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Abstract. We consider two quasistatic problems which describe the frictional contact
between a deformable body and an obstacle, the so-called foundation. In the first problem
the body is assumed to have a viscoelastic behavior, while in the other it is assumed to
be elastic. The frictional contact is modeled by a general velocity dependent dissipation
functional. We derive weak formulations for the models and prove existence and uniqueness
results. The proofs are based on the theory of evolution variational inequalities and fixed-
point arguments. We also prove that the solution of the viscoelastic problem converges
to the solution of the corresponding elastic problem, as the viscosity tensor converges to
zero. Finally, we describe a number of concrete contact and friction conditions to which
our results apply.
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ditions
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1. Introduction

Frictional contact between deformable bodies can be frequently found in industry
and everyday life. The contact of the braking pads with the wheels, the tire with the

road, the piston with the shirt, a shoe with the floor, are just four simple examples.
For this reason, considerable progress has been made with the modeling and analysis

of contact problems, and the engineering literature concerning this topic is rather
extensive.

An early attempt at the study of frictional contact problems within the framework

of variational inequalities was made in [9]. Excellent references on analysis and
numerical approximation of variational inequalities arising from contact problems
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are [14] and [15]. The mathematical, mechanical and numerical state of the art can

be found in the proceedings [23] and in the special issue [26]. Only recently, however,
have the quasistatic and dynamic problems been considered. The reason lies in the
considerable difficulties that the process of frictional contact presents in the modeling

and analysis, because of the complicated surface phenomena involved.

Quasistatic processes arise when the forces applied to a system vary slowly in time

so that acceleration is negligible. Quasistatic contact problems with normal compli-
ance and friction have been considered in [3], [4], [19] and more recently in [20], within

linearized elasticity. The existence of a weak solution to the quasistatic Signorini’s
contact problem with friction for elastic materials has been established in [8]. The

variational analysis of some quasistatic frictional contact problems can be found for
instance in [24], [25], [27], within nonlinear viscoelasticity. There, the problems were

formulated as evolution variational inequalities for which existence and uniqueness
results were obtained. Numerical analysis including error estimates for semi-discrete

and fully discrete schemes in the study of quasistatic contact problems with vis-
coelastic materials can be found in [7], [12]. Existence and uniqueness results for
dynamic frictional contact problems involving viscoelastic materials have been ob-

tained in [16], [17]. There, one of the major mathematical difficulties of the problems
consists in Signorini’s boundary conditions formulated in terms of displacements. Dy-

namic contact problems with unilateral contact conditions formulated in velocities
were analyzed in [18] and [10] in the study of viscoelastic and thermoviscoelastic

materials, respectively.

In this paper we investigate two mathematical models for the quasistatic process

of frictional contact between a deformable body and an obstacle, the so-called foun-
dation. In the first problem we assume that the body has a viscoelastic behavior. In

the other, we assume that the body is elastic. We denote by u = (ui) the displace-
ment field, by σ = (σij) the stress field and ε(u) = (εij(u)) will represent the small

strain tensor. For the viscoelastic body we use a linear Kelvin-Voigt constitutive
law, i.e.

(1.1) σij = aijkl εkl(u) + bijkl εkl(u̇),

where A = (aijkl) is the elasticity tensor and B = (bijkl) is the viscosity tensor. Here

and everywhere in the sequel the dot above represents the time derivative.

We also model the behavior of the elastic body with the linear elastic constitutive

law

(1.2) σij = aijkl εkl(u).
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Finally, we model the frictional contact with a subdifferential boundary condition of

the form

(1.3) u ∈ U, ϕ(v) − ϕ(u̇) � −σν (v − u̇) ∀v ∈ U

in which U represents the set of contact admissible test functions, σν denotes the
Cauchy stress vector on the contact boundary, and ϕ is a given convex function.

The inequality in (1.3) holds almost everywhere on the contact surface. Examples
and detailed explanations of inequality problems in contact mechanics which lead

to boundary conditions of this form can be found in the monograph [22] and more
recently in [28]. We note however that, in a variational form, the frictional problems

we study here include a linear subspace as the set of admissible displacement fields.
Therefore, our results do not apply to the study of frictional problems involving

unilateral contact conditions.
The present paper serves two purposes. The first purpose is to provide the vari-

ational analysis of the mechanical problems and to show the existence of a unique
solution to each model. The other is to study the behavior of the solution of the

viscoelastic problem when the viscosity operator converges to zero, and to establish
the link with the corresponding solution of the elastic problem.
The paper is organized as follows. In Section 2 we introduce some notation and

preliminaries. In Section 3 we state the mechanical problem, i.e. the quasistatic prob-
lem for viscoelastic materials (1.1) with the general frictional contact condition (1.3),

and the quasistatic problem for elastic materials (1.2) with the same frictional con-
tact condition (1.3). Then, we list the assumptions imposed on the problem data

and derive variational formulations to the problems. In Section 4 we prove our main
existence and uniqueness results, Theorem 4.1 and Theorem 4.2. The proof of these

theorems are based on results concerning evolutionary variational inequalities and
fixed point arguments. In Section 5 we prove a convergence result which states that

the solution of the viscoelastic problem converges to the solution of the elastic prob-
lem, as the viscosity tensor converges to zero. Finally, in Section 6, we present a

number of concrete examples of frictional contact boundary conditions which may
be cast in the abstract form (1.3) and to which our result apply.

2. Notation and preliminaries

In this short section, we present the notation we will use and some preliminary
materials. For furthur details we refer the reader to [9], [13], [22].

We denote by Sd the space of second order symmetric tensors on �d (d = 2, 3);
“ · ” and | · | will represent the inner product and the Euclidean norm on �d and Sd,
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respectively. Thus,

u · v = uivi, |v| = (v · v)1/2, ∀u, v ∈ �d ,

σ · τ = σijτij , |τ | = (τ · τ )1/2, ∀σ, τ ∈ Sd.

Here and below, the indices i and j run between 1 and d, the summation convention

over repeated indices is used and the index that follows a comma indicates the partial
derivative with respect to the corresponding component of the independent variable.

Let Ω ⊂ �
d be a bounded domain with a Lipschitz continuous boundary Γ. We

also use the following notation:

H = {u = (ui) | ui ∈ L2(Ω)},
H = {σ = (σij) | σij = σji ∈ L2(Ω)},

H1 = {u = (ui) | ui ∈ H1(Ω)},
H1 = {σ ∈ H | σij,j ∈ H}.

The spaces H , H, H1 and H1 are real Hilbert spaces endowed with inner products
given by

(u, v)H =
∫

Ω
uivi dx,

(σ, τ )H =
∫

Ω
σijτij dx,

(u, v)H1 = (u, v)H + (ε(u), ε(v))H,

(σ, τ )H1 = (σ, τ )H + (Divσ,Div τ )H ,

respectively, where ε : H1 → H and Div : H1 → H are the deformation and the
divergence operators, respectively, defined by

ε(u) = (εij(u)), εij(u) =
1
2
(ui,j + uj,i), Divσ = (σij,j).

The associated norms on the spaces H , H, H1 and H1 are denoted by | · |H , | · |H,
| · |H1 and | · |H1 , respectively.
Since the boundary Γ is Lipschitz continuous, the unit outward normal vector ν

on the boundary is defined a.e. For every vector field v ∈ H1 we use the notation v

to denote the trace γv of v on Γ, and we denote by vν and vτ the normal and the
tangential components of v on the boundary given by

(2.1) vν = v · ν, vτ = v − vνν.
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For a regular (say C1) stress field σ, the application of its trace on the boundary

to ν is the Cauchy stress vector σν. We define, similarly, the normal and tangential
components of the stress on the boundary by the formulas

(2.2) σν = (σν) · ν, στ = σν − σνν,

and we recall that the following Green’s formula holds:

(2.3) (σ, ε(v))H + (Divσ, v)H =
∫

Γ
σν · v da ∀v ∈ H1.

Finally, for every real Hilbert space X we use the classical notation for the spaces

Lp(0, T, X) and W k,p(0, T, X), 1 � p � +∞, k = 1, 2, . . .

3. Problems statement and variational formulations

In this section we describe the contact problems, list the assumptions imposed on
the data and derive variational formulations.

The physical setting is as follows. A deformable body occupies a domain Ω and

is acted upon by given forces and tractions and, as a result, its mechanical state
evolves over the time interval [0, T ], T > 0. We assume that the boundary Γ of Ω is

partitioned into three disjoint measurable parts Γ1, Γ2 and Γ3, such that measΓ1 > 0.
The body is clamped on Γ1 × (0, T ) and surface tractions of density f2 act on Γ2 ×
(0, T ). The solid is in frictional contact with a rigid obstacle on Γ3 × (0, T ) and
this is where our main interest lies. Moreover, a volume force of density f0 acts on

the body in Ω× (0, T ). We assume a quasistatic process and use (1.3) as boundary
contact conditions. With these assumptions, we have

Divσ + f0 = 0 in Ω× (0, T ),(3.1)

u = 0 on Γ1 × (0, T ),(3.2)

σν = f2 on Γ2 × (0, T ),(3.3)

u ∈ U, ϕ(v)− ϕ(u̇) � −σν(v − u̇) ∀v ∈ U on Γ3 × (0, T ).(3.4)

To complete the model we assume first that the body is viscoelastic, i.e. we
choose (1.1) as the constitutive law and prescribe initial displacement field. Thus

σ = Aε(u) + Bε(u̇) in Ω× (0, T ),(3.5)

u(0) = u0 in Ω.(3.6)
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To conclude, the mechanical problem of frictional contact of a viscoelastic body may

be formulated classically as follows.

Problem P1. Find a displacement field u : Ω × [0, T ] → �
d and a stress field

σ : Ω× [0, T ]→ Sd which satisfy (3.1)–(3.6).

Next, we assume that the body is linear elastic, i.e. we choose (1.2) as the consti-

tutive law:

(3.7) σ = Aε(u) in Ω× (0, T ).

The classical formulation of the mechanical problem of frictional contact of an elastic
body is the following.

Problem P2. Find a displacement field u : Ω × [0, T ] → �
d and a stress field

σ : Ω× [0, T ]→ Sd which satisfy (3.1)–(3.4), (3.6) and (3.7).

To obtain variational formulations of the contact problems P1 and P2, we suppose

that U ⊂ H1, U + D(Ω)d ⊂ U , ϕ : Γ3 × �
d → � and, to accommodate (3.2) and

(3.4), we define

(3.8) V = {v ∈ H1 | v = 0 on Γ1} ∩ U.

Let j : V → (−∞,+∞] be the functional

(3.9) j(v) =





∫

Γ3

ϕ(v) da if ϕ(v) ∈ L1(Γ3),

+∞ otherwise.

We suppose everywhere in the sequel that

V is a closed subspace of H1,(3.10)

j is a convex lower semicontinuous function on V such that j �≡ +∞.(3.11)

We also assume that the elasticity and viscosity tensors possess the usual properties
of ellipticity and symmetry, i.e.





(a) A : Ω× Sd → Sd;

(b) aijkh ∈ L∞(Ω);

(c) Aσ · τ = σ · Aτ ∀σ, τ ∈ Sd, a.e. in Ω;

(d) there exists mA > 0 such that

Aτ · τ � mA |τ |2 ∀τ ∈ Sd, a.e. in Ω,

(3.12)
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(a) B : Ω× Sd → Sd;

(b) bijkh ∈ L∞(Ω);

(c) Bσ · τ = σ · Bτ ∀σ, τ ∈ Sd, a.e. in Ω;

(d) there exists mB > 0 such that

Bτ · τ � mB |τ |2 ∀τ ∈ Sd, a.e. in Ω.

(3.13)

The body forces and surface tractions satisfy

(3.14) f0 ∈ W 1,2(0, T ;H), f2 ∈ W 1,2(0, T ;L2(Γ2)
d),

and the initial displacement

(3.15) u0 ∈ V.

Since measΓ1 > 0, Korn’s inequality holds and thus there exists a positive con-
stant CK which depends only on Ω and Γ1, such that

(3.16) |ε(u)|H � CK |u|H1 ∀u ∈ V.

A proof of Korn’s inequality may be found in Nečas and Hlaváček [21], p. 79. For
u, v ∈ V let

(3.17) (u, v)V = (Aε(u), ε(v))H, |u|V = (u, u)1/2V .

Using now (3.12) and (3.16) we obtain that (·, ·)V is an inner product on V and,

moreover, | · |V and | · |H1 are equivalent norms on V . Therefore, (3.10) implies that
(V, | · |V ) is a real Hilbert space.
Next, using Riesz’s representation theorem, we denote by f(t) the element of V

given by

(3.18) (f(t), v)V = (f0(t), v)H + (f2(t), v)L2(Γ2)d ∀v ∈ V, t ∈ [0, T ],

and we note that conditions (3.14) imply

(3.19) f ∈ W 1,2(0, T ;V ).

Finally, in the study of the elastic problem P2 we use an additional assumption on

the initial displacement u0 ∈ V , that is

(3.20) (u0, v)V + j(v) � (f(0), v)V ∀v ∈ V.
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Let t ∈ [0, T ]. Using (2.1)–(2.3), it is straightforward to show that if u and σ are

two regular functions satisfying (3.1)–(3.4), then u(t) ∈ V , σ(t) ∈ H1 and

(3.21)
(
σ(t), ε(v) − ε(u̇(t))

)
H + j(v)− j(u̇(t)) � (f(t), v − u̇(t))V ∀v ∈ V.

Keeping in mind (3.21), we obtain the following variational formulations of the me-
chanical problems P1 and P2, denoted P′1 and P

′
2, respectively.

Problem P′1. Find a displacement field u : Ω × [0, T ] → V and a stress field

σ : Ω× [0, T ]→ H1 such that

σ(t) = Aε(u(t)) + Bε(u̇(t)) ∀t ∈ [0, T ],(3.22)
(
σ(t), ε(v)− ε(u̇(t))

)
H + j(v)− j(u̇(t)) � (f(t), v − u̇(t))V(3.23)

∀v ∈ V, t ∈ [0, T ],
u(0) = u0.(3.24)

Problem P′2. Find a displacement field u : Ω × [0, T ] → V and a stress field

σ : Ω× [0, T ]→ H1 such that

σ(t) = Aε(u(t)) ∀t ∈ [0, T ],(3.25)
(
σ(t), ε(v)− ε(u̇(t))

)
H + j(v)− j(u̇(t)) � (f(t), v − u̇(t))V(3.26)

∀v ∈ V, a.e. t ∈ (0, T ),
u(0) = u0.(3.27)

The well-posedness of the variational problems P′1 and P
′
2 is discussed in the next

section, where existence and uniqueness results in the study of these problems are

established.

4. Existence and uniqueness results

The unique solvability of problems P′1 and P
′
2 follows from the followings results.

Theorem 4.1. Assume that (3.10)–(3.15) hold. Then there exists a unique

solution {u, σ} of the problem P′1. Moreover, the solution satisfies

(4.1) u ∈ W 2,2(0, T ;V ), σ ∈ W 1,2(0, T ;H1).
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Theorem 4.2. Assume that (3.10)–(3.12), (3.14), (3.15) and (3.20) hold. Then
there exists a unique solution {u, σ} of the problem P′2. Moreover, the solution
satisfies

(4.2) u ∈ W 1,2(0, T ;V ), σ ∈ W 1,2(0, T ;H1).

We conclude that, under the assumptions (3.10)–(3.15), the viscoelastic contact
problem P1 has a unique weak solution which satisfies (4.1), and under the assump-

tions (3.10)–(3.12), (3.14), (3.15) and (3.20), the elastic contact problem P2 has a
unique weak solution which satisfies (4.2).

The proof of Theorem 4.1 is based on fixed point arguments, similar to those used
in [24], [28], and is carried out in several steps. We suppose in the sequel that (3.10)–

(3.15) hold and everywhere in this section C will denote a positive constant whose
value may change from line to line. In the first step, we assume that the elastic part

of the stress is given and solve the corresponding variational problem for the velocity
field. More precisely, we have the following result.

Lemma 4.3. For all η ∈ W 1,2(0, T ;H) there exists a unique solution vη ∈
W 1,2(0, T ;V ) such that

(
B ε(vη(t)), ε(v) − ε(vη(t))

)
H +

(
η(t), ε(v)− ε(vη(t))

)
H + j(v)− j(vη(t))(4.3)

� (f(t), v − vη(t))V ∀v ∈ V, t ∈ [0, T ].

�����. Let η ∈ W 1,2(0, T ;H) and t ∈ [0, T ]. It follows from classical results
for elliptic variational inequalities (see e.g. [5]) that there exists a unique element
vη(t) ∈ V such that

b(vη(t), v − vη(t)) +
(
η(t), ε(v) − ε(vη(t))

)
H + j(v)− j(vη(t))(4.4)

� (f(t), v − vη(t))V ∀v ∈ V,

where b : V × V → � is the bilinear form on V × V given by

(4.5) b(u, v) = (Bε(u), ε(v))H ∀u, v ∈ V.

Since from (4.4) and (4.5) we obtain (4.3), it remains to prove the regularity vη ∈
W 1,2(0, T ;V ) of the solution. Let t1, t2 ∈ [0, T ]. For the sake of simplicity in writing,
we denote vη(ti) = vi, η(ti) = ηi, f(ti) = fi, for i = 1, 2. Using (4.3), we derive the

relation

(Bε(v1)− Bε(v2), ε(v1)− ε(v2))H � (f1 − f2, v1 − v2)V

+ (η1 − η2, ε(v1)− ε(v2))H.
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Then we use the assumptions (3.13) and (3.16) to derive

(4.6) |v1 − v2|V � C(|f1 − f2|V + |η1 − η2|H).

Keeping in mind the regularities f ∈ W 1,2(0, T ;V ) and η ∈ W 1,2(0, T ;H), we deduce
from (4.6) that vη ∈ W 1,2(0, T ;V ). �

Consider now the closed subset of W 1,2(0, T ;H) defined by

W = {η ∈ W 1,2(0, T ;H) | η(0) = Aε(u0)}.

Lemma 4.3, (3.12) and (3.15) allow us to consider the operator Λ: W →W defined
by

Λη(t) = Aε(uη(t)),(4.7)

uη(t) =
∫ t

0
vη(s) ds+ u0(4.8)

for all t ∈ [0, T ] where, for every η ∈ W , vη ∈ W 1,2(0, T ;V ) denotes the solution of
the variational inequality (4.3).

We have the following result.

Lemma 4.4. The operator Λ has a unique fixed point η∗ ∈ W .

�����. Let η1, η2 ∈ W and let t ∈ [0, T ]. From the definitions (4.7), (4.8) and
(3.12) we have

|Λη1(t)− Λη2(t)|H � C

∫ t

0
|vη1(s)− vη2(s)|V ds,(4.9)

∣∣∣∣
d
dt
(Λη1(t)− Λη2(t))

∣∣∣∣
H

� C|vη1 (t)− vη2(t)|V .(4.10)

An argument similar to that in the proof of (4.6) shows that

(4.11) |vη1(t)− vη2(t)|V � C|η1(t)− η2(t)|H � C

∫ t

0
|η̇1(s)− η̇2(s)|H ds.

Combining (4.9)–(4.11) we find

|Λη1(t)− Λη2(t)|2H � C

∫ t

0
|η1(s)− η2(s)|2H ds,

∣∣∣∣
d
dt
(Λη1(t)− Λη2(t))

∣∣∣∣
2

H
� C

∫ t

0
|η̇1(s)− η̇2(s)|2H ds.
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Iterating the last two inequalities n times we infer

|Λnη1 − Λnη2|2W 1,2(0,T ;H) � Cn T n

n!
|η1 − η2|2W 1,2(0,T ;H).

Since lim
n→∞

CnT n/n! = 0, the previous inequality implies that for n large enough,

the power Λn of Λ is a contraction in W . It follows now from Banach’s fixed point
theorem that there exists a unique element η∗ ∈ W such that Λnη∗ = η∗. Moreover,

since Λn(Λη∗) = Λ(Λnη∗) = Λη∗, we deduce that Λη∗ is also a fixed point ot the
operator Λn. We conclude by the uniqueness of the fixed point that Λη∗ = η∗,

which shows that η∗ is a fixed point of Λ. The uniqueness of the fixed point of
the operator Λ results straigtforward from the uniquness of the fixed point of the
operator Λn. �

We now have all the ingredients to prove Theorem 4.1.

����� of Theorem 4.1. Existence. Let η∗ ∈ W be the fixed point of Λ and let
uη∗ be the function defined by (4.8) for η = η∗. We define a function ση∗ by

(4.12) ση∗(t) = Aε(uη∗(t)) + Bε(u̇η∗(t)) ∀t ∈ [0, T ].

Since η∗(t) = Λη∗(t) = Aε(uη∗(t)) and vη∗(t) = u̇η∗(t) for all t ∈ [0, T ], it follows
from (4.3) and (4.12) that

(ση∗(t), ε(v) − ε(u̇η∗(t))H + j(v)− j(u̇η∗(t)) � (f(t), v − u̇η∗(t))V(4.13)

∀v ∈ V, t ∈ [0, T ].

Taking v = u̇η∗(t)±ϕ in (4.13) where ϕ ∈ D(Ω)d and using (3.18) we find

(4.14) Divση∗(t) + f0(t) = 0 ∀t ∈ [0, T ].

It follows from Lemma 4.3, (4.8) and (3.15) that uη∗ ∈ W 2,2(0, T ;V ). Moreover,

(4.12), (3.12), (3.13), (4.14) and (3.14) yield ση∗ ∈ W 1,2(0, T ;H1). Keeping in
mind (4.12), (4.13) and (4.8), we deduce that {uη∗ , ση∗} is a solution to problem P′1
which satisfies (4.1).

Uniqueness. To prove the uniqueness part, let {ui, σi} be two solutions of (3.24)–
(3.26) with regularity (4.1), i = 1, 2. We have

(
Bε(u̇i(t)), ε(v) − ε(u̇i(t))

)
H +

(
Aε(ui(t)), ε(v) − ε(u̇i(t))

)
H + j(v)− j(u̇i(t))

� (f(t), v − u̇i(t))V ∀v ∈ V, t ∈ [0, T ],

351



which implies

(
Bε(u̇1(t)) − Bε(u̇2(t)), ε(u̇1(t)) − ε(u̇2(t))

)
H

�
(
Aε(u1(t))−Aε(u2(t)), ε(u̇1(t))− ε(u̇2(t))

)
H ∀t ∈ [0, T ].

Since u1(0) = u2(0) = u0, using (3.17), (3.13) and the previous inequality, we deduce
that

(4.15) |u̇1(t)− u̇2(t)|V � C

∫ t

0
|u̇1(s)− u̇2(s)|V ds ∀t ∈ [0, T ].

The uniqueness part in Theorem 4.1 is now a consequence of (4.15), (3.24) and (3.22).

�

We turn now to the proof of Theorem 4.2. To this end, we recall the following

existence and uniqueness result.

Theorem 4.5. Let (V, (·, ·)V ) be a real Hilbert space and let j : V → (−∞, +∞]
be a convex lower semicontinuous functional. Assume that j �≡ ∞, i.e. the effective
domain of j, defined by D(j) = {v ∈ V | j(v) � +∞}, is not empty. Let f ∈
W 1,2(0, T ;V ) and u0 ∈ V be such that

(4.16) sup
v∈D(j)

{(f(0), v)V − (u0, v)V − j(v)} < +∞.

Then there exists a unique element u ∈ W 1,2(0, T ;V ) which satisfies

(4.17) (u(t), v − u̇(t))V + j(v)− j(u̇(t)) � (f(t), v − u̇(t))V

for all v ∈ V , a.e. t ∈ (0, T ), and

(4.18) u(0) = u0.

Theorem 4.5 has been proved in [6], p. 117, using arguments of the theory of

evolution equations with maximal monotone operators. A version of this theorem
is considered in [11]. There, the proof is based on a time-discretization method. A

generalization of Theorem 4.3 in the case when j depends on the solution, i.e. in the
case when j = j(u, v) has been established recently in [20].

We use Theorem 4.5 to prove Theorem 4.2.
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����� of Theorem 4.2. Note that (3.20) implies (4.16) and the assump-

tions (3.10)–(3.12), (3.14) and (3.15) allow us to use Theorem 4.3. Using (4.17),
(4.18) and (3.17), we deduce the existence of a unique function u ∈ W 1,2(0, T ;V )
which satisfies (3.27) and

(
A ε(u(t)), ε(v) − ε(u̇(t))

)
H + j(v)− j(u̇(t)) � (f(t), v − u̇(t))V(4.19)

∀v ∈ V, a.e. t ∈ (0, T ).

Let σ be given by (3.25). Using (4.19) we obtain (3.26) and from (3.12) it follows
that σ ∈ W 1,2(0, T ;H). We use now in (3.26) an argument similar to that used in
the proof of Theorem 4.1 to obtain σ ∈ W 1,2(0, T ;H1). This concludes the existence
part of Theorem 4.2. The uniqueness part results from the uniqueness of the element

u ∈ W 1,2(0, T ;V ) which solves (4.19), guaranteed by Theorem 4.5. �

5. A convergence result

In this section we investigate the behavior of the solution to problem P′1 when

the viscosity operator converges to zero. To this end, we assume in the sequel that
(3.10)–(3.15) and (3.20) hold and θ > 0. We replace in (3.22) the operator B by θB
to obtain the following viscoelastic problem.

Problem P′1θ. Find a displacement field uθ : Ω× [0, T ] −→ V and a stress field

σθ : Ω× [0, T ] −→ H1 such that

σθ(t) = Aε(uθ) + θBε(u̇θ) ∀t ∈ [0, T ],(5.1)
(
σθ(t), ε(v)− ε(u̇θ(t))

)
H + j(v)− j(u̇θ(t)) � (f(t), v − u̇θ(t))V(5.2)

∀v ∈ V, t ∈ [0, T ],
uθ(0) = u0.(5.3)

By virtue of Theorem 4.1, it follows that problem P′1θ has a unique solution

{uθ, σθ} which satisfies (4.1). We denote in the sequel by {u, σ} the solution of
the elastic problem P′2 given by Theorem 4.2. Here and below, C denotes various

positive constants which are independent of θ.
The main result of this section is the following.

Theorem 5.1. The following estimates hold:

|uθ(t)− u(t)|V � C
√

θ |u̇|L2(0,T ;V ) ∀t ∈ [0, T ],(5.4)

|σθ(t)− σ(t)|H1 � C
√

θ (|u̇|L2(0,T ;V ) +
√

θ|u̇(t)|V ),(5.5)

a.e. on (0, T ).
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�����. Let t ∈ [0, T ]. To simplify the notation, we will not indicate explicitly
the dependence of various functions on time. Using (5.1) and (5.2), we obtain

θ(Bε(u̇θ), ε(u̇)− ε(u̇θ))H + (Aε(uθ), ε(u̇)− ε(u̇θ))H + j(u̇)− j(u̇θ)(5.6)

� (f , u̇− u̇θ)V a.e. on (0, T ),

and, using (3.25) and (3.26), we deduce

(5.7) (Aε(u), ε(u̇θ)− ε(u̇))H + j(u̇θ)− j(u̇) � (f , u̇− u̇θ)V a.e. on (0, T ).

It follows from (5.6), (5.7) and (3.17) that

θ(Bε(u̇θ), ε(u̇)− ε(u̇θ))H + (uθ − u, u̇− u̇θ)V � 0 a.e. on (0, T ),

which implies

θ(Bε(u̇θ)− Bε(u̇), ε(u̇θ)− ε(u̇))H + (uθ − u, u̇θ − u̇)V(5.8)

� θ(Bε(u̇), ε(u̇)− ε(u̇θ))H a.e. on (0, T ).

Integrating (5.8) over [0, t] and using (5.3), (3.27) and (3.13) yields

θmB

∫ t

0
|ε(u̇θ)− ε(u̇)|2H ds+

1
2
|uθ(t)− u(t)|2V(5.9)

� θ

∫ t

0
|Bε(u̇)|H| ε(u̇θ)− ε(u̇)|H ds.

Using now the inequality

ab � a2

2mB
+

mBb2

2
,

from (5.9) we find

(5.10) θmB

∫ t

0
|ε(u̇θ)− ε(u̇)|2H ds+ |uθ(t)− u(t)|2V � θ

mB

∫ t

0
|Bε(u̇)|2H ds.

The last inequality implies

(5.11) |uθ(t)− u(t)|V �
√

θ√
mB

|Bε(u̇)|L2(0,T ;H).

The inequality (5.4) is now a consequence of (5.11).
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To prove (5.5), we note that (5.1) and (3.25) imply that

|σθ(t)− σ(t)|H � Cθ|u̇θ(t)|V + C|uθ(t)− u(t)|V ,

and, keeping in mind that

Divσθ(t) = Divσ(t) = −f0(t),

we find

(5.12) |σθ(t)− σ(t)|H1 � C(θ|u̇θ(t)|V + |uθ(t)− u(t)|V ).

Using now (5.8) and (3.13) we have

θ|u̇θ(t)− u̇(t)|V � C(|uθ(t)− u(t)|V + θ|u̇(t)|V )

and, therefore, we obtain

(5.13) θ|u̇θ(t)|V � C(|uθ(t)− u(t)|V + θ|u̇(t)|V ).

Combining (5.12) and (5.13) we infer

(5.14) |σθ(t)− σ(t)|H1 � C(|uθ(t)− u(t)|V + θ|u̇(t)|V ).

The inequality (5.5) is now a consequence of (5.14) and (5.4). �

As a consequence of the estimates (5.4)–(5.5), we obtain the convergence of the
solution {uθ, σθ} of problem P′1θ to the solution {u, σ} of problem P′2:

Corollary 5.2. The following convergences hold:

max
t∈[0,T ]

|uθ(t)− u(t)|V → 0,(5.15)

|σθ − σ|L2(0,T ;H1) → 0,(5.16)

as θ → 0+.

We conclude, by Corollary 5.2, that the weak solution of the frictional elastic
problem P2 may be approached by the weak solution of the frictional viscoelastic

problem P1 provided the coefficient of viscosity is small enough. In addition to the
mathematical interest in the convergence result (5.15), (5.16), it is of importance

from the mechanical point of view, as it indicates that the elasticity with friction
may be considered a limit case of viscoelasticity with friction.
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6. Examples of subdifferential conditions with friction

In this section we present examples of contact and dry friction laws which lead to

an inequality of the form (3.4) and such that (3.10) and (3.11) hold. We conclude, by
Theorems 4.1 and 4.2, that the relevant boundary value problem for each example

has a unique weak solution. Moreover, we note that Theorem 5.1 as well as the
convergence result presented in Corollary 5.2 hold in all the examples below.

�����	
 6.1. Bilateral contact with Tresca’s friction law. This contact condi-
tion can be found in [9], [22], and more recently in [1], [2] (see references therein for

further details). It is in the form of the following boundary condition:

(6.1)





uν = 0, |στ | � g,

|στ | < g =⇒ u̇τ = 0,

|στ | = g =⇒ u̇τ = −λστ , λ � 0
on Γ3 × (0, T ).

Here g � 0 represents the friction bound, i.e., the magnitude of the limiting friction
traction at which slip begins. The contact is assumed to be bilateral, i.e., there is no
loss of contact during the process.

The set of admissible test functions U consists of those elements of H1 whose
normal component vanishes on Γ3. We deduce from (3.8) that

V = {v ∈ H1 | v = 0 on Γ1, uν = 0 on Γ3}.

Moreover, it is straightforward to show that if {u, σ} is a pair of regular functions
satisfying (6.1) then

σν(v − u̇) � g|u̇τ | − g|vτ | ∀v ∈ U,

a.e. on Γ3 × (0, T ), and so, (3.4) holds with the choice ϕ(v) = g|vτ |. If g ∈ L∞(Γ3),

then we obtain from (3.9) that

j(v) =
∫

Γ3

g|vτ | da ∀v ∈ V.

In this case assumptions (3.10) and (3.11) hold. We conclude that our abstract
results can be applied to the viscoelastic problem (3.1)–(3.3), (3.5), (3.6), (6.1) as

well as to the elastic problem (3.1)–(3.3), (3.6), (3.7), (6.1) which have, both of them,
a unique weak solution. Moreover, the solution of the viscoelastic problem converges

to the solution of the elastic problem when the viscosity converges to zero, as follows
from Theorem 5.1.
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�����	
 6.2. Bilateral contact with viscoelastic friction condition. We consider

problems with the boundary conditions

(6.2) uν = 0, στ = −µ|u̇τ |p−1u̇τ on Γ3 × (0, T ),

where µ � 0 is the coefficient of friction and 0 < p � 1. Here, the tangential shear
is proportional to the power p of the tangential speed, which is the case when the

contact surface is lubricated with a thin layer of non-Newtonian fluid.

It is straightforward to show that if {u, σ} is a pair of regular functions satisfy-
ing (6.2), then (3.4) holds with

U = {v ∈ H1 | uν = 0 on Γ3},

and
ϕ(v) =

µ

p+ 1
|vτ |p+1.

Using (3.8) we obtain V = {v ∈ H1 | v = 0 on Γ1, uν = 0 on Γ3}. Assuming
µ ∈ L∞(Γ3), we deduce from (3.9)

j(v) =
1

p+ 1

∫

Γ3

µ|vτ |p+1 da ∀v ∈ V.

Since in this case the assumptions (3.10) and (3.11) are satisfied, we may apply
Theorem 4.1 to the mechanical problem (3.1)–(3.3), (3.5), (3.6), (6.2) and conclude

that it has a unique weak solution. Also, we may apply Theorem 4.2 to the mechan-
ical problem (3.1)–(3.3), (3.6), (3.7), (6.2) and conclude that it has a unique weak

solution.

�����	
 6.3. Viscoelastic contact with Tresca’s friction law. We consider the
contact problem with the boundary conditions

(6.3)





−σν = k|u̇ν|q−1u̇ν , |στ | � g,

|στ | < g =⇒ u̇τ = 0,

|στ | = g =⇒ u̇τ = −λστ , λ � 0
on Γ3 × (0, T ).

Here g, k � 0 and the normal contact stress depends on a power of the normal speed
(this condition may describe the motion of a body, say a wheel, on a fine granular

material, say the sand on a beach, see e.g. [27], [28]. We have U = H1, 0 < q � 1,
V = {v ∈ H1 | v = 0 on Γ1} and

ϕ(v) =
k

q + 1
|vν |q+1 + g|vτ |.
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If g ∈ L∞(Γ3) and k ∈ L∞(Γ3) then we deduce from (3.9) that

j(v) =
∫

Γ3

(
1

q + 1
k|vν |q+1 + g|vτ |

)
da ∀v ∈ V.

Assumptions (3.10) and (3.11) hold and we conclude, by our abstract existence and
uniqueness results, the existence of the unique weak solution of problems (3.1)–(3.3),

(3.5), (3.6), (6.3) and (3.1)–(3.3), (3.6), (3.7), (6.3), respectively.

�����	
 6.4. Viscoelastic contact with friction. Here, the body is moving on
sand or a granular material and the normal stress is proportional to a power of the

normal speed, while the tangential shear is proportional to a power of the tangential
speed. We choose the following boundary conditions:

(6.4) −σν = k|u̇ν |q−1u̇ν, στ = −µ|u̇τ |p−1u̇τ on Γ3 × (0, T ).

Here µ ∈ L∞(Γ3) and k ∈ L∞(Γ3) are positive functions and 0 < p, q � 1. We choose
U = H1, V = {v ∈ H1 | v = 0 on Γ1} and

ϕ(v) =
k

q + 1
|vν |q+1 +

µ

p+ 1
|vτ |p+1.

We may apply Theorem 4.1 to the viscoelastic problem (3.1)–(3.3), (3.5), (3.6), (6.4),
since assumptions (3.10) and (3.11) are satisfied. Thus, the problem has a unique

weak solution. Also, we may apply Theorem 4.2 to the viscoelastic problem (3.1)–
(3.3), (3.6), (3.7), (6.4) and conclude that it has a unique solution, too.

�����	
 6.5. Contact with normal damped response and Tresca’s friction law.

In this problem the contact condition describes the normal damped response of a thin
lubricant layer, and has recently been considered in [24], [25]. The contact pressure

depends on the velocity, but only under compression, and the contact conditions are

(6.5)





−σν = k(u̇ν)+ + p0, |στ | � g,

|στ | < g =⇒ u̇τ = 0,

|στ | = g =⇒ u̇τ = −λστ , λ � 0
on Γ3 × (0, T ).

Here g ∈ L∞(Γ3) and k ∈ L∞(Γ3) are given positive functions, p0 ∈ L∞(Γ3) and

r+ = max{r, 0}. We choose U = H1, V = {v ∈ H1 | v = 0 on Γ1} and

ϕ(v) =
k

2
((vν)+)2 + p0vν + g|vτ |.

The viscoelastic problem (3.1)–(3.3), (3.5), (3.6), (6.5) has a unique weak solution
by Theorem 4.1, since assumptions (3.10) and (3.11) are satisfied. We also conclude

by Theorem 4.2 that the elastic problem (3.1)–(3.3), (3.6), (3.7), (6.5) has a unique
weak solution.
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�����	
 6.6. Contact with normal damped response and viscoelastic friction

law. This is a version of Examples 6.2 and 6.5 above and the contact conditions are

(6.6) −σν = k(u̇ν)+ + p0, στ = −µ|u̇τ |p−1u̇τ on Γ3 × (0, T ).

Here k ∈ L∞(Γ3) and µ ∈ L∞(Γ3) are positive functions, p0 ∈ L∞(Γ3) and 0 <

p � 1. We choose U = H1, V = {v ∈ H1 | v = 0 on Γ1} and

ϕ(v) =
k

2
((vν)+)2 + p0vν +

µ

p+ 1
|vτ |p+1.

Since assumptions (3.10) and (3.11) hold, Theorem 4.1 guarantees the existence of

the unique solution of problem (3.1)–(3.3), (3.5), (3.6) (6.6), while Theorem 4.2
guarantees the existence of a unique solution of problem (3.1)–(3.3), (3.6), (3.7),

(6.6).

�
���� 6.7. In the examples above the normal pressure and tangential stress
are related to powers of the normal and tangential speeds. This is dictated by

the structure of the functional ϕ which depends only on the surface velocity. An
important extension of the theorems would allow for the additional dependence on

the displacements, such as in the normal compliance contact condition.

References

[1] A. Amassad, M. Shillor and M. Sofonea: A quasistatic contact problem for an elastic
perfectly plastic body with Tresca’s friction. Nonlinear Anal. 35 (1999), 95–109.

[2] A. Amassad, M. Sofonea: Analysis of a quasistatic viscoplastic problem involving Tresca
friction law. Discrete Contin. Dynam. Systems 4 (1998), 55–72.

[3] L.-E. Anderson: A quasistatic frictional problem with normal compliance. Nonlinear
Anal. TMA 16 (1991), 347–370.

[4] L.-E. Anderson: A global existence result for a quasistatic contact problem with friction.
Adv. Math. Sci. Appl. 5 (1995), 249–286.

[5] H. Brézis: Equations et inéquations non linéaires dans les espaces vectoriels en dualité.
Ann. Inst. Fourier 18 (1968), 115–175.
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