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Abstract. Two estimates of the regression coefficient in bivariate normal distribution
are considered: the usual one based on a sample and a new one making use of additional
observations of one of the variables. They are compared with respect to variance. The
same is done for two regression lines. The conclusion is that the additional observations
are worth using only when the sample is very small.
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1. Introduction

Let random variables (y, z) have joined binormal distribution with expectation

vector [µ1, µ2]′ and variance-covariance matrix Σ =
[

σ2
y σyz

σyz σ2
z

]
. Let vectors Y0 =

[y1, . . . ym]′ and Z0 = [z1, . . . zm]′ make a sample. The usual estimate of the regression

coefficient β = σyz/σ2
y is β̃ =

m∑
i=1

(yi − Y 0)(zi − Z0)
/ m∑

i=1

(yi − Y 0)2, where Y 0 and

Z0 are means of Y0 and Z0, respectively. Thus, β̃ is an unbiased estimate of β with
variance equal to σ2

z(1− %2)/σ2
y(m− 3) [1].

Let us assume that the vector Y0 can be enlarged by taking k = n−m additional

observations of the variable y. Now let us consider the estimate

β̂ =

m∑
i=1

(yi − Y 0)(zi − Z0)

n∑
i=1

(yi − Y )2
, where Y =

1
n

n∑

i=1

yi.
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In the paper we will compare the unbiased estimates β∗ = n−1
m−1 β̂ and β̃. We will

also compare the predictors based on two regression lines z = Z0 + β∗(y − Y ) and
z = Z0 + β̃(y − Y 0).

By Y =
[

Y0

Y1

]
we denote the vector made of Y0 and Y1, where Y1 contains the

additional n−m observations of the variable y. We will assume m > 3 throughout
the paper.

2. Comparison of β∗ and β̃

We see that β̂ is a linear form of the quantities zi and for a given Y it has a nor-

mal distribution with mean E(β̂ | Y ) = β
m∑

i=1

(yi − Y 0)2
/ n∑

i=1

(yi − Y )2 and variance

Var(β̂ | Y ) = σ2
z(1 − %2)

m∑
i=1

(yi − Y 0)2
/[ n∑

i=1

(yi − Y )2
]2
. To compute the mean and

the variance of β̂ we will use the formulas

E(β̂) = E[E(β̂ | Y )], Var(β̂) = E[Var(β̂ | Y )] + E[E(β̂ | Y )2]− [E(β̂)]2.

Random variables σ−2
y

m∑
i=1

(yi − Y 0)2, σ−2
y

n∑
i=m+1

(yi − Y 1)2 and σ−2
y m(n−m)n−1×

(Y 0 − Y 1)2 are independent χ2 variables with, respectively, m − 1, n −m − 1 and

1 degrees of freedom. This implies that b =
m∑

i=1

(yi − Y 0)2
/ n∑

i=1

(yi − Y )2 is the beta

variable with parameters 1
2 (m− 1) and 1

2 (n−m). Variables b and
n∑

i=1

(yi − Y )2 are

independent ([2] p. 38). Thus

E(β̂) = β
m− 1
n− 1

,

E[E(β̂ | Y )2] = %2 σ2
z

σ2
y

· m2 − 1
n2 − 1

,

E[Var(β̂ | Y )] =
σ2

z

σ2
y

· m− 1
(n− 1)(n− 3)

· (1− %2),

and finally we have

Var(β̂) =
σ2

z

σ2
y

· m− 1
n− 1

·
(1− %2

n− 3
+

2(n−m)
n2 − 1

%2
)
.

Of course, β̂ underestimates the parameter β so we will take into consideration the

unbiased estimate β∗ = n−1
m−1 β̂ with variance

Var(β∗) =
σ2

z

σ2
y(m− 1)

·
[n− 1
n− 3

(1− %2) +
2(n−m)

n + 1
%2

]
.
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Theorem 2.1. The unbiased estimate β∗ has smaller variance than β̃ if and

only if

(1) %2 <
n + 1

n + 1 + (n− 3)(m− 3)
.

��������
. It is sufficient to compare Var(β∗) with Var(β̃) = σ2

z(1−%2)
σ2

y(m−3) . �

Now, for fixed values of m and %2 and for n = m + k let us consider Var(β∗)
as a function of k. To make further considerations easier let us assume that k is a

continuous variable. The derivarive of Var(β∗) with respect to k is

(2) [Var(β∗)]′ =
2σ2

z

σ2
y(m− 1)(m + k − 3)2(m + k + 1)2

· [ak2 + bk + c],

where a = %2(m + 2) − 1, b = 2(m + 1)[%2(m − 2) − 1], c = (m + 1)[(m2 − 5m +
10)%2 − (m + 1)].

Corollary 2.1.
(a) If %2 6 1

m+2 then β∗ is better than β̃ for each k > 0. The bigger k we take the

smaller the variance of β∗ is. We have

m− 3
m− 1

6 Var(β∗)
Var(β̃)

6 m− 3
m− 1

·
[m + k − 1
m + k − 3

+
2k

(m + 1)(m + k + 1)

]
.

(b) If 1
m+2 < %2 < 1

m−2 then β∗ is better than β̃ for each k > 0. To minimize
Var(β∗) the value k = m − 1 for m > 4 and k = 2 for m = 4 is recommended
and then we have

m− 3
m− 2

+
m− 3

m(m + 1)
6 Var(β∗)

Var(β̃)
6 m− 3

m− 2
+

1
m

.

(c) If %2 > m+2
m2−4m+8 then β̃ is better than β∗ for each k > 0.

��������
. (a) For %2 < 1

m+2 the values a, b, c in (2) are less than 0 so the variance

of β∗ decreases for each k > 0. We get the inequalities for the quotient Var(β∗)
Var(β̃)

by

putting %2 = 1
m+2 for the right inequality and %2 = 0, k = ∞ for the left one.

(b) When %2 is between 1
m+2 and

1
m−2 we have a > 0, b 6 0, c < 0 in formula (2).

So Var(β∗) decreases for each k less than a certain value k0. It increases when
k > k0 but it stays less than Var(β̃) because lim

k→∞
Var(β∗) = σ2

z(1+%2)
σ2

y(m−1) <
σ2

z(1−%2)
σ2

y(m−3) .

The minimum value of Var(β∗) is achieved when we take k as an integer closest to k0.
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Of course k0 depends on the unknown %2. The closer %2 to 1
m+2 is the greater k0 is.

When %2 tends to 1
m−2 , the optimal value k0 tends to be in the interval (m−2, m−1).

(c) Now the question is: how large must %2 be to be sure that β̃ is better than
β∗ for all k > 0? Transforming the inequality (1) with respect to k we get k <
m+1−%2(m2−5m+10)

%2(m−2)−1 . �

Unfortunately, m+2
m2−4m+8 converges to zero rather quickly with m →∞. Thus the

improvement of β̃ is possible only for small m and %2. In Table 1 we have the optimal
values of k0 (for which Var(β∗) achieves the minimum) and the corresponding values
of Var(β∗)

Var(β̃)
for different m and %2. The calculations were made with Maple V Release

program.

k0
Var(β∗)
Var(β̃)

%2 = 0.1 %2 = 0.2 %2 = 0.3 %2 = 0.4 %2 = 0.5

∞ 15 4 2 1
m = 5 0.611 0.737 0.838 0.917 0.976

∞ 8 2
m = 6 0.733 0.869 0.954

∞
m = 8 0.873 0.982

∞
m = 10 0.951

10
m = 12 0.983

Table 1. The optimal values of k0 and the corresponding values of
Var(β∗)
Var(β̃)

.

3. Comparison between two prediction equations

Let us consider the predicted value of z for a given y of the form z∗ = Z0+β∗(y−Y )
and let us compare it with the predicted value based only on complete pairs of
observations, i.e. z̃ = Z0 + β̃(y − Y 0). The variance of the predictor z∗ for a given

value y (y 6= yi, i = 1, . . . , n) is

(3) Var(z∗) =
σ2

z

σ2
y

[a1(y − µ1)2 + d1],

where a1 = 1
m−1

[
n−1
n−3 (1− %2)+2n−m

n+1 %2
]
, d1 =

σ2
y

n

[
a1 + n−m%2

m

]
. The variance of the

predictor z̃ is (it is enough to put n = m in formula (3))

Var(z̃) =
σ2

z

σ2
y

[a2(y − µ1)2 + d2],
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where a2 = 1−%2

m−3 , d2 = σ2
ya2

m−2
m . The question is: when Var(z∗) < Var(z̃)? Let us

denote
a = a1 − a2,

d = d1 − d2,

%2
1 =

n + 1
n + 1 + (n− 3)(m− 3)

,

%2
2 =

n + 1
n + 1 +

(
1 + 4 m−1

nm+3−n−m

)
(n− 3)(m− 3)

.

Theorem 3.1.
(a) If %2 < %2

2 then for each value of y the predictor z∗ is better than z̃.

(b) If %2 > %2
1 then for each value of y the predictor z̃ is better than z∗.

(c) If %2
2 < %2 < %2

1 then z̃ is better for values of y such that |y−µ1| <
√
−d/a and

z∗ is better for the other y’s.

��������
. Var(z∗) < Var(z̃) ⇔ a(y − µ1)2 + d < 0. Let us notice that

a < 0 ⇔ %2 < %2
1 =

n + 1
n + 1 + (n− 3)(m− 3)

,

d < 0 ⇔ %2 < %2
2 =

n + 1
n + 1 +

(
1 + 4 m−1

nm+3−n−m

)
(n− 3)(m− 3)

.

Because %2
2 < %2

1 so three cases are possible: (a < 0, d < 0), (a < 0, d > 0) and
(a > 0, d > 0). �

Corollary 3.1.
(a) If %2 < 1

m−2 then, for each k (where k = n −m) and for each y, z∗ is better

than z̃.

(b) If %2 > m+2
m2−4m+8 then, for each k and for each y, z̃ is better than z∗.

��������
. It is enough to note that %2

2 and %2
1 are decreasing functions of k,

lim
k→∞

%2
2 = 1

m−2 and %2
1 = m+2

m2−4m+8 for k = 1. �

Thus only for small values of m the predictor z∗ which utilizes all available obser-
vations can be better than z̃.

� �����������! 
m = 6.

a) If %2 < 0.25 then, for each k and for each y, z∗ is better than z̃.

b) If %2 > 0.4 then, for each k and for each y, z̃ is better than z∗.

c) If %2 = 0.3 then Table 2 shows some k’s and the corresponding values of y for
which z∗ is better than z̃.

71



k 1 2 3 4 5
|y − µ1| > 0.22σ2

y > 0.37σ2
y > 0.49σ2

y > 0.60σ2
y > 0.72σ2

y

Table 2. The values of y for which z∗ is better than z̃ for different k, m = 6, %2 = 0.3.
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