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Abstract. We present a general numerical method for calculating effective elastic proper-
ties of periodic structures based on the homogenization method. Some concrete numerical
examples are presented.
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1. Introduction

Numerical computations of the effective elastic moduli of heterogeneous structures

have been considered in several papers (see e.g. [1], [3], [4], [5], [7], [11] and the
references therein). Particularly in [11] some engineering and mathematical aspects

of the homogenization method for such computations were discussed. In this paper
we continue this discussion. The presentation of the theory concerning effective

properties is made as simple as possible without involving complicated convergence
processes. We focus on the fact that the formulations of the effective properties

are quite natural from the physical point of view, something that is often hidden in
modern mathematical literature of composite materials.

A general numerical method for the computation of effective elastic moduli of peri-

odic composites is presented. This method is a variant of the “displacement method”
given in [11]. We point out conditions under which the numerical treatment can be

simplified. In particular, we study unidirectional fiber composites and discuss meth-
ods for deriving all elements of the corresponding effective stiffness matrix only by
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considering two-dimensional problems. Moreover, we consider conditions for which

the periodic boundary conditions are reduced to piecewise constant Dirichlet bound-
ary conditions and Neumann conditions, at least in a rotated coordinate system. In
addition we present some concrete numerical examples where all the elastic moduli

are computed.

2. Effective elastic moduli

For an isotropic material the shear modulus G and bulk modulus K in plane elas-

ticity (plane strain) are related to the well known Young’s modulus E and Poisson’s
ratio ν as follows:

K =
E

2(1 + ν)(1 − 2ν)
, G =

E

2(1 + ν)
.

The bulk modulus k of the three-dimensional theory is given by

k =
E

3
1

1− 2ν
.

Thus the plane strain bulk modulus K can be expressed as

K = k +
G

3
.

If the material is a thin plate, we consider the plane-stress problem. In this case the
plane stress bulk modulus is expressed as

K =
E

2
1

1− ν
.

The shear modulus G is independent of the dimension and also independent of
whether we are dealing with the plane-strain or plane-stress problem.

Let us first consider the general case when the local stiffness matrix is symmetric
and periodic relative to a cell Y ⊂ & 3 and assumes the form

C =




C1111 C1122 C1133 C1112 C1123 C1113

C2211 C2222 C2233 C2212 C2223 C2213

C3311 C3322 C3333 C3312 C3323 C3313

C1211 C1222 C1233 C1212 C1223 C1213

C2311 C2322 C2333 C2312 C2323 C2313

C1311 C1322 C1333 C1312 C1323 C1313




.
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Recall the cell problem corresponding to an average strain ξ = {ξkl}: Find the
displacement

uξ =




uξ
1

uξ
2

uξ
3


 ,

where uξ
i ∈ W 1,2(Y ) (the usual Sobolev space) with Y -periodic partial derivatives

such that 〈ekl(uξ)〉 = ξkl and that for i = 1, 2, 3

∑

j

∂

∂yj
(σij(uξ)) = 0 (equilibrium of forces),

where the stress σij(uξ) is given by

σij(uξ) =
∑

kl

Cijkl(ekl(uξ)) (Hooke’s Law),

where the strain ekl(u) is given by

ekl(u) =
1
2

(∂uk

∂xl
+

∂ul

∂xk

)

and 〈·〉 denotes the average over the Y -cell. The effective stiffness parameters {C∗
ijkl}

are then found from the expression

(1) 〈σij (uξ)〉 =
∑

kl

C∗
ijkl〈ekl(uξ)〉.

It also appears that the following “energy” identity holds (see e.g. [8]):

(2)
1
2

∑

ijkl

〈eij(uξ)Cijklekl(uξ)〉
︸ ︷︷ ︸

average strain energy

=
1
2

∑

ijkl

〈eij(uξ)〉C∗
ijkl〈ekl(uξ)〉.

The solution uξ is understood as the (weak) solution of the weak formulation of
the cell problem and does always exist under suitable conditions (see e.g. [8]). The

strain {ekl} and the stress {σij} can be represented as symmetric matrices

e =




e11 e12 e13

e21 e22 e23

e31 e32 e33


 , σ =




σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 .
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This is used when C is represented as a 4th order tensor (as in (1) and (2)). The

strain and stress can alternatively be represented as vectors

e = [e11, e22, e33,γ12, γ23, γ13]T , γij = 2eij

σ = [σ11, σ22, σ33,σ12, σ23, σ13]T .

This is used when C is represented as the above matrix, for which (1) and (2) takes

the form

〈σ(uξ)〉 = C∗〈e(uξ)〉(3)
1
2
〈e(uξ) · Ce(uξ)〉

︸ ︷︷ ︸
average strain energy

=
1
2
〈e(uξ)〉 · C∗〈e(uξ)〉.(4)

2.1. Physical interpretation.
In the mathematical theory of composites called the homogenization theory it is

often usual to describe the above cell problem in a slightly different (but equiva-

lent) way. Moreover, in the homogenization theory the cell problem is obtained as a
consequence of a limiting process where the period of the structure is assumed to ap-

proach 0. However, it is important to observe that the cell problem formulated in the
above way in itself serves as a natural definition of the effective parameters {C∗

ijkl}.
For example, if we want to find C∗

ij11 it would be natural to stretch the periodic

structure in such a way that the average strain 〈e〉 = [1, 0, 0, 0, 0, 0]T , then measure
the average stress 〈σ〉 = [〈σ11〉, 〈σ22〉, 〈σ33〉, 〈σ12〉, 〈σ23〉, 〈σ13〉]T and finally compute
the coefficient C∗

ij11 from the (effective) strain/stress relation

(5)




〈σ11〉
〈σ22〉
〈σ33〉
〈σ12〉
〈σ23〉
〈σ13〉




=




C∗
1111 C∗

1122 C∗
1133 C∗

1112 C∗
1123 C∗

1113

C∗
2211 C∗

2222 C∗
2233 C∗

2212 C∗
2223 C∗

2213

C∗
3311 C∗

3322 C∗
3333 C∗

3312 C∗
3323 C∗

3313

C∗
1211 C∗

1222 C∗
1233 C∗

1212 C∗
1223 C∗

1213

C∗
2311 C∗

2322 C∗
2333 C∗

2312 C∗
2323 C∗

2313

C∗
1311 C∗

1322 C∗
1333 C∗

1312 C∗
1323 C∗

1313







〈e11〉
〈e22〉
〈e33〉
〈γ12〉
〈γ23〉
〈γ13〉




,

which gives C∗
ij11 = 〈σij〉.
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2.2. Orthotropic composites.

Consider a linear elastic composite material in & 3 with an effective stiffness matrix
like that of an orthotropic material of the form

C∗ =




C∗
1111 C∗

1122 C∗
1133 0 0 0

C∗
2211 C∗

2222 C∗
2233 0 0 0

C∗
3311 C∗

3322 C∗
3333 0 0 0

0 0 0 C∗
1212 0 0

0 0 0 0 C∗
2323 0

0 0 0 0 0 C∗
1313




.

The stiffness matrix is symmetric and the elements may be expressed as follows (see
e.g. [15]):

C∗
1111 =

1− ν∗23ν
∗
32

∆E∗
2E∗

3

, C∗
1122 =

ν∗21 + ν∗31ν
∗
23

∆E∗
2E∗

3

, C∗
1133 =

ν∗31 + ν∗21ν
∗
32

∆E∗
2E∗

3

(6)

C∗
2222 =

1− ν∗13ν
∗
31

∆E∗
1E∗

3

, C∗
2233 =

ν∗32 + ν∗12ν
∗
31

∆E∗
1E∗

3

, C∗
3333 =

1− ν∗12ν
∗
21

∆E∗
1E∗

2

C∗
1212 = G∗

12, C∗
2323 = G∗

23, C∗
1313 = G∗

13,(7)

where

∆ =
1− ν∗12ν

∗
21 − ν∗23ν

∗
32 − ν∗31ν

∗
13 − 2ν∗21ν

∗
32ν

∗
13

E∗
1E∗

2E∗
3

.

Here, ‘E∗
i ’ are the effective Youngs moduli, ‘G

∗
ij ’ are the effective shear moduli and

‘ν∗ij ’ are the effective Poisson’s ratios. The inverse of the effective stiffness matrix

(the complience matrix) which (certainly) also is symmetric is given by




1/E∗
1 −ν∗12/E∗

2 −ν∗13/E∗
3 0 0 0

−ν∗21/E∗
1 1/E∗

2 −ν∗23/E∗
3 0 0 0

−ν∗31/E∗
1 −ν∗32/E∗

2 1/E∗
3 0 0 0

0 0 0 1/G∗
12 0 0

0 0 0 0 1/G∗
23 0

0 0 0 0 0 1/G∗
13




.

In the case of square honeycombs with locally isotropic material properties (local
shear moduli Go and GI and local plane strain bulk moduli Ko and KI with the

corresponding volume fractions po and pI , respectively, where the subscript o and I

denote outer and inner material, respectively, see Fig. 1) the stiffness matrix reduces
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to a matrix of the form

(8)




K∗ + G∗
T K∗ −G∗

T l∗ 0 0 0
K∗ −G∗

T K∗ + G∗
T l∗ 0 0 0

l∗ l∗ n∗ 0 0 0
0 0 0 G∗

T,45 0 0
0 0 0 0 G∗

L 0
0 0 0 0 0 G∗

L




.

Here K∗ is the effective transverse (also called “in-plane”) bulk modulus, G∗
T , G

∗
T,45

are the effective transverse shear moduli and G∗
L is the longitudinal (also called “out-

of plane”) shear modulus, see Fig. 2. In this case the complience matrix reduces to

(9)




1/E∗
T −ν∗T /E∗

T −ν∗L/E∗
L 0 0 0

−ν∗T /E∗
T 1/E∗

T −ν∗L/E∗
L 0 0 0

−ν∗L/E∗
L −ν∗L/E∗

L 1/E∗
L 0 0 0

0 0 0 1/G∗
T,45 0 0

0 0 0 0 1/G∗
L 0

0 0 0 0 0 1/G∗
L




.

Using (6) and the symmetry we obtain that

G∗
T =

E∗
T

2(1 + ν∗T )
,(10)

4
E∗

T

=
1

G∗
T

+
1

K∗ +
4(ν∗L)2

E∗
L

(11)

and

l∗ = ν∗L2K∗, n∗ = E∗
L + 4(ν∗L)2K∗.(12)

Moreover, it has been proved by Hill [6] that

E∗
L = poEo + pIEI +

4(νo − νI)2(
1

Ko
− 1

KI

)2

(
po

1
Ko

+ pI
1

KI
− 1

K∗

)
,(13)

ν∗L = poνo + pIνI −
νo − νI
1

Ko
− 1

KI

(
po

1
Ko

+ pI
1

KI
− 1

K∗

)
.(14)

These two formulae were proved in [6] for the case of transverse isotropy. However,
by following the proof in [6] it is easy to check that the same facts hold in our case.

We remark that (10), (11), (12), (13) and (14) hold for all two-component uni-
directional fiber composites (oriented in the direction x3) satisfying the property of
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Figure 1. The structure of square honeycombs with locally isotropic material properties.

Figure 2. The 4 moduli measure resistence against the indicated average strains.

square symmetry, i.e. the case when the stiffness matrix is of the form (8). In order to
compute all components of the stiffness matrix (9) we only have to compute 4 com-

ponents (say G∗
L, G

∗
T , G

∗
T,45 and K∗). In the case of transverse isotropy (i.e. when

G∗
T = G∗

T,45) this reduces to 3 components. The other two moduli l
∗ and n∗ are then

found by inserting the values of E∗
L (13) and ν∗L (14) into (12). E∗

T and ν∗T can be
found by first evaluating E∗

T from (11) and finally ν∗T from (10).
Note that G∗

L is found exactly as the effective conductivity in the similar 2-

dimensional problem by lettingGo andGI play the same role as the local conductivity
for that problem (see e.g. [10]).

3. Numerical methods

In order to use conventional software to solve the cell problem numerically, e.g. by

the finite element method, it is often necessary to “translate” the information of the
strain into equivalent boundary conditions on the cell

Y =
n∏

j=1

〈0, yj〉

for the displacement uξ. This is easily obtained by letting each pair of points (x−, x+)
(the latter point with the largest coordinates) on opposite faces with normal vector nl

be coupled to each other in such a way that

(15) uξ(x+) = uξ(x−) + kξ
l
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(together with putting u(0) = 0 in order to obtain a unique solution) where

kξ
l =




kξ
1l

kξ
2l

kξ
3l




is a constant vector. By integrating along the normal vector nl we obtain that

〈
∂uξ

k

∂xl

〉
=

uξ
k(x+) − uξ

k(x−)
yl

=
kξ

kl

yl
,

thus, since 〈ekl(uξ)〉 = ξkl, we obtain the useful relation

(16)
1
2

(
kξ

kl

yl
+

kξ
lk

yk

)
= ξkl.

Observe that kξ
kl and kξ

lk are not uniquely determined by this relation when k 6= l.

Thus these constants can be chosen independently (as long as (16) is satisfied).
If the material properties are locally isotropic and symmetric in each coordinate

with respect to the midpoint ((1/2)y1, . . . , (1/2)yn) of the Y -cell problem (see Fig. 3)
then we can often use simpler boundary conditions than (15).

Figure 3. The Y -cell in the symmetric case.

For example, in the case when ξ is a normal strain, i.e. ξij = 0 for i 6= j, we can

in (15) put
uξ

l (x−) = 0, uξ
l (x+) = kξ

ll, l = 1, 2, 3,

and drop all the other boundary conditions. The latter is equivalent with setting a

Neumann condition, ∂uξ
i /∂xl = 0, i 6= l on the same faces. It is easy to see physically

that these simplified boundary conditions hold by considering the deformation of the

whole periodic structure, since it is obvious that the solution (which indeed represents
the deformed body) must inherit the same symmetry as the material itself (see Fig. 4).

3.1. Coordinate transformation.
For the computation of effective moduli it is sometimes convenient to rotate the

original coordinate system. Consider an orthonormal coordinate system with basis
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Figure 4. Deformation of the periodic structure in the symmetric case.

vectors

n1 = [n11, n12, n13],

n2 = [n21, n22, n23],

n3 = [n31, n32, n33].

A vector with coordinates x = (x1, x2, x3) (relative to the usual coordinate system)
will have coordinates x′ = (x′1, x′2, x′3) (relative to the new coordinate system) given
by the relation 


x′1
x′2
x′3


 =




n11 n12 n13

n21 n22 n23

n31 n32 n33







x1

x2

x3




(see Fig. 5). It is possible to show that the following relation between the strain
e = [e11, e22, e33,γ12, γ23,γ13]T , γij = 2eij (in the usual coordinate system) and e′ =
[e′11, e

′
22, e

′
33,γ

′
12, γ

′
23, γ

′
13]

T , γ′ij = 2e′ij (in the new coordinate system) holds

e′ = Te,

where

T=




n2
11 n2

12 n2
13 n11n12 n12n13 n11n13

n2
21 n2

22 n2
23 n21n22 n22n23 n21n23

n2
31 n2

32 n2
33 n31n32 n32n33 n31n33

2n11n21 2n12n22 2n13n23 n11n22 +n21n12 n12n23 +n22n13 n11n23 +n21n13

2n21n31 2n22n32 2n23n33 n21n32 +n31n22 n22n33 +n32n23 n21n33 +n31n23

2n11n31 2n12n32 2n13n33 n11n32 +n31n12 n12n33 +n32n13 n11n33 +n31n13



.

Moreover, we can obtain a similar relation between the corresponding stresses σ and
σ′:

σ′ = T−T σ,
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where T−T is obtained from T by changing the factors of 2 in T symmetrically about
the diagonal, i.e.

T−T =




n2
11 n2

12 n2
13 2n11n12 2n12n13 2n11n13

n2
21 n2

22 n2
23 2n21n22 2n22n23 2n21n23

n2
31 n2

32 n2
33 2n31n32 2n32n33 2n31n33

n11n21 n12n22 n13n23 n11n22 +n21n12 n12n23 +n22n13 n11n23 +n21n13

n21n31 n22n32 n23n33 n21n32 +n31n22 n22n33 +n32n23 n21n33 +n31n23

n11n31 n12n32 n13n33 n11n32 +n31n12 n12n33 +n32n13 n11n33 +n31n13



.

Figure 5. The two coordinate systems.

The stress-strain relation in the new coordinate system can therefore be written

as

σ′ = C ′e′,

where

C = TT C ′T.

Concerning these facts we refer e.g. to [2, p. 212].

In the plane-strain case we put all strains related to the x3-variable equal to 0. If
we also assume that the new coordinate system is obtained from the standard one

by a rotation in the x1-x2-plane then we obtain the following simplified relations:

C =




C1111 C1122 C1112

C2211 C2222 C2212

C1211 C1222 C1212


 ,

T =




n2
11 n2

12 n11n12

n2
21 n2

22 n21n22

2n11n21 2n12n22 n11n22 + n21n12


 ,
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T−T =




n2
11 n2

12 2n11n12

n2
21 n2

22 2n21n22

n11n21 n12n22 n11n22 + n21n12


 .

As an example, let us consider the square symmetric case, i.e. let the stiffness matrix

be of the form

C∗ =




K∗ + G∗
T K∗ −G∗

T 0
K∗ −G∗

T K∗ + G∗
T 0

0 0 G∗
T,45




(cf. (8)). Performing a rotation by 45◦, i.e. [n11, n12] = [
√

2/2,
√

2/2] and [n21, n22] =
[−
√

2/2,
√

2/2], the corresponding stiffness matrix in the rotated coordinate system
becomes

C∗′ = T−T C∗T−1 =




K∗ + G∗
T,45 K∗ −G∗

T,45 0
K∗ −G∗

T,45 K∗ + G∗
T,45 0

0 0 G∗
T


 ,

i.e. C∗′ is the same as C∗ except that the shear moduli G∗
T,45 and G∗

T have changed
place. This explains the use of the index “45” and shows that we can calculate G∗

T,45

exactly as we calculate G∗
T except for rotating the coordinate system by 45◦.

4. A computational example

In the case of square honeycombs with locally isotropic material properties (see

Fig. 1) the structure is symmetric with respect to the midpoint of the Y -cell Y =
[−1, 1]3 in all the coordinates x1, x2, x3, and also in the coordinates x′1, x

′
2, x3 in the

coordinate system obtained by a rotation of 45◦ in the x1-x2-plane. The effective
stress/strain-relation (5) reduces in this case to

(17)




〈σ11〉
〈σ22〉
〈σ33〉
〈σ12〉
〈σ23〉
〈σ13〉




=




K∗ + G∗
T K∗ −G∗

T l∗ 0 0 0
K∗ −G∗

T K∗ + G∗
T l∗ 0 0 0

l∗ l∗ n∗ 0 0 0
0 0 0 G∗

T,45 0 0
0 0 0 0 G∗

L 0
0 0 0 0 0 G∗

L







〈e11〉
〈e22〉
〈e33〉
〈γ12〉
〈γ23〉
〈γ13〉




.

In order to compute the effective in-plane moduli K∗ and G∗
T we solve the cell

problem for 〈e〉 = [1, 1, 0, 0, 0, 0]T and 〈e〉 = [1,−1, 0, 0, 0, 0]T and compute the corre-
sponding values K∗ = 〈σ11〉/2 and G∗

T = 〈σ11〉/2, respectively. Alternatively we can
compute the average strain energy W and compute K∗ and G∗

T from the identity

(see (4))

W =
1
2
〈e〉 · C∗〈e〉,
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which gives K∗ = W/2 and G∗
T = W/2, respectively. For the computation it is

enough to solve the two-dimensional cell problem using the plane strain. This is due
to the fact that the solution of the three dimensional cell problem in both cases will
be independent of the x3-variable and we do not use any information of the strain

or stresses in the x3-direction for the computation of K∗ and G∗
T . Because of the

symmetries it suffices to solve the problem on 1/4 of the Y -cell, e.g. on the square

[0, 1]2, and we can use uniform boundary conditions on each face of this square (see
Section 3), i.e., for 〈e〉 = [1, 1, 0, 0, 0, 0]T the boundary conditions are

u1(0, x2) = u2(x1, 0) = 0,

u1(1, x2) = u2(x1, 1) = 1

and for 〈e〉 = [1,−1, 0, 0, 0, 0]T

u1(0, x2) = u2(x1, 0) = 0,

u1(1, x2) = u2(x1, 1) = −1.

Due to symmetries the modulus G∗
T,45 can be found exactly as G∗

T except that

we must rotate the coordinate system by 45◦ (see the last part of Section 3.1).
The modulus G∗

L can be found by using 〈e〉 = [0, 0, 0, 0, 0, 1]T and computing the
corresponding value G∗

L = 〈σ13〉. The problem with doing this is that it often
requires a full 3D FEM computation regardless of the fact that the solution of the

cell problem is independent of the x3-variable. Therefore it is often easier to solve the
corresponding 2D heat-conductivity problem (see Remark 2.2). For more detailed

information on computations of G∗
L in the case of honeycomb structures we refer

to [12] and [13]. Once we have computed the 4 moduli K∗, G∗
T , G∗

T,45 and G∗
L we

can easily obtain all the other moduli (see Remark 2.2).

As an example, let po = pI = 1/2, νI = νo = 0.3, EI = 0.5, Eo = 1 or equivalently
KI = 0.48076923, Ko = 0.96153846, GI = 0.19230769, Go = 0.38461538. By
performing a FEM-calculation according to the above method we obtain the following

effective moduli:

K∗ = 0.658455,

G∗
T = 0.273775,

G∗
T,45 = 0.259418,

G∗
L = 0.274426.
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Hence, by using (10), (11), (13) and (14) we obtain that

ν∗L = 0.3,

E∗
L = 0.75,

E∗
T = 0.70779659,

ν∗T = 0.29266111

and by (12)

l∗ = 0.39507,

n∗ = 0.98704.

Thus the effective stiffness matrix is written as



0.932226 0.384677 0.39507 0 0 0
0.384677 0.932226 0.39507 0 0 0
0.395072 0.395072 0.98704 0 0 0

0 0 0 0.259418 0 0
0 0 0 0 0.274426 0
0 0 0 0 0 0.274426




and the effective complience matrix (9) takes the form



1.41284 −0.413482 −0.4 0 0 0
−0.413482 1.41284 −0.4 0 0 0

−0.4 −0.4 1.33333 0 0 0
0 0 0 3.8548 0 0
0 0 0 0 3.64397 0
0 0 0 0 0 3.64397




.

In this example we have used the same Poisson’s ratios in both phases. Let us

consider the case when νI = 0.4, νo = 0, EI = 0.5, Eo = 1 or equivalently KI =
0.89285714, Ko = 0.5, GI = 0.17857143, Go = 0.5. In this case we obtain the
following effective moduli:

K∗ = 0.66335 ν∗L = 0.22386372
G∗

T = 0.3038805 E∗
L = 0.79338859

G∗
T,45 = 0.269322 E∗

T = 0.79193337
G∗

L = 0.307502 ν∗T = 0.3030342

')(+*-,/.�0
4.1. In the first example (where Poisson’s ratios are the same in both

phases) ν∗L and E∗
L equal the arithmetic mean of the corresponding phase properties

(usually referred to as “the law of mixtures”). From the last example we observe
that this need not be true when Poisson’s ratios of the phases are different.
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