inf
t�−1

{
(1− b2)g1

(
|ξ|
(

b(1 + t)2 + 1
1 + b

) 1
2
)

+ b2g2

(
|ξ|
∣∣∣∣1 +

b− 1
b

t

∣∣∣∣
)}

,

see curve 1 in Fig. 1 By using the wider class of a’s used in Theorem 8 we obtain

ghom(ξ) � inf
t�−1

{
b(1− b)g1

(
|ξ|
∣∣∣∣1 +

b

b− 1 t
∣∣∣∣
)

(18)

+ b2g2(|ξ| |1 + t|) + (1− b)g1(|ξ|)
}

,
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see curve 2 in Fig. 1. Moreover, let r = p = 4 in Theorem 5. Then it follows by an

application of Lemma 7 that

ghom(ξ) � inf
t�−1

{
(1− b2)g1

(
|ξj |
(

b

1 + b
(1 + t)r +

1
1 + b

(
1 +

b

b− 1 t
)r
) 1

r
)

+ b2g2(|ξ|(1 + t))

}

for j = 1, 2, see curve 3 in Fig. 1. Similarly, by letting a belong to the wider class

given in Theorem 9 we obtain

ghom(ξ) � inf
t�−1

{
b(1− b)g1(|ξj | |1 + t|) + b2g2(|ξj | |1 + t|)(19)

+ (1− b)g1

(
|ξj |
∣∣∣1 + b

b− 1 t
∣∣∣
)}

for j = 1, 2, see curve 4 in Fig. 1. Thus the problem of calculating the estimates for
ghom has been reduced to a minimization problem with respect to one single variable.
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Figure 1. Estimates on ghom for ξj = 1 corresponding to example 10.

Let us now study the cell geometry in Example 1 for the two extreme cases: (i) stiff
inclusions, (ii) soft inclusions. By stiff inclusions we mean that

g2(s) =

{
0, s = 0,

∞, s 	= 0
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Figure 2. Estimates on ghom for ξj = 1 and κ2 = 100 corresponding to example 10.

and by soft inclusions we mean that g2(s) = 0. For the general theory concerning
problems with stiff and soft inclusions, the reader is referred to [6]. For stiff inclusions

the lower bound and the upper bound corresponding to (18) and (19) take the forms

ghom(ξ) � (1− b)g1

(
|ξj |
∣∣∣∣1 +

b

1− b

∣∣∣∣
)

,

ghom(ξ) � b(1− b)g1

(
|ξ| 1
1− b

)
+ (1− b)g1(|ξ|),

respectively. For soft inclusions we obtain

ghom(ξ) � inf
t�−1

{
b(1− b)g1

(
|ξj |(1 + t)

)
+ (1− b)g1

(
|ξj |

∣∣∣∣1 +
b

b− 1 t
∣∣∣∣
)}

,(20)

ghom(ξ) � (1− b)g1(|ξ|).(21)

For stiff inclusions there is a similar formula, based on the lower Hashin-Shtrikman

bound for linear problems, which is a lower bound among all isotropic nonlinear
composites satisfying superquadratic growth in the matrix phase, but there is no

corresponding upper bound. More information about this can be found in [2]. This
lower bound has the form

ghom(ξ) � (1− b2)g1

(√
(1 + b2)
1− b2

|ξ|
)

.

In [2] a corresponding estimate of ghom for soft inclusions was also presented based
on the Hashin-Shtrikman upper bound for linear composites. Note that this estimate
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is not a rigorous upper bound for nonlinear isotropic composites, it can nonetheless

be interpreted as an estimate of an upper bound. The estimate is

(22) ghom(ξ) � (1 − b2)g1

(
|ξ|
√( 1
1 + b2

))
.

������� 2. Let the unit cell be a coated square in �2 , where the square
inclusion has sidelength b. We also assume that the square inclusion is soft and that

the local energy density function g1 of the matrix material is of the form

gi(s) =
1
2
s2 +

1
p
10sp,

where p = 4. Moreover, let ξj = 1. In Fig. 3 we have plotted the bounds in (22),

(21) and (20) respectively for different values of b.
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Figure 3. 1 – lower bound, 2 – upper estimate, 3 – upper bound for soft inclusions.

Note that curve 2 which corresponds to the estimate of the upper bound in (22)

is below the lower bound in (21).
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