
Applications of Mathematics

Reiner Vanselow
About Delaunay triangulations and discrete maximum principles for the linear
conforming FEM applied to the Poisson equation

Applications of Mathematics, Vol. 46 (2001), No. 1, 13–28

Persistent URL: http://dml.cz/dmlcz/134456

Terms of use:
© Institute of Mathematics AS CR, 2001

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/134456
http://dml.cz


46 (2001) APPLICATIONS OF MATHEMATICS No. 1, 13–28

ABOUT DELAUNAY TRIANGULATIONS AND DISCRETE

MAXIMUM PRINCIPLES FOR THE LINEAR CONFORMING FEM

APPLIED TO THE POISSON EQUATION

Reiner Vanselow, Dresden

(Received March 26, 1999)

Abstract. The starting point of the analysis in this paper is the following situation: “In
a bounded domain in �2 , let a finite set of points be given. A triangulation of that domain
has to be found, whose vertices are the given points and which is ‘suitable’ for the linear
conforming Finite Element Method (FEM).” The result of this paper is that for the discrete
Poisson equation and under some weak additional assumptions, only the use of Delaunay
triangulations preserves the maximum principle.
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1. Introduction

Finite Element Methods (FEM) are often used in numerical solution algorithms
for partial differential equations.

In this paper we consider the Poisson equation and only such conforming methods

which use triangulations of the domain and where the degrees of freedom are function
values. For the major part of the article, the linear conforming FEM is discussed.

The starting point of the analysis in this paper is the following situation:

“In a bounded domain in �2 , which is not necessarily convex, let a finite set of
points be given. A triangulation of that domain has to be found, whose vertices

are the given points and which is ‘suitable’ for the linear conforming Finite Element
Method (FEM).”
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Obviously, in general there exist different triangulations with the property that

the set of vertices is equal to that of the given points.

It is known (see Section 3) that a Delaunay triangulation implies advantageous
properties for the linear conforming FEM. If an additional condition denoted by (V2)

is satisfied near the boundary, then the off-diagonal elements of the coefficient matrix
of the FEM are not positive, which is sufficient for a discrete maximum principle.

In this paper it is proved conversely that, if the matrix has this property, then the
triangulation has to be a Delaunay one and the condition (V2) has to be satisfied.

Additionally, a new discrete maximum principle is presented which transfers the
property of the continuous problem to the discrete one in a natural way. Starting

from this, it is easy to prove that the above property of the matrix is also necessary
for this discrete maximum principle.

The last two results are true not only for the linear conforming FEM, but for the
FEM with the Mini element, too.

2. Finite element method and Delaunay triangulation

2.1. The boundary value problem.

Let us assume that Ω ⊂ �
2 is an open, simply connected and bounded polygonal

domain, not necessarily convex, with the boundary Γ = ∂Ω. Further, let Γ1∩Γ2 = ∅,
Γ1 ∪ Γ2 = Γ, Γ1 being closed and the measure of Γ1 being greater than zero.
Consider the boundary value problem

− div gradu = f in Ω,

u = 0 on Γ1,(BVP)

nT gradu = 0 on Γ2.

The vector n denotes the unit outer normal on Γ.

2.2. Triangulation and notation.

Let a triangulation T = {t} of Ω be given with the usual properties (cf. [2], [5]).
Especially, the intersection of different triangles t1, t2 ∈ T may only contain one

common edge or vertex. Boundaries like that in Fig. 1 are allowed, too. In that case,
the location of points and the triangulation represented in Fig. 1 are permitted,

because the points and triangles on both sides of the boundary are independent of
each other.
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Figure 1. Triangulation of a domain Ω with a crack (detail).

We introduce the following notation:

C(T ) = {P ∈ Ω: P is a vertex of a triangle t ∈ T },
Ci(T ) = C(T ) ∩Ω,

Cb(T ) = C(T ) ∩ Γ,
CI(T ) = Ci(T ) ∪ {P ∈ Cb(T ) : P ∈ Γ2},
CB(T ) = {P ∈ Cb(T ) : P ∈ Γ1},
NE(P ) = {Q ∈ Cb(T ) : P and Q are neighbours on Γ} for P ∈ Cb(T ).

As in Fig. 1, two points in C(T ) may have an equal geometric location (as e.g. R1
and R2).

2.3. FEM solution with linear conforming finite elements.
A weak formulation of the boundary value problem (BVP) reads:

Find u ∈ V := {v ∈ H1(Ω): v
∣∣
Γ1
= 0} such that

a(u, v) :=
∫∫

Ω

(gradu)T grad v dΩ =
∫∫

Ω

fv dΩ =: d(f, v) ∀v ∈ V.

Using linear conforming finite elements the corresponding FEM is determined as
follows:

Find uG
h ∈ Vh(T ) := {v ∈ C0(Ω): v

∣∣
t∈T

∈ P1(�2 ) and v(Q) = 0 for Q ∈ CB(T )}
such that

(2.1) a(uG
h , vh) = d(f, vh) ∀vh ∈ Vh(T )

with P1(�2 ) := span{1, x, y}.
In the definition of Vh(T ) and in some later notation, the index h hints at a change

from a continuous to a discrete problem.
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Now, using a nodal basis in Vh(T ) with functions ΦP for all P ∈ CI(T ) and

denoting the vector of the function values of the solution uG
h of the FEM (2.1) at the

points P ∈ CI(T ) by uFE a linear system of equations arises, which has the form

(2.2) LFEuFE = bFE.

Here, the stiffness matrix LFE , the vector uFE and the right-hand side bFE are

defined by

(2.3) LFE
kl = a(ΦP ,ΦQ), uFE

k = uG
h (P ) and bFE

k = d(f,ΦP ) k, l = 1, . . . , m

with m = dimVh(T ) = |CI(T )|, whereby we assume 0 < m < ∞. Further, the
point P belongs to the index k and the point Q to the index l.

������ 1. With the last sentence a duality in notation is introduced. So, in

the sequel we will use e.g. for the same matrix element the notation LFE
kl as well as

LFE
PQ .

2.4. Delaunay triangulation and condition (V2).
Delaunay triangulations can be defined in different ways. Here we will use, as

in [7]:

Definition 1′. A triangulation T is called a Delaunay one iff for any triangle
t ∈ T there exists no point P ∈ C(T ) in the interior of its circumcircle.

For nonconvex domains it is necessary to modify this definition (cf. [4]). Therefore,

for a triangle t ∈ T we introduce the following notation (see Fig. 2):

Kt = interior of the circumcircle of the triangle t,

Kt(Ω) = Kt ∩ Ω,

Kt(Ω, t) = the largest simply connected set in Kt(Ω)

which includes the interior of t.

Definition 1. A triangulation T is called a Delaunay one iff for any triangle
t ∈ T the set C(T ) ∩Kt(Ω, t) is empty.

������ 2. For convex domains Definitions 1 and 1′ are equivalent.

From [9], we recall the following condition for convex domains:
For any two points P1, P2 ∈ Cb(T ) with P2 ∈ NE(P1) we have for P̃ = 1

2 (P1+P2):

(V2’) ‖Pi − P̃‖2 � ‖Q− P̃‖2 for all Q ∈ C(T ) with Q 	= Pi, i = 1, 2.
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Figure 2. Triangle t = �PQR and the corresponding sets Kt(Ω) and Kt(Ω, t) (detail).

For nonconvex domains it is necessary to modify this condition. Therefore, for

any two points P, Q ∈ Cb(T ) with Q ∈ NE(P ) we define the half-plane H(P, Q; Ω).
It is bounded by g(P, Q), which denotes the line through the points P and Q, and

lies along the straight line PQ in the direction to the domain Ω (i.e. in Fig. 1:
H(Q1, R1; Ω) below Q1R1 and H(Q2, R2; Ω) above Q2R2).

The modified condition (V2’) reads:

For any two points P1, P2 ∈ Cb(T ) with P2 ∈ NE(P1) we have for P̃ = 1
2 (P1+P2):

(V2) ‖Pi− P̃‖2 � ‖Q− P̃‖2 for all Q ∈ C(T )∩H(P1, P2; Ω) with Q 	= Pi, i = 1, 2.

������ 3. For convex domains the conditions (V2) and (V2’) are equivalent.

3. Some known results

3.1. About the FEM (2.1) and Delaunay triangulations.
For arbitrary triangulations T of Ω and the FEM (2.1) the following is true

(cf. [2], [8]):

Proposition 1. Let t = 
PRQ be an arbitrary triangle of T with P 	∈ Γ. Then
LFE

PQ is a sum of two addends, where the one which originated from integration over

the triangle 
PRQ, is given by

llPQ(R) := −
1
2
cot[� (PRQ)].
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Conclusion 1. Let P 	∈ Γ1 and let 
PR1Q and 
PR2Q with R1 	= R2 be two

triangles of the triangulation T which have the common edge PQ. Then we have

LFE
PQ = llPQ(R1) + llPQ(R2) = −

1
2
sin[ � (PR1Q) + � (PR2Q)]
sin[� (PR1Q)] sin[� (PR2Q)]

.

Proposition 2. We have

a) LFE
PP > 0 for all P ∈ CI(T ), and

b) LFE
PP = −

∑
Q�=P

LFE
PQ if Q ∈ CI(T ) holds for all Q ∈ C(T ) with LFE

PQ 	= 0.

For Delaunay triangulations and the FEM (2.1) the following is true (cf. [9]).

Proposition 3. If the triangulation is a Delaunay one and (V2) is satisfied, then
we have

a) LFE
PQ � 0 for Q 	= P , and

b) LFE
PP





= − ∑
Q�=P

LFE
PQ > 0 if Q ∈ CI(T ) holds for all Q ∈ C(T ) with LFE

PQ < 0,

> − ∑
Q�=P

LFE
PQ � 0 otherwise.

3.2. About maximum principles.
For the Poisson equation the following continuous maximum principle is true

(cf. e.g. [2]):

Proposition 4 [continuous maximum principle]. For an arbitrary function
u ∈ C2(Ω) ∩ C0(Ω) let

− div gradu � 0 in Ω.

Then the maximum of u lies on the boundary of Ω. Moreover, if u has a (local)

maximum in Ω, then u is constant on Ω.

This continuous maximum principle is not only a mathematical property of the
solution for the Poisson equation with nonpositive right-hand side. It reflects also

a property of problems modeled by the Poisson equation. That’s why it is of interest
whether or not a numerical method preserves this maximum principle (cf. also [2],

[6], [8], [10]).

To get a discrete maximum principle and to deduce it only from properties of
matrices, we have to enlarge the m×m matrix LFE defined by (2.3) in such a way

18



that we include the influence of the whole boundary in the matrix. That’s why we

introduce the m× m̂ matrix L = (LFEL̂FE) with m̂ = |C(T )| and

Lkl =

{
LFE

kl for k, l = 1, 2, . . . , m

L̂FE
kl for k = 1, 2, . . . , m and l = m+ 1, m+ 2, . . . , m̂,

where the elements of the m× (m̂−m) matrix L̂FE are defined by

L̂FE
kl = a(ΦP ,ΦQ) for k = 1, 2, . . . , m and l = m+ 1, m+ 2, . . . , m̂.

Here ΦQ is the nodal basis function in V̂h(T ) = {vh ∈ C0(Ω): vh

∣∣
t∈T

∈ P1(�2 )}
for the point Q.

Further, the m-dimensional vector uFE is enlarged to an m̂-dimensional vector U .

Proposition 5 [a discrete maximum principle]. Let the function f in (BVP)
satisfy f � 0 and let uFE ∈ Rm be the corresponding solution of (2.2). If the above

matrix L = (LFEL̂FE) has the property LPQ � 0 for Q 	= P , then

(MAX) uFE
P = max

Q∈IIP

UQ with P ∈ CI(T ) results in UQ = const for all Q ∈ IIP .

Here IIP := {Q ∈ C(T ) : LPQ 	= 0}.

����� 	cf. also Section I.3 in [2]). At the beginning, let us point out the fact

that the statement is also true in the case of nonhomogeneous boundary conditions
on Γ1, therefore we give the proof in that case.

The following systems of linear equations are equivalent:

LFEuFE = B ⇐⇒ LU = bFE ,

where bFE is defined by (2.3) and B by

BP = bFE
P −

∑

Q�∈CI(T )

L̂FE
PQUQ ∀P ∈ CI(T ).

First, because of Proposition 2 we have LPP = LFE
PP > 0.

Further, it can be shown that LPP = −
∑

Q�=P

LPQ.

Now, let us assume that there exists a point P ∈ CI(T ) and a point R ∈ IIP with
UR < uFE

P = max
Q∈IIP

UQ.
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Therefore, because f � 0 results in bFE
P � 0, we obtain

0 � bFE
P = BP +

∑

Q�∈CI(T )

L̂FE
PQ UQ =

∑

Q∈CI(T )

LFE
PQ uFE

Q +
∑

Q�∈CI(T )

L̂FE
PQ UQ

=
∑

Q∈IIP

LPQ UQ � LPR UR + uFE
P

∑

Q∈IIP ,Q�=R

LPQ > uFE
P

∑

Q∈IIP

LPQ = 0,

which is a contradiction, so that the statement follows. �

By Proposition 3 we get

Conclusion 2. Let the function f in (BVP) satisfy f � 0. If the triangulation
is a Delaunay one and (V2) is satisfied, then for the corresponding solution uFE of

(2.2) the discrete maximum principle (MAX) is true.

4. Necessary conditions for the nonpositivity of
the off-diagonal entries of the matrix L

Whereas Proposition 3 gives sufficient conditions for the property LPQ � 0 for
Q 	= P , we prove now that these conditions are also necessary under some weak
additional assumptions (to get an idea of these additional assumptions (A) and (B)

see also Fig. 4).

Theorem 1. Let a triangulation T of Ω be given such that for any t = 
P1P2P3 ∈
T we have

(A) Pi ∈ CI(T ) for i = 1, i = 2 or i = 3 and

(B) Pi, Pj ∈ CB(T ) with i 	= j and i, j ∈ {1, 2, 3} implies Pi ∈ NE(Pj).

If the matrix L defined in Section 3.2 has the property LPQ � 0 for Q 	= P , then the

triangulation is a Delaunay one.

�����. First, for P1 	= P2 and P3 	∈ g(P1, P2) we define the half-plane
Ĥ(P1, P2;P3). It is bounded by the line g(P1, P2) and contains the point P3.

Suppose that the assumptions of the theorem are satisfied, but the triangulation
is not a Delaunay one, i.e. by Definition 1 there exist a triangle t = 
PQR ∈ T and

a corresponding point S with S ∈ C(T ) ∩Kt(Ω, t).

Further, let us assume, without loss of generality, that S 	∈ Ĥ(P, Q;R), which
yields in PQ 	⊂ Γ (this is possible because of assumption (A)).
Because of assumption (B) we get P ∈ CI(T ) or Q ∈ CI(T ). Let us assume

P ∈ CI(T ), which implies, that LPQ exists, i.e. in the linear system of equations
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there is one row which corresponds to the point P , and one column which corresponds

to the point Q.
Case 1: 
PQS ∈ T .
By S ∈ Kt(Ω, t) with t = 
PQR it follows that

� (PRQ) + � (PSQ) > �.

By Conclusion 1 this results in LPQ > 0, which is a contradiction.
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�a� possible location of eR � C�T � �dotted
area�

�b� concrete eR� triangles �PRQ and
�P eRQ and their circumcircles

Figure 3. Possible location of R̃ ∈ C(T ) in the proof of Theorem 1 and one special location
(detail).

Case 2: 
PQS 	∈ T .

Because of PQ 	⊂ Γ there exists a point R̃ ∈ C(T ) with 
PQR̃ ∈ T and with the
following properties for its location (see also Fig. 3a):

R̃ 	∈ Kt(Ω, t) and R̃ ∈ Ĥ(P, Q;S) ∩ [Ĥ(P, S;Q) ∪ Ĥ(Q, S;P )].

Namely, if R̃ ∈ Kt(Ω, t), then Case 1 can be applied, whereas S has to be substituted

by R̃. And, if R̃ 	∈ Ĥ(P, S;Q) and R̃ 	∈ Ĥ(Q, S;P ), then we get S ∈ 
PQR̃, which
is a contradiction for a triangulation.

Obviously, Kt(Ω, t)∩ Ĥ(P, Q;S) ⊂ Kt̃(Ω, t̃) holds for t = 
PQR and t̃ = 
PQR̃,
which results in S ∈ Kt̃(Ω, t̃).

Now, let us assume R̃ ∈ Ĥ(Q, S;P ) (see also Fig. 3b). Then the same situation is

true for the triangle
PQR̃, the edge QR̃ and the point S as for the triangle
PQR,
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the edge PQ and the point S, which means either the Case 1 or Case 2 is possible

again.
Because of the finite number of points in C(T ), Case 1 must occur at some stage,

which, however, leads to a contradiction.
Thus, the theorem is proved. �

Theorem 2. Let the assumptions of Theorem 1 be satisfied. If the matrix L

defined in Section 3.2 has the property LPQ � 0 for Q 	= P , then the following is

true:

If for two points P, Q ∈ Cb(T ) with Q ∈ NE(P ) the condition (V2) is not satisfied,
then this results in P 	∈ CI(T ) and Q 	∈ CI(T ).

�����. Suppose that the assumptions of the theorem are satisfied and that the
condition (V2) is not satisfied for two points P, Q ∈ Cb(T ) with Q ∈ NE(P ), but

P ∈ CI(T ) holds.
First, because the condition (V2) is not satisfied for the two points P and Q, there

exists a point S ∈ C(T ) ∩H(P, Q; Ω) for which we get

‖S − S̃‖2 < ‖P − S̃‖2 = ‖Q− S̃‖2 =: r with S̃ = 1
2 (P +Q).

Further, because of PQ ⊂ Γ, there exists a point R ∈ C(T ) ∩H(P, Q; Ω) such that

the triangle t = 
PQR is the unique one in T with the edge PQ (R = S is possible).
Now, because of P ∈ CI(T ), it follows that LPQ exists (in the same sense as

above).

If R lies outside the circle around S̃ with the radius r, then S lies inside the
circumcircle of
PQR, which contradicts the fact that T is a Delaunay triangulation.

If R lies inside the circle around S̃ with the radius r, then it follows that
� (PRQ) > �

2 and, by Proposition 1, LPQ > 0, which is a contradiction, too.

Consequently, the theorem is proved. �

5. A necessary and sufficient condition for a new discrete
maximum principle

For the boundary value problem (BVP), in Proposition 5 the discrete maximum
principle (MAX) for the corresponding solution uFE of (2.2) is stated under the

assumption that the matrix L defined in Section 3.2 has the property LPQ � 0 for
Q 	= P .

In what follows, for another discrete maximum principle we prove that this condi-
tion is sufficient as well as necessary. This new discrete maximum principle transfers
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the continuous maximum principle of the Poisson equation, which uses only local

properties of the function f , to the discrete problem in a natural way.

Therefore, for P ∈ C(T ) we introduce the notation

TRP = {t ∈ T : P is a vertex of t}

with TRP ⊂ Ω and define the “discrete maximum principle at P ∈ CI(T )”.

Definition 2 (discrete maximum principle at P ∈ CI(T )). For the boundary
value problem (BVP), let uFE be the corresponding solution of 2.2. Then the discrete
maximum principle is satisfied at P ∈ CI(T ) iff f � 0 in TRP implies

uFE
P = max

Q∈IIP

UQ results in UQ = const for all Q ∈ IIP .

Theorem 3. For the boundary value problem (BVP), let uFE be the correspond-

ing solution of 2.2. Then the discrete maximum principle is satisfied at P ∈ CI(T )
iff the matrix L defined in Section 3.2 fulfils LPQ � 0 for all Q 	= P .

�����. ⇒: Let us assume LPR > 0 for some R ∈ C(T ) with R 	= P .

First we choose f ≡ 0 in TRP , which results in bFE
P = 0 as well as in UR = −

LPP

LPR
and UQ = 0 for all Q ∈ IIP with Q 	= R and Q 	= P (because f may be arbitrary
outside of TRP , such a choice is possible).

Because of LPP > 0 (see Proposition 2) we have UR < 0. Together with uFE
P = 1,

which follows from bFE
P = 0, the above choice of UQ for Q ∈ IIP with Q 	= R and

the k-th equation of the linear system LU = bFE , this contradicts the fact that the
discrete maximum principle is satisfied at P .

⇐: This direction may be proved analogously to Proposition 5. �

������ 4. There are some discrete maximum principles for which it is known

that the condition LFE
PQ � 0 for Q 	= P is not necessary (cf. [8]). For others (cf. [2],

[6], [10]) the author does not know any results concerning the fact whether or not

this condition is also necessary.

23



6. Discussion

6.1 About the assumed properties of the triangulation in Theorem 1.
It is possible to formulate Theorems 1 and 2 independently of the boundary con-

ditions.

Theorem 1′. If for all boundary value problems (BVP) with any possible choice
of Γ1 the matrices L defined in Section 3.2 have the property LPQ � 0 for Q 	= P ,

then the triangulation is a Delaunay one and the condition (V2) is satisfied.

This is true, because Γ1 can be chosen in such a way that |CI(T )| = |C(T )| − 2
holds, so that the assumptions (A) and (B) in Theorem 1 are obviously satisfied.
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Figure 4. Examples with Γ1 = Γ, where the matrix L has the property Lkl � 0 for l �= k,
but the triangulation is not a Delaunay because of the dotted edges (detail).

Fig. 4 shows that, if the assumptions (A) and (B) are not satisfied, then the
triangulation is not necessarily a Delaunay one.

6.2. About discrete maximum principles.
In [2], [6], [8] and [10], different formulations of a discrete maximum principle can

be found. For instance, using Proposition 5 we can show

Conclusion 3. Let the function f in (BVP) satisfy f � 0 and let uFE ∈ Rm

be the corresponding solution of (2.2). If the matrix L = (LFEL̂FE) defined in
Section 3.2 has the property LPQ � 0 for Q 	= P , then the maximum of U lies on

Γ1, i.e.
max

Q∈CI(T )
uFE

Q � max
Q∈CB(T )

UQ.

������ 5. If the assumptions (A) and (B) in Theorem 1 are satisfied for the
given triangulation, then it is even possible to deduce

uFE
P = max

Q∈IIP

UQ for all P ∈ CI(T ) results in UQ = const for all Q ∈ C(T ).
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If these assumptions are not satisfied, then this is true only in a subset of Ω, namely

in one which is associated with the point P in a certain sense. E.g. in Fig. 4a, the
value US may be arbitrary.

������ 6. Generalizing Definition 1.11 in [10] about the associated directed
graph G(C) of an n×n matrix C to the case of non-quadratic matrices, we find that

the assumptions (A) and (B) in Theorem 1 are satisfied iff the associated directed
graph G(C) of the m× m̂ matrix L is strongly connected.

By virtue of Proposition 1.12 in [10] it can also be deduced that the assumption

(B) in Theorem 1 is satisfied iff the m× m̂ matrix L is irreducible.

6.3. Extension of the discrete maximum principle to a greater class of
methods and an application.
In a natural way, the extension of the maximum principle given in Definition 2 is

possible to the class of all methods using only the function values to determine the

degrees of freedom.
Therefore, we introduce the notation

T̃RP = {t ∈ T : ΦP 	= 0 in t}

with T̃RP ⊂ Ω, where ΦP is the nodal basis function for the point P .

Definition 3 (discrete maximum principle at P ∈ C̃I(T )). For the boundary
value problem (BVP), let an FEM be given which uses only the function values to

determine the degrees of freedom. Let uFEM be the corresponding solution of the
linear system of equations

LFEMuFEM = bFEM

obtained by a nodal basis. Then the discrete maximum principle is satisfied at
P ∈ C̃I(T ) iff f � 0 in T̃RP implies

uFEM
P = max

Q∈ĨIP

ŨQ results in ŨQ = const for all Q ∈ ĨIP .

Here C̃I(T ) := C̃(T ) ∩ [Ω ∪ Γ2], C̃(T ) is the set of all points where the degrees
of freedom are given, ĨIP := {Q ∈ C̃(T ) : L̃PQ 	= 0}, while L̃ and Ũ denote the

extensions of the matrix LFEM and the vector uFEM , respectively (in the same
sense as L and U in Section 3.2 for the FEM (2.1)).

������ 7. Because of C̃(T ) = C(T ), C̃I(T ) = CI(T ) and T̃RP = TRP for

all P ∈ C̃I(T ) = CI(T ), for the FEM from Section 2.3 Definitions 2 and 3 are
equivalent.
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In the sequel, necessary and sufficient conditions are given such that the above

discrete maximum principle is satisfied for the FEM with the Mini element at all
points P ∈ C̃I(T ). Thereby, the Mini element is a finite element which is commonly
used for flow problems as the Stokes equation (cf. [3]). Here, it is applied to the

Poisson equation.
For the Stokes equation, the Mini element is used as one possibility to overcome

stability problems with other finite elements like the P1-P1-element (cf. [3]).
For the Poisson equation, because of (6.2) it is not much more than an academic

example.
If CS(T ) denotes the set of all centers of gravity belonging to the triangles, then

the method can be characterized by the space

Ṽh(T ) =
{
v ∈ C0(Ω): v

∣∣
t∈T

∈ P̃1(t) and v(Q) = 0 for Q ∈ CB(T )
}

with
P̃1(t) = P1(�2 ) ∪ span{ΦPΦQΦR} for t = 
PQR,

where the function ΦPΦQΦR is named the triangle-bubble function, too.

The degree of freedom, which is in comparison with the FEM defined in Section 2.3
still vacant in each triangle, is determined by the function value at the centre of

gravity of this triangle.
Obviously, we have

C̃(T ) = C(T ) ∪CS(T ) and C̃I(T ) = CI(T ) ∪ CS(T ),

so that the generalization in Definition 3 is necessary.

Theorem 4. Let the function f in (BVP) satisfy f � 0 and let a triangulation
T of Ω be given. Then, for a FEM solution with the Mini element, the discrete

maximum principle is satisfied at all P ∈ C̃I(T ) for any possible choice of Γ1 iff the
triangulation is a Delaunay one and the condition (V2) is satisfied.

�����. If for a triangle t ∈ T the functions Φi, i = 1, 2, 3, denote the nodal
basis functions in Vh(T ) (for the FEM (2.1)), then, obviously, those in Ṽh(T ) (for

the FEM with the Mini element) are given by

Φ̃4 = 27Φ1Φ2Φ3 and Φ̃i = Φi − 1
3 Φ̃4, i = 1, 2, 3.

Here Φ̃4 denotes the nodal basis function, which corresponds to the centre of gravity.
Now, by virtue of the identity

∫∫

t

(grad Φ̃4)T gradΦi dΩ =
∮

∂t

Φ̃4(gradΦi)T n(t) dΓ−
∫∫

t

Φ̃4 div(gradΦi) dΩ
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with the outer normal direction n(t) of the triangle t, which is true because of Green’s

formula, it is easy to verify for i ∈ {1, 2, 3} that

a(Φ̃4,Φi) =
∫∫

t

(grad Φ̃4)T gradΦi dΩ = 0.

This yields for Q ∈ C̃(T ) with Q 	= P :

• in the case of P ∈ CS(T )

LFEM
PQ =

{
− 13LFEM

PP for Q ∈ tP ,

0 for Q 	∈ tP ,

where the triangle tP ∈ T is uniquely defined by tP = T̃RP ,

• in the case of P ∈ CI(T ), using TRP = T̃RP ,

LFEM
PQ =





− 13LFEM
QQ for Q ∈ CS(T ) ∩ TRP ,

LFE
PQ +

1
9

∑
R∈ĨIPQ

LFEM
RR for Q ∈ CI(T ) ∩ TRP ,

0 for Q 	∈ TRP ,

where ĨIPQ is defined for P, Q ∈ CI(T ) and P 	= Q by

ĨIPQ := {R ∈ CS(I) : R ∈ TRP and R ∈ TRQ}.

For P ∈ CI(T ) we also obtain

bFEM
P = bFE

P − 1
3

∑

Q∈CS(T )∩TRP

bFEM
Q .

In these formulas, LFE
PQ and bFE

P denote the elements of the matrix LFE and

the vector bFE , respectively, for the FEM (2.1).

This results in the equations:

• in the case of P ∈ CS(T )

(6.1) LFEM
PP uFEM

P − 1
3
LFEM

PP

∑

Q∈CI(T )∩tP

ŨQ = bFEM
P ,
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• in the case of P ∈ CI(T )

LFEM
PP uFEM

P − 1
3

∑

Q∈CS(T )∩TRP

LFEM
QQ uFEM

Q

+
∑

Q∈[CI(T )∩TRP ]\{P}

(
LFE

PQ +
1
9

∑

R∈ĨIPQ

LFEM
RR

)
ŨQ

= bFE
P − 1

3

∑

Q∈CS(T )∩TRP

bFEM
Q .

In the case of P ∈ CI(T ), substituting all unknowns uFEM
Q by Q ∈ CS(T ), easy

calculation yields

(6.2) LFE
PP uFEM

P +
∑

Q�=P

LFE
PQ ŨQ = bFE

P .

From equation (6.2) it follows that for the Poisson equation at all points P ∈ CI(T )
the solution for the FEM with the Mini element is the same as for the FEM (2.1).

Taking into account (6.1), the statement follows from Theorem 1′. �
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