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Abstract. Some rigorous results connected with the conventional statistical theory of
turbulence in both the two- and three-dimensional cases are discussed. Such results are
based on the concept of stationary statistical solution, related to the notion of ensemble
average for turbulence in statistical equilibrium, and concern, in particular, the mean kinetic
energy and enstrophy fluxes and their corresponding cascades. Some of the results are
developed here in the case of nonsmooth boundaries and a less regular forcing term and for
arbitrary stationary statistical solutions.

Keywords: Navier-Stokes equations, statistical solutions, turbulence, energy cascade,
enstrophy cascade

MSC 2000 : 35Q30, 76D05, 76D06, 37L40, 76F05, 76F20

Introduction

Major advances in turbulence theory were made from a phenomenological or
heuristic point of view. The mathematical rigor, on the other hand, has lagged
behind in building a theory of turbulence from the first principles. It is our intention
here to present some recent rigorous results obtained in the direction of shortening
this gap. While it is not clear how far they can be advanced we are hopeful that the
rigorous framework of statistical solutions of the Navier-Stokes equations exploited
here can serve as an important backbone for a rigorous approach.
Most of the issues discussed in this note can be found in [15], [16], [13] and in the

book by Foias, Manley, Rosa and Temam [14], which is in great part a compilation
of previous works by the authors and their collaborators. Some of the results in
those works are developed here in the novel case of nonsmooth boundaries and a
less regular forcing term. They are also derived for arbitrary stationary statistical

*This work was partially supported by a fellowship from CNPq, Brasília, Brazil.
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solutions in the three-dimensional case, instead of only those obtained as generalized
limits of time-averages of individual weak solutions.
This note has stemmed from a series of lectures presented at the Seventh Paseky

School on Fluid Mechanics, in the Czech Republic. Due to size restrictions only
some aspects pertaining to stationary statistical turbulence are included here. We
begin with some fundamental results in the conventional theory of turbulence [4],
[18], [20], [34], [36], [39], [50]. The following sections build up the concepts and
applications connecting the mathematical theory of the Navier-Stokes equations with
the conventional theory of turbulence, addressing, in particular, the mean kinetic
energy and enstrophy fluxes and their corresponding cascades.

1. The conventional statistical theory of turbulence

For incompressible Newtonian flows with homogeneous density, the Navier-Stokes
equations, or simply NSE, written in the Eulerian representation, take the form

∂u
∂t

− ν∆u + (u ·∇)u + ∇p = f , ∇ · u = 0.

Here, u = u(x, t) denotes the velocity vector of an idealized fluid particle located at
x = (x1, x2, x3) at time t, p = p(x, t) is the kinematic pressure, f = f(x, t) represents
the mass density of volume forces, and the constant ν > 0 denotes the kinematic
viscosity of the fluid. The flow is confined to a region Ω in the physical space � 3 (or
� 2 ), which we assume independent of time.

Reynolds number and turbulence.
In a series of experiments in the late 19th century, O. Reynolds singled out a

certain nondimensional parameter as an important quantity of the complexity of
the flow. This Reynolds number takes the form Re = LU/ν, for typical large-scale
length L and velocity U . In the experiments, for small values of Re, the flow is
laminar, becoming more complicate, and eventually turbulent, as the parameter is
increased.
A simple phenomenological dimensional analysis illustrates those facts. The vis-

cous and the inertial terms have physical dimensions νU/L2 and U2/L, respec-
tively. Hence the inertial term, which is responsible for the (possibly complicate)
dynamic redistribution of energy among the flow structures, dominates precisely
when U2/L � νU/L2, i.e. when Re � 1. A more sophisticated analysis, however,
reveals that this balance actually varies among the flow structures according to their
length scales, with the dissipation dominating at the smallest scales even for high
Reynolds number flows.
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For relatively low Reynolds numbers, some “routes to chaos” can be identified
and the corresponding flows are usually termed weakly turbulent. The situation
is different in fully-developed turbulence, a somewhat vague term to characterize a
highly disorganised motion (although coherent structures may still be present) which
is local in nature, and which is active on a wide range of length scales (extending
way below those associated with the production of energy). In actual flows this fully-
developed turbulent core is usually restricted to certain subregions of the physical
space. Within this core, physical quantities are highly unpredictable, but a certain
order emerges in a statistical sense.

Ensemble averages and ergodic assumption.
In a later work O. Reynolds proposed representing the values of the physical

quantities in a turbulent flow as a sum of a regular mean part and an irregular
fluctuating part. For the characterization of the mean values, Reynolds proposed a
formal averaging operator with suitable properties. In experiments, local space or
time averages were used.
The macroscopic randomness of the motion was regarded in analogy with statis-

tical mechanics. Nowadays, it is accepted that this randomness is a consequence of
the chaotic nature of the system, ubiquitous to many other deterministic nonlinear
differential equations.
The average processes are also understood now in a different sense. Ideally, one

can think of realizing a number of experiments at nearly identical conditions and
averaging the flow properties among all the experiments. Because of the random
character of the motion, the values of, say, the instantaneous velocity vector u(n)(x, t)
at a given point x in space and at a given time t could vary widely among the
n = 1, . . . , N experiments, but the average value

U(x, t) =
1
N

N∑

n=1

u(n)(x, t)

is expected to behave in a more predictable manner. Averages, or mean values, of
physical quantities with respect to several experiments in the sense described above
are called ensemble averages. They are usually denoted by the symbol 〈 · 〉. The mean
velocity field, for instance, is usually denoted by U(x, t) = 〈u(x, t)〉. A more formal
definition of the ensemble average is made using the notion of a random variable
u(x, t) of the probability theory.
Note that the statistics of the flow is allowed to change with time, as illustrated

by the dependence on t of U(x, t). A particular case is when a statistical equilibrium
is reached and the ensemble averages are independent of t. Another case of interest
is that of decaying turbulence, which is exemplified by flows past an array of rods or
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a honeycomb in a wind tunnel: downstream from the rods or the honeycomb, one
may follow the mean flow and observe a (spatially) homogeneous turbulent behavior
as it dies out.

In pratice, one does not usually calculate ensemble averages, i.e. one does not
usually repeat the same experiment over and over again. An ergodic assumption
is usually invoked, inspired by statistical mechanics. In the case of statistical equi-
librium, with U(x, t) = U(x) independent of t, the ergodic assumption is that for
“most” individual flows u(j)(x, t), j = 1, . . . , N , the time averages along this flow
converge, as the period of the average increases, to the mean value obtained by the
ensemble average:

lim
T→∞

1
T

∫ T

0

u(j)(x, t+ s) ds = U(x) =
1
N

N∑

n=1

u(n)(x, t).

Based upon this assumption, the averages are calculated as time averages of a specific
individual flow over a period T sufficiently large.

Taylor’s statistical theory.

The intrinsic random nature of turbulent motions was clearly recognized by Tay-
lor [46], [47]. In doing so he used several probability tools, introducing in particular
the study of the two-point, second-order spatial correlations of the velocity field,
〈ui(x1)uj(x2)〉. Backed by experimental observations, Taylor [47] introduced the
concept of the homogeneous turbulence, with the assumption that spatial correlations
depend only on the relative positions between the points, which is simply ` = x2−x1

in the two-point case. This reduced the study of the correlations 〈ui(x)uj(x + `)〉 as
functions only of `.

Taylor also introduced the notion of isotropic turbulence, assuming that the mean
value of the physical quantities, written in relation to a given set of axes, are “unal-
tered if the axes of reference are rotated in any manner”. In real turbulence, these
assumptions are not strictly valid, but in some situations at least locally those as-
sumptions may indeed be a good approximation for the smaller scales. When the
isotropy assumption is valid, it simplifies greatly the analysis. This led to several
relations among the different moments that could be tested in laboratories for the
validity of the assumptions and the study of the nature of turbulence. In particular,
it was observed that within the turbulent core of the flow this correlation decays
considerably fast as the separation x2 − x1 increases, indicating the local character
of turbulence. A microscale length was introduced as representing the average char-
acteristic length of the small eddies affected by the dissipation of energy by viscosity.
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Taylor studied in particular the normalized lateral second-order correlation

g(`) =
〈u1(x)u1(x + `e2)〉

〈u1(x)2〉 , ` > 0

which is more natural to measure in experiments. Note that g(`) can also be defined
for negative `, but theoretically this is not necessary since the homogeneity assump-
tion implies g(`) = g(−`). In pratice, this can be a first test for homogeneity. Note
also that this symmetry in ` implies g′(0) = 0. Moreover, g(0) = 1. Taylor then
obtained the expansion

g(`) = 1−
( `

`T

)2

+O(`4),

where `T is the Taylor microlength defined by

1
`2T

= lim
`→0

1− g(`)
`2

= −1
2
g′′(`) =

1
2

〈(
∂u1(x)
∂x2

)2〉

〈u1(x)2〉 .

The quantity `2T measures the radius of curvature of the correlation g(`) at ` = 0,
and it “may roughly be regarded as a measure of the diameters of the smallest eddies
which are responsible for the dissipation of energy”.
Taylor also derived a direct connection between `T and other physical quantities.

More precisely, let e = 1
2 〈|u(x)|2〉 be the mean kinetic energy per unit mass of the

flow and let ε = ν
3∑

i=1

〈|∇ui(x)|2〉 denote the mean rate of energy dissipation by
viscosity per unit mass and unit time. Then

`2T = 30
νe

ε
= 15

〈|u(x)|2〉∑3
i=1〈|∇ui(x)|2〉

.

Von Karman and Howarth [25] realized that the Reynolds stresses form indeed a
second order tensor, which in the case of homogeneous turbulence is only a function
of `:

R(`) = 〈u(x) : u(x + `)〉 = (Rij(`))3i,j=1 = (〈ui(x)uj(x + `)〉)3i,j=1 .

They obtained in this way several simplifications for the relations obtained by Taylor.
Taylor [48] then introduced the notion of the energy spectrum, which would later
permeate the theory of turbulence. He considered the Fourier transform of the
correlation of the velocity field, interpreting the Fourier components as the energy
associated with an eddy of the corresponding characteristic length. This energy
spectrum turned out to be a fundamental tool in analysing the distribution of energy

489



among different eddies of a flow. We follow the consideration of the energy spectrum
as done in [4].

Consider the trace of the correlation tensor for a homogeneous flow:

TrR(`) = R11(`) +R22(`) + R33(`), ` ∈ � 3 .

Note that the mean kinetic energy can be written as e = TrR(0)/2. We may formally
assume that the Fourier transform of TrR(`) exists, and we denote it by Q(κ),
κ ∈ � 3 . Then,

TrR(`) =
1

(2 � )3/2

∫
� 3
Q(κ)ei`·κ dκ.

The energy spectrum is defined by

S(κ) =
1

2(2 � )3/2

∫

|κ|=κ

Q(κ) dΣ(κ) ∀κ > 0,

where dΣ(κ) is the area element of the 2-sphere of radius κ. With this definition,
we can formally write

e =
1
2
〈|u(x)|2〉 =

1
2

TrR(0) =
∫ ∞

0

S(κ) dκ.

The quantity S(κ) is an energy spectral density (dimension of (length)3/(time)2),
and S(κ) dκ is interpreted as the energy of the component of the flow formed by
the “eddies” with characteristic length κ, i.e. the Fourier modes exp(` · κ) with
κ 6 |κ| 6 κ+ dκ.

Kolmogorov’s theory of locally isotropic turbulence.
The next major breakthrough came in a series of short papers by Kolmogorov [26],

[27], [28], introducing the “theory of locally isotropic turbulence.” It was partly based
on Richardson’s energy cascade process [43], in which eddies of a given length scale
break down into smaller eddies, and in turn these smaller eddies break down into
still smaller ones, and so on, until small enough scales are reached in which viscosity
plays an important role and the kinetic energy is finally dissipated into heat.

Kolmogorov envisaged that due to the turbulent nature of the transfer of energy to
smaller eddies, the orienting effects of the shear forces originated in the anisotropic,
energy-containing large-scale eddies become the weaker the smaller the eddies are.
Then, for sufficiently small eddies, the orienting effect is completely lost and the flow
can be regarded as homogeneous and isotropic. In other words, despite the inhomo-
geneity and anisotropy of the large-scale eddies, the turbulent motion of sufficiently
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small eddies may eventually become statistically homogeneous, isotropic, and in-
dependent of the particular energy-productive mechanisms, provided the Reynolds
number is sufficiently large.
The energy injected in the system at the larger scales is transferred to smaller

scales by this cascade process until the viscous effects become predominant at the
smallest scales and the kinetic energy is dissipated into heat. The flow is also assumed
to be in a state of statistical equilibrium with respect to time. He postulated then
that for sufficiently large Reynolds numbers the statistical regime of the small-scale
components is universal and is determined only by two dimensional parameters: the
viscosity ν and the mean rate of energy dissipation per unit time and unit mass,

ε = ν
3∑

i=1

〈|∇ui(x, t)|2〉. The range of scales in which this universality holds is termed
the equilibrium range. Here, the notion of homogeneity and statistical equilibrium
play a role in that ε becomes constant, independent of x and t (but it depends on
time in the case of decaying homogeneous turbulence).
Simple dimensional analysis shows that the only length scale of the form ναεβ,

with α and β real, is `ε = (ν3/ε)1/4. This length scale is interpreted as that near
which most of the energy dissipation takes place. The scale `ε is termed the Kol-
mogorov dissipation length.
In Kolmogorov’s theory for fully-developed turbulent flows there is a wide sepa-

ration between the energy-productive scales and the energy-dissipative ones, so that
there exists a range of scales much smaller than the large-scale energy-containing
scales and much larger than the dissipative scale `ε where viscosity is still negli-
gible and, hence, the statistical regime depends only on the mean rate of energy
dissipation ε. This range of scales is termed the inertial range. By simple dimen-
sional analysis, one finds that in this range the second order correlations must be
proportional to (ε`)2/3, i.e.,

S2(`)
def=

〈(
u(x + `) · `

`
− u(x) · `

`

)2〉
= βKo(ε`)2/3.

The constant βKo is termed the Kolmogorov constant in the physical space (there is a
related constant in the spectral space). The particular second order correlation S2(`)
is called the second order structure function. The above power law for this structure
function is called Kolmogorov’s two-third law.
Dimensional analysis allows a multiplicative nondimensional factor of the form

g(ν−3/4ε1/4`) = g(`/`ε). The Kolmogorov constant may be regarded as the limit g(0)
as the viscosity ν goes to zero. If this limit is zero, the rate of decay to zero may
lead to a multiplicative factor of the order of (`/`ε)α, for some power α.
Kolmogorov’s derivation of `ε and of the two-third law was not by dimensional

analysis. It was indeed by a more convincing universality argument based on scaling
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invariance. More precisely, it is assumed that there exists a characteristic dissipative
length scale `d which is related to the turbulent eddies which are rapidly annihilated
by viscosity, and that `d, being in the equilibrium range, should be a universal
function of ε and ν: `d = f(ν, ε). In particular, f should be independent of the
choice of units for space and time. Thus, if we pass from x and t to x′ = ξx and
t′ = τt, we should still have a characteristic length scale in the form of `′d = f(ν′, ε′).
For dimensional reasons, `′d = ξ`d, ν′ = ξ2τ−1ν, and ε′ = ξ2τ−3ε. Thus, ξf(ν, ε) =
f(ξ2ν/τ, ξ2ε/τ3). Taking τ = (νε)1/2 and ξ = ε1/4ν−3/4, we obtain

`d =
(ν3

ε

)1/4

f(1, 1) ∼ `ε.

As for the two-third law, we should have S2(`) = g(ε, `) for `ε � ` � `0, where
`0 is a typical large-scale length. The universality of g implies that ξ2/τ2g(ε, `) =
g(ξ2ε/τ3, ξ`). Hence, taking ξ = `−1 and τ = ε1/3r−2/3 one obtains

S2(`) = g(ε, `) = ε2/3`2/3g(1, 1) ∼ (ε`)2/3.

In this case, βKo = g(1, 1).

Oboukhoff’s mechanism and the Kolmogorov spectral five-third law.
A spectral version of the two-third law for the energy spectrum S(κ) was

given in [41]. Since S(κ) is an energy spectrum, hence of physical dimension
(length)3/(time)2, the spectral version of the two-third law takes the form

S(κ) = β′Koε
2/3κ−5/3,

which is called Kolmogorov’s five-third law. The constant β ′Ko is called Kolmogorov’s
constant in the spectral space. The dissipation length also has its spectral version,
namely Kolmogorov’s wavenumber κε = (ε/ν3)1/4. Obukhoff’s derivation, however,
differs from Kolmogorov’s in that a mechanism inspired by the energy cascade process
is assumed: First, a characteristic time τκ ∼ (κ3S(κ))−1/2 is introduced for the eddies
with length scale of the order of κ−1. The mean kinetic energy of those eddies is of the
order of κS(κ). According to the cascade process, this kinetic energy is transferred
per unit time to smaller scales, with this energy flux being of the order of the rate ε
of dissipation of energy per unit time. Thus, ε ∼ κS(κ)/τκ ∼ κ5/2S(κ)3/2. Hence,
according to Obukhoff’s mechanism,

S(κ) ∼ ε2/3κ−5/3.

The Kolmogorov length scale can be related to the Reynolds number as follows.
If U is a characteristic velocity of the flow, e = U 2/2 is the mean kinetic energy
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per unit mass of the flow. The characteristic time for the macroscales is τ0 = `0/U ,
also called the circulation time. Hence, the rate ε of energy dissipation per unit
time and unit mass is expected to be of the order of e/τ0, i.e. ε ∼ U3/`0, which is
called the energy dissipation law. Since `ε = (ν3/ε)1/4, we find `0/`ε ∼ Re3/4. For a
well-defined separation between the dissipative scale `ε and the macroscopic scale `0,
we need `0 � `ε, which means Re3/4 � 1. Following [4], notice that for the existence
of a well-defined Kolmogorov inertial range a larger Reynolds number is required.
Indeed, we need a range of scales ` such that `0 � ` � `ε. This is equivalent1

to (`0/`ε)1/2 � 1. Therefore, for a well-defined inertial range, a Reynolds number
such that Re3/8 � 1 is required. In a wind-tunnel experiment with `0 ∼ 3m and
`ε ∼ 1mm, we have Re ∼ 40.000, but only Re3/8 ∼ 54, which may be not enough
for the existence of a well-defined inertial range. Atmospheric flows, on the other
hand, may have `0 of the order of thousands of kilometers with the dissipation scale
of the order of centimeters, yielding Re ∼ 1010 and Re3/8 ∼ 104, which is more than
enough for an inertial range extending for tens of kilometers.

The energy dissipation law can also be used to relate certain quantities to the
Taylor length `T . In fact, `2T ∼ νe/ε ∼ νe`0/U

3 ∼ `20/Re, thus `T /`0 ∼ Re1/2.
Similarly, `2T ∼ νe/ε ∼ νU2/ε ∼ νε2/3`

2/3
0 /ε ∼ `

2/3
0 `

4/3
ε , hence `T ∼ `

1/3
0 `

2/3
ε .

The universality hypothesis was later criticized, the reason being possible devia-
tions of the mean rate of energy dissipation throughout the flow. Such deviations
correspond to the phenomenon known as intermittency. In three-dimensional flows
an important mechanism responsible for intermittent behavior is vortex stretching
and thinning, which lead to the formation of high-vorticity/low-dissipative struc-
tures moving within a supposedly statistically homogeneous flow. These coherent
structures are tube-like vortex filaments with diameter as small as the Kolmogorov
scale and with longitudinal length extending from the Taylor scale up to the integral
scale. Within these tubes the flow is nearly a rigid motion with nearly no energy dis-
sipation, and this could upset the homogeneity of the mean energy dissipation rate.
The issues of intermittency and coherent structures in fully-developed turbulence
and whether and how they could affect the deductions of Kolmogorov’s universality
theory, or at least the power laws for higher-order moments, are currently one of the
major issues being addressed in turbulence theory [3], [7], [8], [19], [21], [24], [29],
[36], [40], [42], [45].

1Here, two (nonnegative) quantities a and b of the same physical dimension are related by
b� a when a/b 6 δ for a small nondimensional error parameter δ which, for consistency,
is held fixed throughout a certain string of relations.
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Kraichnan’s theory of two-dimensional turbulence.

We close this section by considering two-dimensional turbulence [30], [31], [35],
[5]. Such flows play an important role in some situations, particularly in geophysical
flows. They are also more amenable to analysis and to numerical simulations, making
it an important test bed for turbulence modeling (both analytical and numerical).
The dynamics in two dimensions is simpler in the sense that vorticity always points
perpendicular to the two-dimensional domain. Nevertheless, two-dimensional flows
still exhibit a very complicate behavior.

Due to the conservation property of vorticity particular to two-dimensional flows
an important role in two-dimensional turbulence is played by the enstrophy, which
is defined as one-half the square of the vorticity. Correspondingly, an important
role is played by the rate of enstrophy dissipation, η = ν〈|∆u(x)|2〉. A univer-
sality argument or a simple dimensional analysis yields the Kraichnan dissipation
length `η = (ν3/η)1/6, with the corresponding Kraichnan dissipation wavenumber
κη = (η/ν3)1/6, and the Kraichnan energy spectrum S(κ) ∼ βKrη

2/3κ−3 for κ in the
inertial range κf � κ � κη; we will call βKr the Kraichnan constant. The char-
acteristic wavenumber κf is associated with the energy-productive scales, which are
allowed to occur at length scales much smaller than the larger scales characterized by
the wavenumber κ0. Within a range of wavenumbers κ with κ0 � κ � κf , Kraich-
nan suggested the existence of an inverse energy cascade, from the small scales to the
larger scales. In this range, the effects of energy transfer are more important than
those of enstrophy transfer, so that the five-third energy spectrum S(κ) ∼ ε2/3κ−5/3

is recovered for κ0 � κ� κf .

Kraichnan actually devised a cascade mechanism to explain the form of the spec-
trum in the enstrophy-cascade range. This mechanim is akin to Obukhoff’s, but
it is in terms of the enstrophy flux, and is slightly more explicit. The Kraichnan
cascade mechanism asserts that within the enstrophy-cascade range κf � κ � κη,
the viscous dissipation of enstrophy is negligible and the motion is dominated by the
transfer of enstrophy to smaller scales through a break-down process in which eddies
of a given linear size ∼ 1/κ break down into eddies of about half their linear size
while traveling a distance compared to their linear size.

Let us introduce some concepts and quantities which will help us exploit this mech-
anism. The flow is decomposed into parts uκ containing wavenumbers between κ
and 2κ. Let ηκ denote the enstrophy flux per unit mass and unit time from the
wavenumbers less than 2κ to those greater than or equal to 2κ. By the break-down
mechanism described above, ηκ is nearly the enstrophy flux from uκ to 2uκ. The
enstrophy contained in the component uκ is approximately κ3S(κ), and the energy
is κS(κ). The eddy turnaround time is the time an eddy takes to rotate once around
its axis. This is the characteristic time of an eddy whithin the enstrophy cascade
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region in two-dimensional turbulence, the reason being that in this case enstrophy
is supposed to be the most important conserved quantity. Hence, since enstrophy
has dimension (time)−3, the turnaround time of an eddy with linear size of the order
of κ−1 and, thus, enstrophy κ3S(κ), is τκ ∼ (κ3S(κ))−1/3. The time that an eddy
within the inertial range takes to break down into eddies with half their linear size
is called the eddy turnover time.

The cascade mechanism asserts that the turnover time is about the same as the
turnaround time for an eddy within the inertial range. Hence, the enstrophy flux
should be such that

ηκ =



enstrophy transferred
through wavenumber 2κ

per unit time


 ∼




total
enstrophy of uκ

per turnaround time


 =

κ3S(κ)
τκ

.

Since we are assuming a state of statistical equilibrium and that all enstrophy is
produced in the largest scales and dissipated in the smallest scales, the enstrophy
flux ηκ within the inertial range should be the same as the rate of enstrophy dissipa-
tion per unit time and unit mass due to the viscous effects, i.e. ηκ ≈ η. Therefore,
we deduce that

S(κ) ∼ η2/3κ−3.

2. Mathematical setting for the Navier-Stokes equations

We recall briefly the L2-setting for the mathematical theory of the incompress-
ible Navier-Stokes equations as initiated by J. Leray (see [32], [37], [49], [9]). We
consider the three- and two-dimensional cases with two types of boundary condi-
tions: i) no-slip condition u = 0 on the boundary ∂Ω of a bounded domain Ω (not
necessarily smooth) in � d , d = 2, 3; and ii) periodic conditions in � d , with a pe-
riod Li, i = 1, . . . , d, in each direction xi, in which case we set the flow domain
to be Ω = Πd

i=1(−Li/2, Li/2), and we assume that the average flow on Ω vanishes:∫
Ω

u(x, t) dx = 0.
We consider the space V of divergence free test functions:

V = Vnsp = {u ∈ C∞c (Ω)d; ∇ · u = 0},

V = V̇per =
{
u ∈ C∞per( � d )d;

∫

Ω

u(x) dx = 0, ∇ · u = 0
}
,

in the no-slip case and in the space-periodic case with zero space average, respectively.
Here C∞c (Ω) is the space of C∞ functions with compact support in Ω, and C∞per( � d )
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is the space of C∞ functions on � d which are periodic with the period Li in each
direction xi.
In either case we let H be the closure of V in the Lebesgue space L2(Ω)d, and V the

closure of V in the Sobolev space H1(Ω)d. In H and V we consider respectively the
inner products

(u,v) =
∫

Ω

u(x) · v(x) dx, ((u,v)) =
∫

Ω

d∑

i=1

∂u(x)
∂xi

· ∂v(x)
∂xi

dx,

and the associated norms |u| = (u,u)1/2 and ‖v‖ = ((v,v))1/2 . We denote by Hw

the space H endowed with its weak topology.
The boundedness of the domain guarantees that the following Poincaré inequality

holds: there exists λ1 > 0 such that |u|2 6 λ−1
1 ‖u‖2 for all u in V . The importance of

this condition, regardless of the boundedness (one could consider an infinite channel-
like domain) or the smoothness of the domain, is that the system is dissipative, and
many of the results in the dynamical system approach to the NSE, usually done for
bounded, smooth domains, can be extended to such domains [1], [2], [33], [23], [44],
[38].
We define the (abstract) Stokes operator A : V → V ′ by duality,

(Au,v) = ((u,v)), ∀u,v ∈ V,

where the same symbol (·, ·) is used for the duality product between V ′ and V .
In the weak formulation of the NSE, given u0 in H and f in V ′, we look for a

function u in L∞(0, T ;H) ∩ L2(0, T ;V ), T > 0, such that

d
dt

(u,v) + ν((u,v)) + b(u,u,v) = (f ,v), ∀v ∈ V,

in the distribution sense on (0, T ), and with u(0) = u0 in some suitable sense. Here

b(u,v,w) =
d∑

i,j=1

∫

Ω

ui(x)
∂vj(x)
∂xi

wj(x) dx.

This trilinear form b = b(u,v,w) can be extended to a continuous trilinear form
defined on V . We use the Ladyzhenskaya inequalities in dimensions two and three:

‖u‖L4(Ω3) 6 c1|u|1/4‖u‖3/4, ‖u‖L4(Ω)2 6 c1|u|1/2, ∀u ∈ V,

and the following Agmon inequality in the two-dimensional periodic case (valid also
for 2D smooth domains):

‖u‖L∞(Ω)2 6 c1|u|1/2|Au|1/2, ∀u ∈ D(A).
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These two inequalities, together with various applications of Hölder’s inequality, yield
a number of important estimates for the inertial term.
The following orthogonality property of the nonlinear term is fundamental and

expresses the conservation of energy by the inertial forces:

b(u,v,v) = 0, ∀u,v ∈ V.

In the two-dimensional periodic case, we also have the following fundamental orthog-
onality property expressing the conservation of enstrophy of the inertial term:

b(u,u, Au) = 0, ∀u ∈ D(A).

An equivalent functional-equation formulation for the NSE can be written. The
form b(u,v,w) defines a bilinear operator B : V × V → V ′ by

(B(u,v),w) = b(u,v,w), ∀u,v,w ∈ V.

Then we have the following functional-equation formulation: Given u0 in H and
f in V ′, find u in L∞(0, T ;H) ∩ L2(0, T ;V ), T > 0, with u′ = du/dt ∈ L1(0, T ;V ′),
such that

du
dt

+ νAu +B(u,u) = f

and u(0) = u0 in some suitable sense. For simplicity of notation, we define F(u) =
f − νAu−B(u,u), and we often write the NSE in the form

du
dt

= F(u).

Under the sole assumption that the Poincaré inequality holds on Ω, the operator A
can be regarded as a positive, self-adjoint closed operator A : D(A) ⊆ H → H with
the domain D(A) = {v ∈ V ; Av ∈ H}. Then the fractional powers Aα, α ∈ � ,
(α > 0 or α < 0) can be defined, withD(A1/2) = V , D(A0) = H andD(A−1/2) = V ′.
Under the condition that the domain Ω is bounded it follows by the Rellich Lemma

that V is compactly embedded into H , so that A−1 is compact as a closed operator
in H . Hence, there exists an orthonormal basis {wm}∞m=1 in H such that

Awm = λmwm, 0 < λ1 6 λ2 6 . . . 6 λm → +∞ as m→ +∞.

We let Pm be the orthogonal projector of H onto the space spanned by w1, . . . ,wm.
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3. Statistical solutions of the Navier-Stokes equations

The notion of the ensemble average is reconciled with the mathematical theory of
the Navier-Stokes equations through the concept of statistical solution. Two such
concepts exist, one is made of probability measures in the phase space H , [17], [11],
[12], [22] and the other is a probability measure in the time-dependent space of weak
solutions C([0, T ), Hw) of the Navier-Stokes equations [52], [53]. Due to the lack of
space and since we are mostly considering the stationary case we only deal with the
first concept here.

Ensemble averages.
We have seen earlier that ensemble averages are interpreted as averages over a

number of experiments. This can be made more formal with use of the probability
theory. In the formalism we consider, the probability space is taken to be the spaceH
defined above, the corresponding σ-algebra of measurable sets is that of the Borel
sets of H , and the measure is a Borel probability measure on H . In the three-
dimensional case, we will be often working with the weak topology. Fortunately the
Borel σ-algebra generated by the weakly open sets coincides with that for the open
sets in the strong topology, which saves some work concerning the measurability of
sets and functions.
Since H is a separable Hilbert space every Borel measure is automatically (inner

and outer) regular. An important consequence of the regularity of a Borel probability
measure is the density of continuous functions (or just weakly continuous functions)
in the space of integrable functions.
We say that a measure µ is carried by a measurable set E when E has full measure,

i.e. µ(H \E) = 0. The support of a Borel probability measure µ is the smallest closed
set which carries µ. Note that a carrier is usually not unique, while the support is
always unique.
The ensemble averages are regarded as averages with respect to a Borel prob-

ability measure µ. If ϕ : H → � is a Borel function representing some physical
information ϕ(u) extracted from a velocity field u, such as kinetic energy, velocity,
correlation, enstrophy, etc., then its mean value is

〈ϕ(u)〉 =
∫

H

ϕ(u) du.

On the right-hand side, u is just a dummy variable for the integral on H , and
〈ϕ(u)〉 is just a more explicit notation for 〈ϕ〉 to indicate that it is some information
concerning a random velocity field.
A particularly useful class of Borel functions are the cylindrical test functions

Φ: H → � of the form Φ(u) = ϕ((u,g1), . . . , (u,gm)), where ϕ is a C1 scalar
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function on � m , m ∈ � , with compact support, and g1, . . . ,gm belong to V . For
such a Φ we denote by Φ′ its differential in H , which has the form

Φ′(u) =
m∑

j=1

∂jϕ((u,g1), . . . , (u,gm))gj ,

where ∂jϕ denotes the derivative of ϕ with respect to the j-th variable. It follows
that Φ′(u) ∈ V since it is a linear combination of the gj ’s.

Time-dependent statistical solutions.
We look for the evolution of a probability distribution for the velocity field of

a flow. We are given a Borel probability measure µ0 on H representing the initial
probability distribution of the velocity field, and we want to obtain a time-dependent
family {µt}t>0 of Borel probability measures, with each measure µt representing the
probability distribution of the velocity field at time t.
We may derive an equation for the evolution of those measures as follows. If we

think of the ensemble average as an average over a number of experiments u(n)(x, t),
n = 1, . . . , N , with possibly different weights θn ∈ (0, 1),

∑
n
θn = 1, then the aver-

age of a quantity Φ: H → � is
N∑

n=1
θnΦ(u(n)(t)). By formally differentiating this

expression in time and assuming that the velocity field satisfies the Navier-Stokes
equations du/dt = F(u), we obtain

d
dt

N∑

n=1

θnΦ(u(n)(t)) =
N∑

n=1

θn

(
F(u(n)(t)),Φ′(u(n)(t))

)
.

This can be written in terms of Borel probability measures on H . Indeed, let δv de-
note the Dirac measure at an arbitrary v in H . The family {µt}t>0 can be written

as µt =
N∑

n=1
θnδu(n)(t). The ensemble average becomes

〈Φ(u(t))〉 =
N∑

n=1

θnΦ(u(n)(t)) =
∫

H

Φ(u) dµt(u).

Thus, we can write the previous differential equation as the statistical Navier-Stokes
equation

d
dt

∫

H

Φ(u) dµt(u) =
∫

H

(F(u),Φ′(u)) dµt(u)

with the initial condition µ0 =
N∑

n=1
θnδu(n)(0).

499



More generally, given an arbitrary initial Borel probability measure µ0 on H (with
finite-kinetic energy, i.e.

∫
H |u|2 dµ0(u) < ∞), we may look for a family {µt}t>0 of

Borel probability measures on H satisfying the statistical Navier-Stokes equation
defined above and the initial condition µt|t=0 = µ0 in some suitable sense [11]. Note
the remarkable fact that this equation is linear in µt.
Thus, we are led to the following definition: A family {µt}t>0 of Borel probability

measures on H is called a statistical solution of the Navier-Stokes equations on H
with the initial condition µ0 if
i) t 7→

∫
H
ϕ(u) dµt(u) is continuous on [0,∞) for all ϕ ∈ C(Hw) bounded;

ii) t 7→
∫

H |u|2 dµt(u) belongs to L∞(0,∞) and is continuous at t = 0;
iii) t 7→

∫
H ‖u‖2 dµt(u) belongs to L1

loc(0,∞).
iv) The following energy inequality holds in the distribution sense on (0,∞):

1
2

d
dt

∫

H

|u|2 dµt(u) + ν

∫

H

‖u‖2 dµt(u) 6
∫

H

(f ,u) dµt(u).

v) The family {µt}t>0 satisfies the statistical Navier-Stokes equation in the distri-
bution sense on (0,∞), for all cylindrical test functions Φ.

Stationary statistical solutions.
In the case of a turbulent flow in statistical equilibrium in time, the statistical

information of the flow does not vary with time. In the above framework, this is
reflected by the family {µt}t>0 of statistical solutions being independent of t. Hence,
µt is identically equal to a Borel probability measure µ on H , and this measure must
satisfy the stationary statistical Navier-Stokes equation

∫

H

(F(u),Φ′(u)) dµ(u) = 0

for all cylindrical test functions Φ on H . Moreover, the mean kinetic energy and the
mean enstrophy are finite,

1
2

∫

H

|u|2 dµ(u) <∞,
1
2

∫

H

‖u‖2 dµ(u) <∞,

and the following energy inequality holds:
∫

H

{ν‖u‖2 − (f ,u)} dµ(u) 6 0.

A stronger energy inequality is actually assumed, namely
∫

{e16 1
2 |u|2<e2}

{ν‖u‖2 − (f ,u)} dµ(u) 6 0,
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for all energy levels 0 6 e1 < e2 6 ∞. A Borel probability measure µ satisfying
those properties is called a stationary statistical solution. One can deduce from the
stronger energy inequality that the support of a stationary statistical solution is
bounded in H by ν−1λ

−1/2
1 ‖f‖V ′ .

The concept of a stationary statistical solution is regarded as a generalization of the
notion of an invariant measure. It is relevant in the three-dimensional case, in which
the semigroup associated with the NSE is not available. In the two-dimensional case,
in which the semigroup can be defined, the two notions are in fact equivalent [12],
[14].

Generalized time-average limits.
A particular type of a stationary statistical solution is obtained via time averages,

in a way akin to the ergodic hypothesis. The ergodicity, in our context, would imply
that for “most” weak solutions u = u(t), t > 0, of the NSE we have

lim
T→∞

1
T

∫ T

0

ϕ(u(t)) dt =
∫

H

ϕ(u) dµ(u),

for some stationary statistical solution µ. The term “most” here could be made rigor-
ous by using stationary statistical solutions in the trajectory space C([0,∞), Hw). In
order to avoid the ergodic hypothesis the notion of a generalized limit is considered
in [6]. A generalized limit on (0,∞) is a positive linear functional which extends the
classical limit to the space of bounded real-valued functions defined on (0,∞). We
denote this generalized limit by LIMT→∞. Then it is possible to show that for each
global weak solution ũ = ũ(t), t > 0, of the NSE, the following generalized limit is
well-defined for every bounded, weakly continuous function ϕ in H , and defines a
regular Borel probability measure µũ satisfying

LIM
T→∞

1
T

∫ T

0

ϕ(u(t)) dt =
∫

H

ϕ(u) dµũ(u).

Such a measure µũ is called a time-average measure on H associated with the weak
solution ũ. As the notation indicates, it may vary with ũ. This is true, for instance,
when ergodicity does not hold. This measure also depends on the choice of the
generalized limit, but this dependence is usually omitted from the notation. One
can show that this time-average measure is a stationary statistical solution. In
the applications that follow, we consider arbitrary stationary statistical solutions,
which includes the particular time-average measures usually exploited in actual (or
numerical) fluid flow experiments.

501



4. Stationary statistical solutions applied to turbulence in
statistical equilibrium

We now apply the concept of stationary statistical solutions to deduce results for
the statistical mean value of some flow properties relevant to turbulence theory [14],
[15], [16], [13]. First, let us introduce a notation related to the decomposition of the
flow with respect to wavenumbers. Recall the spectral representation of a velocity

field u in H : u =
∞∑

j=0

ûjwj , where the wj are the eigenfunctions of the Stokes oper-

ator A, each associated with an eigenvalue λj counted according to its multiplicity.
With each eigenvalue λ = λj we associate a wavenumber κ = λ1/2. The wavenum-
bers form a discrete set, and the smallest possible one is λ1/2

1 . In what follows, κ is
implicitly assumed to be equal to the square root of some eigenvalue of the Stokes
operator.

For a wavenumber κ we define the component uκ of a vector field u by uκ =∑
λj=κ2

ûjwj , and the component uκ′,κ′′ with a range of wavenumbers (κ′, κ′′] by

uκ′,κ′′ =
∑

κ′<κ6κ′′
uκ.

Ensemble averages.

The ensemble averages in our context are taken to be averages with respect to
statistical solutions of the NSE. In the situation of statistical equilibrium, we consider
stationary statistical solutions. In other words, the flow is assumed to have reached
a state of statistical equilibrium represented by some stationary statistical solution µ
on H .

Due to the regularity properties obtained for stationary statistical solutions (finite
enstrophy and a support bounded in the metric of H), the mean value 〈ϕ(u)〉 can
be defined not only for weakly continuous functions bounded in H but for any real-
valued function ϕ which is continuous on V and satisfies the estimate

|ϕ(u)| 6 C(|u|)(1 + ν−2κ−1
0 ‖u‖2), ∀u ∈ V,

where C(|u|) is bounded on bounded subsets of H . Important examples of
such ϕ which will be used in the sequel are |u|2, ‖u‖2, b(u0,κ,u0,κ,uκ,∞) and
b(uκ,∞,uκ,∞,u0,κ). The corresponding mean quantities are well-defined and fi-
nite.

The ensemble averages need not be restricted to scalar quantities, represented by
real-valued functions ϕ. Indeed, by a duality argument, we can define the mean
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velocity field 〈u〉 and the mean value 〈B(u,u)〉 of the inertial term by

(〈u〉,v) =
∫

H

(u,v) dµ(u), ∀v ∈ V ′,

(〈B(u,u)〉,v) =
∫

H

(B(u,u),v) dµ(u), ∀v ∈ D(A3/8).

The mean flow 〈u〉 is a vector field on Ω with 〈u〉 ∈ V , while 〈B(u,u)〉 ∈ D(A−3/8).

Stationary Reynolds equations.
The Reynolds equations can be recovered within this framework. Since we assume

statistical equilibrium, we obtain the stationary form of the Reynolds equations.

Let ψ be a C1 real-valued function with compact support on � . For any v ∈ V and
any m ∈ � , the function Φ(u) = ψ((u, Pmv)) is a cylindrical test function. Thus,

∫

H

ψ′((u, Pmv)){(f , Pmv)− ν(Au, Pmv) − b(u,u, Pmv)} dµ(u) = 0.

Let ψ′ converge pointwise to 1 while being uniformly bounded, so that at the limit
we find ∫

H

{(f , Pmv)− ν(Au, Pmv)− b(u,u, Pmv)} dµ(u) = 0.

For each fixed v ∈ V we may let m go to infinity to find (since µ has finite enstrophy
and a support bounded in H)

∫

H

{(f ,v) − ν(Au,v) − b(u,u,v)} dµ(u) = 0.

Thus, we obtain the stationary Reynolds equations

νA〈u〉+ 〈B(u,u)〉 = f ,

which hold in V ′. By decomposing the flow into the mean flow 〈u〉 and the fluctuating
part ũ = u− 〈u〉, we obtain the equation

νA〈u〉 +B(〈u〉, 〈u〉) = f − 〈B(ũ, ũ)〉.

The term 〈B(ũ, ũ)〉 is associated with the Reynolds stress tensor. A mean pressure
term P can be recovered and we find the common form of the Reynolds equations,

−ν∆〈u〉+ (〈u〉 ·∇)〈u〉+ ∇P = f −∇ · 〈ũ⊗ ũ〉, ∇ · 〈u〉 = 0.
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Here we have used the fact that a stationary statistical solution is carried by V and
by a bounded set in H , so that it makes sense to write 〈(ũ ·∇)ũ〉 = ∇ · 〈ũ⊗ ũ〉 for
the last term in the momentum equation, where 〈ũ⊗ ũ〉 = (〈ũiũj〉)ij is the Reynolds
stress tensor.

Characteristic dimensions and nondimensional numbers.
The macroscopic characteristic length is set to be a quantity `0 which would typi-

cally be of the order of λ−1/2
1 , where λ1 is the first eigenvalue of the Stokes operator

(it has the physical dimension (length)−2). The corresponding large-scale wavenum-
ber is κ0 = `−1

0 . For simplicity, we take the unit mass to be that contained in a
characteristic cube, namely %0/κ

3
0, where %0 denotes the uniform mass density of the

fluid. Then the mean kinetic energy per unit mass and the mean energy dissipation
rate per unit time and unit mass are given respectively by

e =
κ3

0

2
〈|u|2〉, ε = νκ3

0〈‖u‖2〉.

The characteristic average velocity U is given by e = U 2/2, and we define the
Reynolds number

Re =
`0U

ν
=
κ

1/2
0 〈|u|2〉1/2

ν
.

With our definition of ε, Kolmogorov’s dissipation wavenumber reads κε = (ε/ν3)1/4.
The Taylor wavenumber is defined in our context as

κτ =
( 〈‖u‖2〉
〈|u|2〉

)1/2

=
( ε

2νe

)1/2

.

Note that this is not exactly the characteristic wavenumber κT = `−1
T defined origi-

nally by Taylor, but if homogeneity and isotropy were to hold they would differ only
by a universal constant, namely κτ =

√
15κT .

Energy flux and energy-budget equation.
Let ψ be a C1 real-valued function with a compact support on � . The function

Φ(u) = ψ(|uκ′,κ′′ |2/2) is a cylindrical test function for any 0 6 κ′ < κ′′ <∞. Thus,
∫

H

ψ′
(1

2
|uκ′,κ′′ |2

)
{(f ,uκ′,κ′′)− ν‖uκ′,κ′′‖2 − b(u,u,uκ′,κ′′)} dµ(u) = 0.

Let ψ′ converge pointwise to 1 while being uniformly bounded, so that at the limit
we find ∫

H

{(f ,uκ′,κ′′)− ν‖uκ′,κ′′‖2 − b(u,u,uκ′,κ′′)} dµ(u) = 0.
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Thus, using the orthogonality property of the nonlinear term, we find the energy-
budget relation

νκ3
0〈‖uκ′,κ′′‖2〉 = κ3

0〈(fκ′ ,κ′′ ,uκ′,κ′′)〉+ 〈eκ′(u)〉 − 〈eκ′′ (u)〉

where
eκ(u) = −κ3

0b(u0,κ,u0,κ,uκ,∞) + κ3
0b(uκ,∞,uκ,∞,u0,κ).

The term eκ(u) represents the net flux per unit time of kinetic energy per unit mass
transferred into the higher modes uκ,∞ by the inertial effects.
In the particular case κ′ = 0 and κ′′ = κ, the energy-budget relation reduces to

νκ3
0〈‖u0,κ‖2〉 = κ3

0〈(f0,κ,u0,κ)〉 − 〈eκ(u)〉.

The energy inequality for the stationary statistical solutions can be written as

νκ3
0〈‖u‖2〉 6 κ3

0〈(f ,u)〉.

Thus, by subtracting from it the previous relation, we find

νκ3
0〈‖uκ,∞‖2〉 6 κ3

0〈(fκ,∞,uκ,∞)〉+ 〈eκ(u)〉.

The inequality can be interpreted as coming from a possible loss of regularity,
“leaking” kinetic energy to infinity. An equality can be recovered if we take proper
account of this loss. Note that the following limits hold:

lim
κ→∞

〈‖u0,κ‖2〉 = 〈‖u‖2〉, lim
κ→∞

〈(f0,κ,u0,κ)〉 = 〈(f ,u)〉.

Therefore, we may define the limit

〈e∞〉 def= lim
κ→∞

〈eκ(u)〉 = lim
κ→∞

{κ3
0〈(f0,κ,u0,κ)〉 − νκ3

0〈‖u0,κ‖2〉}

= κ3
0〈(f ,u)〉 − νκ3

0〈‖u‖2〉 > 0.

For regular stationary statistical solutions (regularity in the sense of being sup-
ported by a bounded set in V , such as time-average measures obtained from globally
regular solutions) one has 〈e(u)〉∞ = 0. For general stationary statistical solutions
which are not known to be regular, it is appropriate to consider the quantity

e∗κ(u) = eκ(u)− 〈e(u)〉∞,

which accounts for the possible loss of kinetic energy, in average, due to the lack of
regularity of the solution. We term e∗κ(u) the restricted energy flux through the wave
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number κ. Then, considering κ′ = κ > 0 and taking the limit κ′′ → ∞, we obtain
the following identity for all κ > 0:

νκ3
0〈‖uκ,∞‖2〉 = κ3

0〈(f ,uκ,∞)〉+ 〈e∗κ(u)〉.

Energy cascade.
Since

νκ3
0〈‖uκ,∞‖2〉 ↘ νκ3

0〈‖u‖2〉 = ε as κ↘ 0, lim
κ→∞

κ3
0〈(f ,uκ,∞)〉 = 0,

we may define wavenumbers κε and κε respectively as the smallest and largest ones
such that

|κ3
0〈(f ,uκ,∞)〉| � ε for all κ > κε and νκ3

0〈‖uκε,∞‖2〉 ≈ ε.

We quantify these conditions more precisely with help of a small nondimensional
parameter δ representing the order of accuracy in the relations. Then κε is the
largest wavenumber for which

νκ3
0〈‖uκε,∞‖2〉 > (1− δ)ε,

while κε is the smallest wavenumber such that

|κ3
0〈(f ,uκ,∞)〉| 6 δε for all κ > κε.

The wavenumber κε is interpreted as a lower bound for the energy-dissipative scales,
and κε as an upper bound on the energy-productive scales.
Kolmogorov’s theory is based on the assumption that there is a significant separa-

tion between the (large) energy-productive scales and the (small) energy-dissipative
scales. This is expressed by the assumption that κε � κε. Under this assumption,
we may show that there exists an energy cascade within an extensive interval given
by [κε, κε], with κε � κε. Indeed, consider a wavenumber κ in this interval. From
the relation

νκ3
0〈‖uκ,∞‖2〉 = κ3

0〈(f ,uκ,∞)〉+ 〈e∗κ(u)〉

we obtain

(1− 2δ)ε 6 〈e∗κ(u)〉 = νκ3
0〈‖uκ,∞‖2〉 − κ3

0〈(f ,uκ,∞)〉 6 (1 + δ)ε.

Thus,

−δ 6 1− 〈e∗κ(u)〉
ε

6 2δ.
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In other words, the following energy-cascade relation holds within the range [κε, κε]:

〈e∗κ(u)〉 ≈ ε.

Note that this relation is still valid with the mere assumption that κε 6 κε, but this
does not guarantee an extensive energy-cascade range.

Conditions related to the energy cascade.
Sufficient conditions pertaining to the energy cascade can be derived in terms of

the Taylor wavenumber κτ . Indeed, note that for any wavenumber κ > 0,

νκ3
0〈‖u0,κ‖2〉 6 νκ3

0κ
2〈|u0,κ|2〉 6 νκ3

0κ
2〈|u|2〉 6

( κ

κτ

)2

ε.

Thus, for κ2 � κ2
τ we have νκ

3
0〈‖u0,κ‖2〉 � ε. Hence, κε > δ1/2κτ . For the scale

separation, if κ2
τ � κ2

ε , then κε > κε, with a possibly short energy-cascade range. If
κτ � κε, then δ > κε/κτ , so that κε > κ

1/2
ε κ

1/2
τ , and a wider energy-cascade range

is ensured, with κ2
ε � κ2

ε . If κ
2/3
τ � κ

2/3
ε , then δ > κ

2/3
ε /κ

2/3
τ , so that κε > κ

1/3
ε κ

2/3
τ ,

and an extensive energy-cascade range exists, with κε � κε.
Notice that κτ is related to a separation between the energy-containing and the

energy-dissipative scales. Indeed, if a considerable amount of energy is concentrated
within wavenumbers κe and κe below those associated with energy dissipation, in
the sense that κ3

0〈|uκe,κe |2〉/2 ∼ e, with κe 6 κe 6 κε, then

κ2
τ =

ε

2νe
∼ ε

νκ3
0〈|uκe,κe |2〉

� νκ3
0〈‖uκe,κe‖2〉

νκ3
0〈|uκe,κe |2〉

> κ2
e.

However, necessary conditions on κτ for the energy cascade do not seem to be readily
available since the energy cascade was obtained under the condition of a separation
between the energy-dissipative scales and the energy-productive scales instead of the
energy-containing scales. It is natural though to expect that the sufficient conditions
given above for κτ are reflected somehow in the necessary conditions.
The statement that the energy-cascade range begins around κε, which may be

too close to wavenumbers associated with the anisotropic large-scale eddies, is not
in contradiction with the basis for the Kolmogorov universality theory. In our case,
κε represents the beginning of the spectral region in which the transfer of energy
occurs at a nearly constant flux close to ε. It does not mean that this transfer occurs
necessarily in a universal, homogeneous and isotropic fashion. The small-scale eddies
may lose the anisotropic information carried by the energy flux from the larger scales
only at higher wavenumbers, above κε, in which we may then see a more distinct
Kolmogorov power spectrum.
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In Kolmogorov’s theory the energy cascade is associated with a power spectrum
S(κ) ∼ ε2/3κ−5/3 through an inertial range [κi, κi]. In this case, one can derive the
relation

κ4/3
ε =

( ε

ν3

)1/3

=
ε

νε2/3
=

κ3
0

ε2/3
〈‖u‖2〉 ∼ 1

ε2/3

∫
κ2S(κ) dκ

> 1
ε2/3

∫ κi

κi

S(κ) dκ ∼
∫ κi

κi

κ1/3 dκ.

Thus,
κ4/3

ε & κ
4/3
i − κ

4/3
i ,

which strictly speaking means that there exists a constant c of order unity such that
κ

4/3
ε > c(κ4/3

i − κ
4/3
i ). How close (or how far) κε is from κi depends on how much

energy dissipation occurs inside the inertial range. It is often argued that the inertial
range extends to a wider interval in such a way that indeed a large amount of energy
dissipation occurs within it, thus ε ∼ ν

∫ κi

κi
κ2S(κ) dκ ∼ νε2/3(κ4/3

i − κ
4/3
i ). Hence,

κ
4/3
ε ∼ κ

4/3
i − κ

4/3
i . Similarly, it is argued that the inertial range also contains a

significant amount of energy, so that e ∼
∫ κi

κi
S(κ) dκ ∼ ε2/3(κ−2/3

i − κ
−2/3
i ). In

this case, it is found that κ2
τ = ε(2νe)−1 ∼ κ

2/3
i κ

2/3
i (κ2/3

i + κ
2/3
i ), which requires

a relatively large Taylor wavenumber for an extensive inertial range. If, however,
the inertial range is such that little energy dissipation occurs within it, then κ4/3

ε �
κ

4/3
i − κ

4/3
i , and no lower bound for the Taylor wavenumber can be deduced from

the above.
The energy cascade was proved in [16] for stationary statistical solutions obtained

as generalized limits of time averages of weak solutions and under the assumptions
that f be made of a finite number of modes and that κτ � κf , where κf denotes the
highest mode in f . One can verify that under these assumptions, we have κε 6 κf

and κ2
f � κ2

ε . Indeed, the first relation is trivial. As for the latter one, we note that
for κ > κf ,

ε > 〈e∗κ(u)〉 = νκ3
0〈‖uκ,∞‖2〉 = ε− νκ3

0〈‖u0,κ‖2〉

> ε− νκ3
0κ

2〈|u0,κ|2〉 > ε− νκ3
0κ

2〈|u|2〉 =
(
1−

( κ

κτ

)2)
ε.

This is relation (11) in [16]. It yields 〈e∗κ(u)〉 ≈ ε under the condition that κ2
τ � κ2

f .
But this condition does not guarantee a very extensive energy-cascade range. It is
similar to the assumption κε > κε in our case. In fact, κ

2
τ � κ2

f implies only κε > κε

for some κε > κf > κε.
For a wider energy-cascade range, it is assumed in [16] that κτ � κf . And this

implies by the above that κε > κ
1/2
f κ

1/2
τ . This does not imply that the energy-

cascade range is so large (with respect to the order of magnitude implicit in δ) as
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to yield κε � κε, but only κ
2
ε � κ2

ε . For a more extensive energy-cascade range we
may require the assumption κ2/3

τ � κ
2/3
f . In this case, κε > κ

1/3
f κ

2/3
τ � κf > κε.

Some estimates for the charateristic dimensions and the nondimensional
numbers.
We mention here some estimates derived in [16] for smooth domains and time-

average measures. Those estimates are based on the Reynolds equation, and they
were obtained under a further assumption that f belongs to V . In this case, we
define the following characteristic wavenumber associated with the forcing term:
κf = (|A1/2f |/|A−1/2f |)1/2. Since we have seen that the Reynolds equation also holds
in our context for a nonsmooth domain and for an arbitrary stationary statistical
solution, the same proofs as in [16] apply here provided f ∈ V . Then, for κf of the
order of the large-scale wavenumber κ0 and for sufficiently large Reynolds numbers,
we find that

ε 6 cκ0U
3, κε 6 cκ0Re3/4, κτ 6 cκ

1/3
0 κ2/3

ε , κτ 6 cκ0Re1/2.

We recall that Kolmogorov’s heuristic approach yields ε ∼ κ0U
3, κε ∼ κ0 Re3/4,

κτ ∼ κ
1/3
0 κ

2/3
ε , and κτ ∼ κ0 Re1/2. Hence, the above estimates can be viewed as a

rigorous partial confirmation of those results. An inequality at this level is expected
since simple laminar flows and weakly turbulent flows are not ruled out in our context.
Kolmogorov’s estimates were derived assuming fully-developed turbulent flows.

Enstrophy cascade in the two-dimensional case.
We can proceed in a similar way in the two-dimensional case. However, the na-

ture of turbulence in two dimensions is different from that in the three-dimensional
case. In Kraichnan’s theory this is seen to force an inverse energy cascade (to lower
wavenumbers). On the other hand, the conservation of enstrophy is argued to force
a direct cascade of enstrophy towards smaller scales.

Kraichnan’s theory was obtained for periodic flows, for an idealized model of tur-
bulence. Similarly, we may proceed assuming periodic conditions for the 2D NSE,
in which case the conservation of enstrophy of the inertial term holds. The rate of
enstrophy dissipation by viscous effects per unit time and unit mass is defined in this
context as

η = νκ2
0〈|Au|2〉.

In dimension two an important role is played by the Taylor-like wavenumber

κσ =
( 〈|Au|2〉
〈‖u‖2〉

)1/2

=
(η
ε

)1/2

.
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In the two-dimensional case there is enough regularity for handling the nonlinear
term, and we need not consider restricted energy or enstrophy fluxes. We obtain
directly the enstrophy-budget relation

νκ2
0〈|Auκ′,κ′′ |2〉 = κ2

0〈(fκ′,κ′′ , Auκ′,κ′′)〉+ 〈Eκ′(u)〉 − 〈Eκ′′(u)〉

for all 0 6 κ′ < κ′′ 6 ∞ and for any stationary statistical solution. We recall that in
the two-dimensional case, any stationary statistical solution is in fact an invariant
measure for the semigroup generated by the 2D NSE, and vice-versa. In the above,

Eκ(u) = −κ2
0b(u0,κ,u0,κ, Auκ,∞) + κ2

0b(uκ,∞,uκ,∞, Au0,κ).

The term Eκ(u) represents the net flux per unit time of enstrophy per unit mass
transferred into the higher modes uκ,∞ by the inertial effects.
Kraichnan’s theory relies on the assumption that there exists a wide separation

between the enstrophy-productive scales and the enstrophy-dissipative scales. In this
regard let us define the wavenumbers κη and κη, respectively, as the largest and the
smallest wavenumbers such that

νκ2
0〈|Auκη ,∞|2〉 ≈ η, |κ2

0〈(f , Auκ,∞)〉| � η for all κ > κη .

We quantify these conditions again with a small nondimensional parameter δ with

νκ2
0〈|Auκη,∞|2〉 > (1− δ)η, |κ2

0〈(f , Auκ,∞)〉| 6 δη for all κ > κη.

The wavenumber κη is interpreted as a lower bound for the enstrophy-dissipative
scales, and κη as an upper bound on the enstrophy-productive scales.
Then, for κη 6 κ 6 κη , we find from the relation

νκ2
0〈|Auκ,∞|2〉 = κ2

0〈(f , Auκ,∞)〉+ 〈Eκ(u)〉

that

(1− δ)η 6 δη + κ2
0〈Eκ(u)〉 6 (1 + δ)η,

and we obtain the enstrophy-cascade relation

κ2
0〈Eκ(u)〉 ≈ η.

Conditions related to the enstrophy cascade.
Conditions for the enstrophy cascade can be given in terms of κσ, as is similarly

done in dimension three for κτ . For any κ > 0 we have

νκ2
0〈|Au0,κ|2〉 6 νκ2

0κ
2〈‖u0,κ‖2〉 6 νκ2

0κ
2〈‖u‖2〉 6

( κ

κσ

)2

η.
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Thus, for κ2 � κ2
σ , we have νκ

2
0〈|Au0,κ|2〉 � η. Hence, κη > δ1/2κσ. For the

scale separation, if κ2
σ � κ2

η, then κη 6 κη , with a possibly short enstrophy-cascade
range. If κσ � κη, then a wider enstrophy-cascade range is assured, with κ

2
η � κ2

η.

If κ2/3
σ � κ

2/3
η , then an extensive enstrophy-cascade range exists, with κη � κη .

The wavenumber κσ is related to a separation between the enstrophy-containing
and the enstrophy-dissipative scales. As is similarly done for dimension three, if a
considerable amount of enstrophy is concentrated within wavenumbers κE and κE

below those associated with energy dissipation, in the sense that κ2
0〈‖uκE ,κE‖2〉/2 ∼

E = νκ2
0〈‖u‖2〉 with κE 6 κE 6 κη, then

κ2
σ =

η

ε
∼ η

νκ2
0〈‖uκE ,κE‖2〉

� νκ2
0〈|AuκE ,κE‖2〉

νκ2
0〈‖uκE ,κE‖2〉

> κ2
E .

In Kraichnan’s theory the enstrophy cascade is associated with a power spectrum
S(κ) ∼ η2/3κ−3 within an inertial range [κi, κi]. Similarly to the three-dimensional
case, one can derive the relation

κ2
η =

( η

ν3

)1/3

=
η

νη2/3
=

κ2
0

η2/3
〈|Au|2〉 ∼ 1

η2/3

∫
κ4S(κ) dκ

> 1
η2/3

∫ κi

κi

S(κ) dκ ∼
∫ κi

κi

κ dκ.

Thus,

κ2
η & κ2

i − κ2
i ,

which strictly speaking means that there exists a constant c of order unity such that
κ2

η > c(κ2
i − κ2

i ). Again, how close (or how far) κη is from κi depends on how much
enstrophy dissipation occurs inside the inertial range. If a significant amount of
enstrophy dissipation occurs within the inertial range, then η ∼ ν

∫ κi

κi
κ4S(κ) dκ ∼

νη2/3(κ2
i − κ2

i ), hence, κ
2
η ∼ κ2

i − κ2
i . Similarly, if the inertial range also contains

a significant amount of enstrophy, then κ2
0〈‖u‖2〉 ∼

∫ κi

κi
κ2S(κ) dκ ∼ η2/3 ln(κi/κi),

and in this case, it is found that κ2
σ = η/ε ∼ κ2

iκ
2
i / ln(κi/κi), which requires a

relatively large wavenumber κσ for an extensive inertial range. If, however, the
inertial range is such that little enstrophy dissipation occurs within it, then κ2

η �
κ2

i −κ2
i , and no lower bound for the wavenumber κσ can be deduced from the above.

Consider now the positive and negative energy injection rates

r+ = κ2
0

∑

κ>0

〈(fκ,uκ)〉+, r− = κ2
0

∑

κ>0

〈(fκ,uκ)〉−,
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where the superscripts ‘+’ and ‘−’ indicate the operations a+ = max{0, a} and
a− = max{0,−a} for a real number a. With this notation we have the relation

κ2
0〈(f ,u)〉 + r− = r+.

Clearly, r+ − r− = κ2
0〈(f ,u)〉 = ε > 0, otherwise u = 0 almost everywhere with

respect to µ and, hence, by the Reynolds equations, f = 0. This situation is discarded
since it is not interesting for turbulence in statistical equilibrium. Thus, 0 6 r− < r+.
Define the wavenumbers

κ2
+ =

κ2
0

∑
κ>0 κ

2〈(fκ,uκ)〉+
r+

, κ2
− =

κ2
0

∑
κ>0 κ

2〈(fκ,uκ)〉−
r−

,

with κ− = 0 if r− = 0. Then

κ2
σ(r+ − r−) = κ2

σνκ
2
0〈‖u‖2〉 = νκ2

0〈|Au|2〉 = κ2
0〈(f , Au)〉 = r+κ

2
+ − r−κ

2
−.

Solving for κ2
σ yields

κ2
σ =

r+κ
2
+ − r−κ2

−
r+ − r−

.

Note that if r− = 0, then 〈(fκ,uκ)〉 > 0 for all κ, r+ = ε, and

κ2
σ = κ2

+ =
1
ε

{
κ2

0

∑

0<κ6κη

κ2〈(fκ,uκ)〉 + κ2
0〈(f , Auκη ,∞)〉

}

6 1
ε

{
κ2

0κ
2
η

∑

0<κ6κη

〈(fκ,uκ)〉+ δη

}

6 1
ε
{κ2

0κ
2
η〈(f ,u)〉 + δη} 6 κ2

η + δκ2
σ .

Thus, if r− = 0, there is no separation between the enstrophy-containing and the
enstrophy-dissipative scales since

κ2
σ 6 1

1− δ
κ2

η . κ2
η.

If f has only two wavenumber components, say κhi and κlow, with κhi > κlow, then
we must have κ+ = κhi and κ− = κlow for κ2

σ � κ2
η > κhi to hold. Hence, the higher

wavenumber mode must act as a source of energy, while the lower wavenumber mode
must act as a sink and, of course, the source must be stronger than the sink in the
sense that r+ > r−.
Another consequence is that we must have at least two modes in f , otherwise we

would have necessarily r− = 0, which contradicts κσ � κη (see also [10], [13]).
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It is not clear at this point what kinds of forcing terms would yield a Taylor-
like wavenumber such that κσ � κη. This is a particularly important issue for
the numerical simulation of turbulence (similar considerations apply to κτ in three
dimensions). It is related to the fact that most simulations do not yield the correct
spectral power laws under forcing on a single mode without resorting to inverse
viscosity and other artificial mechanisms (see further discussions in [51]).

The enstrophy cascade was proved in [13] under the assumptions that f is made
of a finite number of modes and that κσ � κf , where κf is the highest mode
in f . As is similarly done in dimension three, this implies that κη > κ

1/2
f κ

1/2
σ with

κ2
η � κ2

f > κ2
η . For a more extensive enstrophy-cascade range with κη � κη , one

may require that κ2/3
σ � κ

2/3
f .

Another result proved in [13] under those assumptions pertains to the relation
between the energy and enstrophy fluxes for κ > κf . For such κ, it turns out that
the energy flux is also upwards in wavenumber, i.e. 〈eκ(u)〉 = νκ2

0〈‖uκ,∞‖2〉 > 0.
This does not mean necessarily that the flux is uniform in the sense of an energy
cascade. If κτ is relatively large, then a direct energy cascade does occur as in the
three-dimensional case, but the nature of two-dimensional turbulence may be such
that κτ is typically relatively small. We show next that indeed a necessary condition
for the commonly accepted inverse energy cascade below the forced wavenumbers is
that κτ be relatively small. But if κ2

σ � κ2
f , despite the value of κτ and even if an

energy cascade also occurs, the enstrophy cascade is much stronger in the sense that

1− 〈Eκ(u)〉
η

1− 〈eκ(u)〉
ε

=
ε

η

〈|Au0,κ|2〉
〈‖u0,κ‖2〉

6
( κ

κσ

)2

� 1

for κ2
f 6 κ2 � κ2

σ . If one accepts that the enstrophy-cascade mechanism is the
fundamental aspect leading to the Kraichnan spectrum η2/3κ−1/3 while the energy-
cascade mechanism is that leading to the Kolmogorov spectrum ε2/3κ−5/3, then the
estimate above strongly supports the Kraichnan spectrum beyond the forced modes
in two-dimensional turbulence.

Inverse energy cascade in two-dimensional turbulence.
As we have mentioned at the beginning of the discussion, the nature of turbulence

in two dimensions is such that energy seems to cascade towards lower wavenumbers.
This inverse energy cascade yields an accumulation of energy in the large scales in
such a way that a significant amount of energy dissipation may occur in those scales.
The forcing term acts on some mesoscale range, with the enstrophy cascading up (in
wavenumber space) to be dissipated at higher modes and with the energy cascading
down to be dissipated at lower modes.
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Assume then that a significant amount of energy dissipation occurs below a range
[κ−ε, κ−ε], κ−ε 6 κ−ε, and with very little dissipation within this interval, in such a
way that

νκ2
0〈‖u0,κ−ε

‖2〉 ∼ ε, νκ2
0〈‖uκ−ε,κ−ε‖2〉 � ε.

Assume also that most of the energy-injection occurs at some mesoscale range beyond
κ−ε so that

|κ2
0〈(f ,u0,κ)〉| � ε

for all κ > κ−ε. Then from the relation

νκ2
0〈‖u0,κ‖2〉 = κ2

0〈(f0,κ,u)〉 − 〈eκ(u)〉

we see that, for κ within [κ−ε, κ−ε], we have the inverse-energy-cascade relation

〈eκ(u)〉 ≈ −ε′, where ε′
def= νκ2

0〈‖u0,κ−ε
‖2〉.

(Notice that in the particular case that νκ2
0〈‖u0,κ−ε

‖2〉 ≈ ε we obtain 〈eκ(u)〉 ≈ −ε.)
A necessary condition on κτ for this inverse energy cascade comes from the relation

κ2
τ = ε(2νe)−1 ∼ κ2

0〈‖u0,κ−ε
‖〉2(2e)−1 6 κ2

−εκ
2
0〈|u0,κ−ε

|2〉(2e)−1 6 κ2
−ε, i.e.

κτ . κ−ε.

References

[1] F. Abergel: Attractor for a Navier-Stokes flow in an unbounded domain. Attractors,
Inertial Manifolds and Their Approximation (Marseille-Luminy, 1987). RAIRO Modél.
Math. Anal. Numér. 23 (1989), 359–370.

[2] A.V. Babin: The attractor of a Navier-Stokes system in an unbounded channel-like
domain. J. Dynam. Differential Equations 4 (1992), 555–584.

[3] G. I. Barenblatt, A. J. Chorin: New perspectives in turbulence: scaling laws, asymp-
totics, and intermittency. SIAM Rev. 40 (1998), 265–291.

[4] G.K. Batchelor: The Theory of Homogeneous Turbulence. Cambridge Monographs on
Mechanics and Applied Mathematics. Cambridge University Press, New York, 1953.

[5] G.K. Batchelor: Computation of the energy spectrum in homogeneous two-dimensional
turbulence. Phys. Fluids Suppl. II 12 (1969), 233–239.

[6] H. Bercovici, P. Constantin, C. Foias and O.P. Manley: Exponential decay of the power
spectrum of turbulence. J. Statist. Phys. 80 (1995), 579–602.

[7] A.J. Chorin: Vorticity and Turbulence. Applied Mathematical Sciences 103. Springer-
Verlag, New York, 1994.

[8] P. Constantin: Geometric statistics in turbulence. SIAM Rev. 36 (1994), 73–98.
[9] P. Constantin, C. Foias: Navier-Stokes Equation. University of Chicago Press, Chicago,
1989.

[10] P. Constantin, C. Foias and O. Manley: Effects of the forcing function spectrum on the
energy spectrum in 2-D turbulence. Phys. Fluids 6 (1994), 427–429.

514



[11] C. Foias: Statistical study of Navier-Stokes equations I. Rend. Sem. Mat. Univ. Padova
48 (1972), 219–348..

[12] C. Foias: Statistical study of Navier-Stokes equations II. Rend. Sem. Mat. Univ. Padova
49 (1973), 9–123.

[13] C. Foias, M. S. Jolly, O. P. Manley and R. Rosa: Statistical estimates for the
Navier-Stokes equations and the Kraichnan theory of 2-D fully developed turbulence.
J. Statist. Phys. 108 (2002), 591–646.

[14] C. Foias, O.P. Manley, R. Rosa and R. Temam: Navier-Stokes Equations and Turbu-
lence. Encyclopedia of Mathematics and Its Applications, Vol. 83. Cambridge University
Press, Cambridge, 2001.

[15] C. Foias, O.P. Manley, R. Rosa and R. Temam: Cascade of energy in turbulent flows.
C. R. Acad. Sci. Paris, Série I Math. 332 (2001), 509–514.

[16] C. Foias, O.P. Manley, R. Rosa and R. Temam: Estimates for the energy cascade in
three-dimensional turbulent flows. C. R. Acad. Sci. Paris, Série I Math. 333 (2001),
499–504.

[17] C. Foias, G. Prodi: Sur le comportement global des solutions non-stationnaires des
équations de Navier-Stokes en dimension 2. Rend. Sem. Mat. Univ. Padova 39 (1967),
1–34.

[18] S. Friedlander, L. Topper: Turbulence. Classic Papers on Statistical Theory. Interscience
Publisher, New York, 1961.

[19] U. Frisch: Turbulence. The Legacy of A.N. Kolmogorov. Cambridge University Press,
Cambridge, 1995.

[20] J.O. Hinze: Turbulence. McGraw-Hill Series in Mechanical Engineering. McGraw-Hill,
New York, 1975.

[21] P. Holmes, J. L. Lumley and G. Berkooz: Turbulence, Coherent Structures, Dynamical
Systems, and Symmetry. Cambridge University Press, Cambridge, 1996.

[22] E. Hopf: Statistical hydromechanics and functional calculus. J. Rat. Mech. Analysis 1
(1952), 87–123.

[23] A. A. Ilyin: Attractors for Navier-Stokes equations in domains with finite measure.
Nonlinear Anal. 27 (1996), 605–616.

[24] J. Jiménez, A. A. Wray, P. G. Saffman and R. S. Rogallo: The structure of intense
vorticity in isotropic turbulence. J. Fluid Mech. 255 (1993), 65–90.

[25] T. von Karman, L. Howarth: On the statistical theory of isotropic turbulence. Proc.
Roy. Soc. London A164. 1938, pp. 192–215.

[26] A. N. Kolmogorov: The local structure of turbulence in incompressible viscous fluid for
very large Reynolds numbers. C.R. (Dokl.) Acad. Sci. URSS 30 (1941), 301–305.

[27] A.N. Kolmogorov: On degeneration of isotropic turbulence in an incompressible viscous
liquid. C. R. (Dokl.) Acad. Sci. URSS 31 (1941), 538–540.

[28] A.N. Kolmogorov: Dissipation of energy in locally isotropic turbulence. C. R. (Doklady)
Acad. Sci. URSS 32 (1941), 16–18.

[29] A.N. Kolmogorov: A refinement of previous hypotheses concerning the local structure
of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech.
13 (1962), 82–85.

[30] R.H. Kraichnan: Inertial ranges in two-dimensional turbulence. Phys. Fluids 10 (1967),
1417–1423.

[31] R.H. Kraichnan: Some modern developments in the statistical theory of turbulence.
Statistical Mechanics: New Concepts, New Problems, New Applications (S. A. Rice,
K.F. Freed and J. C. Light, eds.). 1972, pp. 201–227.

[32] O. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow. Revised
English edition. Gordon and Breach Science Publishers, New York-London-Paris, 1963.

515



[33] O. Ladyzhenskaya: First boundary value problem for the Navier-Stokes equations in
domains with non smooth boundaries. C. R. Acad. Sci. Paris, Sér. I Math. 314 (1992),
253–258.

[34] L. Landau, E. Lifchitz: Mécanique des Fluides, Physique Théorique, Tome 6. Editions
Mir, Moscow, 1971.

[35] C.E. Leith: Diffusion approximation for two-dimensional turbulence. Phys. Fluids 11
(1968), 671–673.

[36] M. Lesieur: Turbulence in Fluids. Third edition. Fluid Mechanics and its Applica-
tions, 40. Kluwer Academic Publishers Group, Dordrecht, 1997.

[37] J.-L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires.
Dunod, Gauthier-Villars, Paris, 1969.

[38] I. Moise, R. Rosa and X. Wang: Attractor for noncompact semigroups via energy equa-
tions. Nonlinearity 11 (1998), 1369–1393.

[39] A.S. Monin, A.M. Yaglom: Statistical Fluid Mechanics: Mechanics of Turbulence 2.
MIT Press, Cambridge, 1975.

[40] E.A. Novikov, R.V. Stewart: The intermittency of turbulence and the spectrum of
energy dissipation. Izv. Akad. Nauk SSSR, Ser. Geoffiz 3 (1964), 408–413.

[41] A.M. Obukhoff: On the energy distribution in the spectrm of turbulent flow. C. R.
(Dokl.) Acad. Sci. USSR 32 (1941), 19–21.

[42] A.M. Obukhoff: Some specific features of atmospheric turbulence. J. Fluid Mech. 13
(1962), 77–81.

[43] L.F. Richardson: Weather Prediction by Numerical Process. Cambridge University
Press, Cambridge, 1922.

[44] R. Rosa: The global attractor for the 2D Navier-Stokes flow on some unbounded do-
mains. Nonlinear Anal. 32 (1998), 71–85.

[45] Z. S. She, E. Jackson and S.A. Orszag: Structure and dynamics of homogeneous tur-
bulence: models and simulations. Proc. Roy. Soc. London Ser. A 434, 101–124.

[46] G. I. Taylor: Diffusion by continuous movements. Proc. London Math. Soc. Ser. 2 20
(1921), 196–211.

[47] G. I. Taylor: Statistical theory of turbulence. Proc. Roy. Soc. London Ser. A 151 (1935),
421–478.

[48] G. I. Taylor: The spectrum of turbulence. Proc. Roy. Soc. London Ser. A 164 (1938),
476–490.

[49] R. Temam: Navier-Stokes Equations. Theory and numerical analysis. Studies in Math-
ematics and its Applications, 2. 3rd edition. North-Holland Publishing Co., Amster-
dam-New York, 1984. Reedition in 2001 in the AMS Chelsea series, AMS, Providence.

[50] H. Tennekes, J. L. Lumley: A First Course in Turbulence. MIT Press, Cambridge, Mass.,
1972.

[51] C.V. Tran, T.G. Shepherd: Constraints on the spectral distribution of energy and en-
strophy dissipation in forced two-dimensional turbulence. Physica D. To appear.

[52] M. I. Vishik, A.V. Fursikov: Translationally homogeneous statistical solutions and in-
dividual solutions with infinite energy of a system of Navier-Stokes equations. Sibirsk.
Mat. Zh. 19 (1978), 1005–1031.

[53] M. I. Vishik, A.V. Fursikov: Mathematical Problems of Statistical Hydrodynamics.
Kluwer, Dordrecht, 1988.

Author’s address: R.M. S. Rosa, Departamento de Matemática Aplicada, Instituto de
Matemática, Universidade Federal do Rio de Janeiro, Caixa Postal 68530 Ilha do Fundão,
RJ 21945-970 Rio de Janeiro, Brazil, email: rrosa@ufrj.br.

516


		webmaster@dml.cz
	2020-07-02T10:33:04+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




