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Abstract. An algorithm for hyperbolic singular value decomposition of a given complex
matrix based on hyperbolic Householder and Givens transformation matrices is described
in detail. The main application of this algorithm is the decomposition of an updated
correlation matrix.
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1. Introduction

Let a sample data of some technical problem be collected in a matrix X ∈ �m×n ,
where m represents the number of outputs and n the number of measurements on

these outputs:

(1.1) X = (xij), i = 1, . . . , m; j = 1, . . . , n.

Usually n � m and the matrix X is rectangular. We want to compute singular
values of the matrix X, i.e. to find an eigensystem of the correlation matrix XXT.
A classical way how to perform this task is to use an algorithm for singular value

*This work was supported by the Grant No. 201/98/0528 of the Grant Agency of the
Czech Republic and the Grant VZ CEZ No. J19/98:223400007.
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decomposition (SVD) of the matrix X. First, we use orthogonal transformations to
triangularize the data matrix X,

X̂ = XQ, QQT = I, X̂ is lower triangular.

Then we obtain
X̂X̂T = XQ(XQ)T = XQQTXT = XXT,

i.e. the correlation matrix of X̂ is the same as the correlation matrix of the originalX
and we can apply SVD only on this lower triangular m×m matrix X̂. Since m� n

we have reduced the problem significantly.
Let Xnew be an update of X which consists of selected original data and of some

new measurements collected in a matrix Z ∈ �
m×k . If we consider the following

block structure of X:
X = (X1|Y|X2),

where X1 ∈ �
m×n1 , Y ∈ �

m×p , X2 ∈ �
m×n2 , n1 + p + n2 = n; X1, X2 remain in

the new set of data, the submatrix Y of the original data matrix X is skipped, then
the updated data matrix has the form

Xnew = (X1|X2|Z) ∈ �
m×(n1+n2+k).

Its correlation matrix reads

Xnew(Xnew)T = (X1|X2|Z)



XT1
XT2
ZT


 = X1XT1 +X2XT2 + ZZT

= XXT −YYT + ZZT = X̂X̂T −YYT + ZZT,

i.e. we can form correlation matrices YYT and ZZT and compute the eigenvalues
of Xnew(Xnew)T by a suitable numerical method.
In this paper we present the so called hyperbolic singular value decomposition—

another method for computing singular values of the update Xnew.
Let us denote

C = (X̂|Y|Z) ∈ �
m×(m+p+k) .

Let Φ be a diagonal matrix with blocks on diagonal equal to the identity or minus
identity matrix. Namely,

Φ = diag(Im×m,−Im×p, Im×k).

Then
CΦCT = X̂X̂T −YYT + ZZT = Xnew(Xnew)T.
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Let C be decomposed into a product of matrices

(1.2) C = UDVT,

where U ∈ �
m×m is orthogonal, V ∈ �

(m+p+k)×(m+p+k) has the property VTΦV =
Φ̂, Φ̂ is again a diagonal matrix with ±1 on its diagonal (generally different from Φ)
and D ∈ �

m×(m+p+k) is a diagonal matrix with m real positive diagonal entries.

Then

Xnew(Xnew)T = CΦCT = UDVTΦVDTUT = UDΦ̂DTUT.

The diagonal entries of DΦ̂DT are the eigenvalues of the updated correlation matrix
Xnew(Xnew)T and the columns of U are the corresponding eigenvectors.
We conclude that if we are able to perform the decomposition (1.2) we obtain the

eigensystem of the updated correlation matrix Xnew(Xnew)T.
Throughout the paper we suppose that all vectors and matrices are allowed to

have complex elements. In Section 2, we resume properties of so called hyperexchange

and hypernormal matrices. Then the definitions of hyperbolic Givens and hyperbolic
Householder transformation matrices are given. Their properties are proved in detail

in [5]. Appropriate algorithms in MATLAB can be found in [6].

Section 3 contains an algorithm of the hyperbolic singular value decomposition

(HSVD). Its idea is similar to that of the SVD algorithm by Golub and Kahan
(see [3], § 8.6), only all reductions of the matrices involved are performed by making
use of the hyperbolic transformation matrices.

2. Hyperbolic transformations

Throughout the paper we use the notation

(2.1) sgn z =





z

|z| for z ∈ � \{0},

0 if z = 0,

which is again a complex number. This implies z sgn z = |z|. We also use ‖x‖ for
the ordinary Euclidean norm of a vector x ∈ �

n , and we denote the first unit vector
by

e1 = (1, 0, . . . , 0)T ∈ �
n .

The operation VH means the transposition of the matrix V and the complex
conjugation of all its elements. Thus, if V is real then VH = VT, where VT is the
transpose of V.

103



Definition 2.1. Let Φ, Φ̂ be two m × m diagonal matrices with diagonal en-

tries ±1. An m×m matrix V, generally with complex elements, satisfying

(2.2) VHΦV = Φ̂,

will be called a hyperexchange matrix with respect to Φ. If Φ = Φ̂, V satisfying (2.2)
will be called hypernormal with respect to Φ.

������ 2.1. The terms hypernormal and also hyperexchange matrix with re-
spect to Φ occur in [1]. The term pseudo-orthogonal with respect to Φ is also in use.
It can be found in [3].

�����	� 2.1. Let P be a permutation matrix. Then PTΦP = Φ̂, i.e. P is the
hyperexchange matrix with respect to Φ.

Hypernormal or hyperexchange matrices are always regular, their determinants

are equal to 1 or −1 and their inversions can be computed very easily: if V is a
hyperexchange matrix with respect to Φ, i.e. V fulfils (2.2), then

(2.3) V−1 = Φ̂VHΦ.

For a given diagonal matrix Φ = diag(ϕ1, ϕ2, . . . , ϕn), ϕj = ±1 for j = 1, . . . , n,
and a given vector x ∈ �

n , we define

(2.4) ‖x‖Φ = sgn(xHΦx)|xHΦx|1/2.

We shall call ‖x‖Φ the hyperbolic energy of the vector x. It should be mentioned
that ‖x‖Φ, in general, is not a norm.

2.1. Hyperbolic Givens transformation.

Definition 2.2. Let x = (x1, x2)T ∈ � 2 be such that

(2.5) |x1| > |x2| > 0.

Let us define

ϕ = arctanh

∣∣∣∣
x2
x1

∣∣∣∣, i.e. tanhϕ =

∣∣∣∣
x2
x1

∣∣∣∣ < 1,

ch = coshϕ, sh = sinhϕ.

Then the matrix

(2.6) G =
(

ch − sgn(x1) sgn(x2)sh

− sgn(x1) sgn(x2)sh ch

)

is called the matrix of a hyperbolic Givens rotation. It depends on ϕ.
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Since cosh2 ϕ− sinh2 ϕ = 1, we obtain

(2.7) G =
1
�



|x1| −x1x2

|x1|
−x1x2
|x1|

|x1|


 ,

where � =
√
|x1|2 − |x2|2 > 0 and x satisfies condition (2.5).

For a vector x = (x1, . . . , xn)T ∈ � n such that two different components xp, xq of
x satisfy

|xp| > |xq| > 0,

the matrix of a hyperbolic Givens rotation has the form

G(p, q, ϕ) =




1 0
. . .

1

ch . . . . . . . . . −σ · sh
... 1

......
. . .

...... 1

...

−σ · sh . . . . . . . . . ch

1
. . .

0 �
p

�
q

1




,

←− p

←− q

where

ch = coshϕ, sh = sinhϕ,

ϕ = arctanh

∣∣∣∣
xq

xp

∣∣∣∣, σ = sgn(xp) sgn(xq).

The main properties of the classical and hyperbolic Givens rotation matrices for
a vector x ∈ � 2 are summarized in Tab. 1.
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Givens transformation Hyperbolic Givens transformation
(x �= 0) (|x1| > |x2| > 0)

F =
(

c −s

s c

)
G =

(
ch −σsh

−σsh ch

)
, σ = sgn(x1) sgn(x2)

c ∈ �, c2 + |s|2 = 1 ch, sh ∈ �, c2h − s2h = 1

c = |x1|/‖x‖, s = − sgn(x1)x2/‖x‖ ch = |x1|/�, sh = |x2|/�

� =
√
|x1|2 − |x2|2

FHF = I GHΦG = Φ

Φ = diag(ϕ1, ϕ2), ϕ1 = ±1, ϕ2 = −ϕ1

Fx =
(
sgn(x1)‖x‖

0

)
Gx =

(
sgn(x1)�
0

)
=

(
ϕ1 sgn(x1)‖x‖Φ

0

)

‖Fx|| = ‖x‖ ‖Gx||Φ = ‖x‖Φ
‖x‖ = (xHx)1/2 ‖x‖Φ = sgn(xHΦx)|xHΦx|1/2

Table 1. Classical and hyperbolic Givens rotation in �
2 .

Hence, the matrix G from Definition 2.2 is Hermitian and hypernormal with re-
spect to Φ. After its action on the vector x the second component x2 vanishes, but
the hyperbolic energy of the vector x is preserved.

������ 2.2. The hyperbolic Givens transformation matrix will reduce to the

ordinary Givens rotation in the case of Φ = ±I.
If the vector x ∈ � 2 satisfies (instead of the condition (2.5)) the condition

(2.8) |x2| > |x1| > 0,

we define

(2.9) G =
1
�



|x2| −x2x1

|x2|
−x2x1
|x2|

|x2|


 ,

where � =
√
|x2|2 − |x1|2 > 0.

Let P =
(
0 1

1 0

)
be the permutation matrix and Φ = diag(ϕ1, ϕ2), where

ϕ1 = ±1, ϕ2 = −ϕ1 is the given diagonal matrix. Then the matrix GP is hy-
perexchange with respect to both Φ and −Φ,

(GP)x = (sgn(x2)�, 0)T
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and the hyperbolic energy of the vector x is preserved, i.e.

(GPx)H(PTΦP)(GPx) = xHΦx.

The most complicated case occurs when the hyperbolic energy of a given vector
x ∈ �

2 with respect to a given diagonal matrix Φ is equal to zero. It can be shown
that then there exist a complex matrixM ∈ �

2×2 and a diagonal matrix D ∈ �
2×2

such that the second component of the vectorMx is equal to zero and the matrixMD
is hyperexchange with respect to Φ. In particular,

(2.10) M =

( √2
2

u
√
2

u 1

)
, u = −x1

x2
, D = diag(

√
2, 1).

2.2. Hyperbolic Householder transformation.

Definition 2.3. Let Φ = diag(ϕ1, ϕ2, . . . , ϕn), ϕi = ±1, x = (x1, . . . , xn)T ∈ � n

be given and, moreover,

(2.11) ‖x‖Φ �= 0, sgn(‖x‖Φ) = ϕ1.

Then the matrix

H = Φ− β(Φb)(Φb)H,(2.12)

where

b = x+ sgn(x1)| ‖x‖Φ|e1,
β =

(
‖x‖Φ(| ‖x‖Φ|+ |x1|)

)−1
,

is called the hyperbolic Householder matrix for transformation of the given vector x.

������ 2.3. If Φ = I, the identity matrix, then ‖x‖Φ = ‖x‖ and the hyperbolic
Householder matrix is just the classical one. A similar situation is in the caseΦ = −I.

Hence, the matrix H from Definition 2.3 is Hermitian and hypernormal with re-
spect to Φ. After its action on a vector x all its components except the first vanish.
The hyperbolic energy of the vector x is preserved.

107



Hyperbolic Householder transformation
Householder transformation (assumption: sgn(‖x‖Φ) = ϕ1)

‖x‖ = (xHx)1/2 ‖x‖Φ = sgn(xHΦx) |xHΦx|1/2

Mx = − sgn(x1) ‖x‖e1 Hx = − sgn(x1) ‖x‖Φe1

‖Mx‖ = ‖x‖ ‖Hx‖Φ = ‖x‖Φ
M = I− βuuH, where H = Φ− β(Φb)(Φb)H, where

u = x+ sgn(x1) ‖x‖e1 b = x+ sgn(x1)| ‖x‖Φ|e1

β =
(
‖x‖(‖x‖+ |x1|)

)−1
= 2/(uHu) β = (‖x‖Φ

(
| ‖x‖Φ|+ |x1|)

)−1
= 2/(bHΦb)

‖x‖ = 0 ⇔ x = 0 ‖x‖Φ = 0 �⇒ x = 0

Table 2. Classical and hyperbolic Householder transformation.

If the condition (2.11) is not valid, i.e. if

(2.13) sgn(‖x‖Φ) = −ϕ1,

then we define a permutation matrix P which permutes the first row of the matrix Φ
with any row with a diagonal entry equal to −ϕ1. We apply the same P to the
vector x. Then

PΦP = Φ̃ = diag(ϕ̃1, . . . , ϕ̃n), ϕ̃1 = sgn(‖x‖Φ),
(Px)H(PΦP)(Px) = xHPTPΦPPx = xHΦx,

i.e. the vector Px fulfils the condition (2.11).
If a given vector x ∈ �

n has its hyperbolic energy equal to zero with respect to a

given diagonal matrix Φ then there exist a matrix U ∈ �
n×n and a diagonal matrix

D ∈ �
n×n such that all components of the vector Ux are zero except the first and

the matrix UD is hyperexchange with respect to Φ; see Theorem 4.3 in [5].

3. Hyperbolic singular value decomposition (HSVD)

3.1. Existence of HSVD.
In the following, we assume that for a given A ∈ �

n×m and a given Φ =
diag(ϕ1, . . . , ϕn), ϕi = ±1, the matrix AΦAH has a full rank, i.e. rank(AΦAH) =
min(n, m). Let us note that a similar theorem is also valid without this assumption,

but then it is necessary to introduce diagonal matrices Φ with diagonal entries ±1
and 0 and to extend the definition of the hyperexchange and hypernormal matrices in
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this sense. For the proof of Theorem 3.1, see [8]. The proof of the general existence

theorem can be found in [1], [7].

Theorem 3.1. Let Φ be an m ×m diagonal matrix with diagonal entries ±1.
Let A ∈ �

n×m be an n×m rectangular matrix such that rank(AΦAH) = min(n, m).
Then there exist matrices U ∈ �

n×n , V ∈ �
m×m and S ∈ �

n×m such that U is a
unitary matrix, V is a hyperexchange matrix with respect to Φ, i.e. VHΦV = Φ̂,
where Φ̂ is again an m × m diagonal matrix with diagonal entries ±1 (generally
different from Φ), and S is a rectangular diagonal matrix with real positive diagonal
entries. For these matrices, the following equation holds:

(3.1) A = USVH.

Definition 3.1. The decomposition (3.1) is called the hyperbolic singular value
decomposition of the matrix A. Diagonal elements of the matrix S are called the
hyperbolic singular values of the matrix A.

������ 3.1. Since AΦAH = USΦ̂STUH and U is a unitary matrix, the
diagonal elements of the matrix SΦ̂ST are the eigenvalues of the matrix AΦAH and
the columns of the matrix U are the corresponding eigenvectors.

3.2. An algorithm of HSVD.
The classical algorithm for the singular value decomposition (SVD) of a given

rectangular matrix A ∈ �
n×m , n > m (see for example [3]) consists of two steps.

By using Householder transformations, the given rectangular matrix is reduced to

the upper bidiagonal form. Then this bidiagonal form is iteratively diagonalized by
a sequence of Givens transformations.

The hyperbolic singular value decomposition works similarly. Let a rectangular
matrix A ∈ �

n×m be given. Let Φ be an m ×m diagonal matrix with entries ±1
and let the rank(AΦAH) = min(n, m) = l. Our aim is to find a hyperbolic singular
value decomposition (3.1). From this formula we see that

S = UHA(VH)−1.

We substitute the exact form of (VH)−1 (see (2.3)) and obtain

(3.2) S = UHAΦVΦ̂.

Let us denote Ŝ = SΦ̂, Â = AΦ. Then the formula (3.2) has the form

(3.3) Ŝ = UHÂV.
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The idea is simple now. We will transform the matrix Â to the diagonal form Ŝ
using orthogonal transformations from the left and hyperbolic transformations from
the right.

������ 3.2. By using (3.3) we obtain

(3.4) ŜΦ̂ŜH = UHÂVΦ̂VHÂHU = UHÂΦÂHU = UHAΦAHU,

therefore the eigenvalues of the diagonal matrix ŜΦ̂ŜT are eigenvalues of AΦAH,
i.e. hyperbolic singular values of A.

Following the classical SVD algorithm, we divide our HSVD algorithm into two

steps. In the first, we will reduce the matrix Â ∈ �
n×m into the lower (for n � m)

or upper (for n > m) bidiagonal matrix B.

Algorithm 3.1 a (n � m).
Set

A0 = Â, Φ0 = Φ, l = min(n, m) = n.

For k = 1, 2, . . . , l − 2, generate a sequence of matrices

Ak =MkAk−1Hk,

where Hk is the hyperbolic Householder matrix which annihilates the (k, k + 1), . . . ,
(k, m) elements of the k-th row of Ak−1. Mk is the Householder transformation

matrix which annihilates the elements (k+2, k), . . . , (n, k) of the k-th column of the
matrix Ak−1Hk. Moreover, we set (Hk is a hyperexchange matrix)

Φk = HHkΦk−1Hk.

Then

1. If n < m, we have to continue and for k = l − 1, l generate matrices

Ak = Ak−1Hk,

where Hk is the hyperbolic Householder matrix which annihilates the (k, k+1),

. . . , (k, m) elements of Ak−1. Moreover,

Φk = HHkΦk−1Hk.

We set
B = Al, Φ̃ = Φl.
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2. If n = m, we generate

Al−1 = Al−2Hl−1,

where Hl−1 is the hyperbolic Householder matrix which annihilates the
(l − 1, l)-th element of Al−2. We set

B = Al−1, Φ̃ = Φl−1 = HHl−1Φl−2Hl−1.

Algorithm 3.1b (n > m).
Set

A0 = Â, Φ0 = Φ, l = min(n, m) = m.

For k = 1, 2, . . . , l − 2, generate a sequence of matrices

Ak =MkAk−1Hk,

where Hk is the hyperbolic Householder matrix which annihilates the (k, k + 2),
. . . , (k, m) elements of the k-th row of Ak−1. Mk is the Householder transformation

matrix which annihilates the elements (k+1, k), . . . , (n, k) of the k-th column of the
matrix Ak−1Hk. Moreover, we set (Hk is a hyperexchange matrix)

Φk = HHkΦk−1Hk.

For k = l− 1, l generate matrices

Ak =MkAk−1,

whereMk is the Householder matrix which annihilates the (k + 1, k), . . . , (n, k) ele-

ments of Ak−1. We set
B = Al, Φ̃ = Φl−2.

In general, after l steps we obtain the matrix B in the lower (by Algorithm 3.1 a)
or upper (by Algorithm 3.1 b) bidiagonal form:

(3.5) B =MHÂH,

where

M =M1M2 . . .Ml−2 for n � m,

M =M1M2 . . .Ml for n > m,

H =H1H2 . . .Hl−2 for n > m,

H =H1H2 . . .Hl−1 for n = m,

H =H1H2 . . .Hl for n < m.
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The matrix M is a unitary matrix, the matrix H is a hyperexchange matrix with
respect to the original Φ:

HHΦH = Φ̃.

������ 3.3. The resulting matrix B ∈ � l×l in (3.5) (we have omitted the zero
rows and columns) has the forms

B =




n � m

x 0 . . . 0
x x 0 0

0 x x
. . . 0

. . .
. . . 0

0 . . . 0 x x




, B =




n > m

x x 0 . . . 0
0 x x 0

0
. . .

. . . 0

x x

0 . . . 0 x




.

In the second step of the HSVD algorithm we will iteratively diagonalize the
bidiagonal matrix B.

Algorithm 3.2.
Set

B1 = B, Φ1 = Φ̃.

For k = 1, 2, . . . construct a sequence of matrices

(3.6) Bk+1 =GHkBkTk,

where Gk is a unitary matrix,

Gk =G
(k)
1,2G

(k)
2,3 . . .G(k)l−1,l,

and G(k)j,j+1, j = 1, . . . , l− 1 are the matrices of the Givens rotation which are chosen
in such a way that for k → ∞ the sequence of matrices Bk converges to a diagonal

matrix. The matrix Tk is a hyperexchange matrix of the (classical or hyperbolic)
Givens rotation which ensures that the matrix Bk+1 remains in the lower bidiagonal

form.
We set

Φk+1 = THkΦkTk.

If the matrix Bk+1Φk+1BHk+1 is not yet in the diagonal form (with the prescribed
precision), we enlarge k and continue at (3.6). If it is already diagonal, we set

Ŝ = Bk+1, Φ̂ = Φk+1,

G = G1G2 . . .Gk+1, T = T1T2 . . .Tk+1.
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������ 3.4. The definition of the matrices of Givens rotations Gj,j+1, j =

1, . . . , l − 1 is based on a variant of the QR algorithm with shifts. The strategy is
the same as in the case of the classical SVD, see [9].

By performing Algorithm 3.2 we obtain the decomposition

Ŝ = GHBT,

where G is a unitary matrix, T is a hyperexchange matrix:

THΦ̃T = Φ̂.

Hyperbolic singular values of the original matrix A are the diagonal entries of the
matrix ŜΦ̂ŜT (see (3.4)).
Finally, let us mention some applications of the HSVD algorithm. By using the

hyperbolic transformations approach, some problems can be solved concerning re-

gression updating, see [2]. In various time-series problems, one is interested in chang-
ing the relationship between variables. A regression model with a fixed number of

terms, as it moves over a series of data, generates a “window” on the sample, with
a new observation added and an old one deleted, as the window moves to the next

point in the series.
The hyperbolic singular value decomposition has also a number of signal processing

applications, e.g. recursive digital filtering techniques, see [4].
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