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Abstract. The Recursive Projection Method is a technique for continuation of both the
steady states and the dominant invariant subspaces. In this paper a modified version of
the RPM called projected RPM is proposed. The modification underlines the stabilization
effect. In order to improve the poor update of the unstable invariant subspace we have
applied subspace iterations preconditioned by Cayley transform. A statement concerning
the local convergence of the resulting method is proved. Results of numerical tests are
presented.
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1. Introduction

We consider a parameter dependent dynamical system

(1) u̇ = G(u, λ),

where G : � n × � → � n is a sufficiently smooth vector field. In order to find the

steady states of (1), i.e. to solve the system of nonlinear equations

(2) G(u, λ) = 0,

we can use a standard predictor-corrector continuation, see e.g. [8], [1]. To indicate

the stability exchange in the course of pathfollowing is much harder. The Recursive
Projection Method (RPM), see [11], could serve this purpose.
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The classical RPM computes the steady states of (1) as parameter dependent fixed

points of a mapping F , namely

(3) F (u, λ) = u.

At each continuation step, the state space � n is split as

� n = � ⊕ � , � = � ⊥

where � is the invariant subspace of Fu(u, λ) containing all unstable modes. Denoting
by P and Q the orthogonal projectors on � and � respectively, the problem (3) can
be reformulated as follows: Find p ∈ � and q ∈ � such that

p = PF (p+ q, λ),(4)

q = QF (p+ q, λ).(5)

Under certain assumptions, see [11], QF is contractive. Therefore, fixed points of (5)

can be computed via Picard iterations. In order to find p, Newton-like methods
are suggested. The choice of F also includes the possibility to use any black-box

ODE solver in the Picard iteration step, see [11]. This step can be interpreted as a
dynamical simulation. As far as the stability exchange is concerned, the path of � ’s
is supposed to be one of the outputs of RPM. Therefore, the unstable modes can be
extracted from a small dimensional � at a reasonable cost.
The presence of modes with large negative real parts (which are irrelevant for the

bifurcation analysis) can slow down the RPM algorithms rapidly. An attempt to
eliminate the influence of these modes by a preconditioning was made in [3].

Note that the technique for a continuation of limit cycles, [10], originated from [11].

According to our own experience with RPM, [6], the detection of Hopf bifurcation
points is not reliable. From the theoretical point of view, the relationship between

the spectra σ(Gu) and σ(Fu) is not clear (except for a very simple black-box solver,
certainly without an adaptive time-stepping); this is crucial for the detection of Hopf

bifurcation points. In general, the weak point of RPM is a poor approximation of � .
In [7] we introduced a modification of RPM which we refer to as Projected RPM;

note that we were inspired by [2]. Projected RPM attempts to solve (2) directly

without a fixed-point reformulation (3). Let us point out the advantages:

• In the dynamical simulation step, a suitably projected vector field is integrated.
It underlines the stabilisation effects.

• The differential Gu is often explicitly available. It is not true for Fu due to the
machinery behind the fixed-point formulation.
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Concerning an update of � : In the original RPM, subspace iterations were sug-
gested. However, subspace iterations tend to span an invariant subspace correspond-
ing to the eigenvalues with large moduli. Unfortunately, these need not be the right-
most eigenvalues.

Therefore we propose to use subspace iterations preconditioned by Cayley trans-

form, see [4]. The effect is that the rightmost modes are mapped outside the unit
circle.

The paper is organized as follows: In Section 2 the Projected RPM is formulated;
a pseudocode is given. Important parts of the algorithm such as a correction of the

basis of � and changing the dimension of � are discussed in detail. In Section 3 we
state and prove a theorem about the local convergence of the Projected RPM. The

last section contains results of a numerical experiment.

2. Projected RPM

First we introduce some notation. Let Γ ⊂ � n × � be the solution set to (2) and
let (u∗, λ∗) ∈ Γ be an arbitrary point. By A we denote the Jacobian matrix

A = DuG(u∗, λ∗).

Stability properties of the steady state u∗ are determined by the eigenvalues
µ1, . . . , µn of A. Let us arrange them decreasingly with respect to their real parts.

Consider γ < 0 such that

(6) <µ1 > . . . > <µm > γ > <µm−1 > . . . > <µn.

Let us call this particular γ the stability boundary. We say that a particular eigen-
vector v of A exceeds the stability boundary γ if the relevant eigenvalue µ satisfies

<µ > γ.
Let � be the invariant subspace corresponding to the first m eigenvalues and let

Z1 be an orthonormal basis in � . Thus Z1 ∈ � n×m satisfies the equations

AZ1 = Z1Λ1,(7)

ZT
1 Z1 = Im,(8)

where Im ∈ � m×m is the identity matrix and Λ1 ∈ � m×m is a square matrix with
eigenvalues µ1, . . . , µm. Further let us define the orthogonal complement

� = � ⊥,
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and let Z2 be an orthonormal basis in � , i.e.

ZT
2 Z2 = In−m.

From the definition of � it follows that

(9) ZT
1 Z2 = 0 ∈ � m×(n−m) , ZT

2 Z1 = 0 ∈ � (n−m)×m .

Note that Z1Z
T
1 and Z2Z

T
2 are orthogonal projectors.

For each vector u ∈ � n there exist unique vectors p ∈ � m and q ∈ � n−m such

that u = Z1p + Z2q. The assertion is proved by setting p = ZT
1 u and q = ZT

2 u. In
particular, u∗ = Z1p

∗ + Z2q
∗.

2.1. Coupled iterations.
System (2) can be split into two systems

GP (p, q, λ) ≡ ZT
1 G(Z1p+ Z2q, λ) = 0,(10)

GQ(p, q, λ) ≡ ZT
2 G(Z1p+ Z2q, λ) = 0,(11)

where

GP : � m × � n−m × � −→ � m and GQ : � m × � n−m × � −→ � n−m

are projections of G(u, λ) onto � m and � n−m , respectively.

Let u(k) be the k-th approximation to u∗, u(k) = Z1p
(k) +Z2q

(k). Let λ = λ∗. To

define u(k+1) we perform one step of coupled iteration: Equation (10) is solved with
respect to the unknown p by Newton’s method. Namely, we set

(12) p(k+1) = p(k) − (DpG
P (p(k), q(k), λ))−1GP (p(k), q(k), λ).

Equation (11) is solved by means of dynamical simulation: Consider the parameter
dependent dynamical system

q̇(t) = GQ(p, q(t), λ),(13)

q(0) = q.(14)

Let ψ(t, q; p, λ) be the relevant flow. For a fixed time increment ∆t we set

(15) q(k+1) = ψ(∆t, q(k); p(k), λ).
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In practice we approximate the flow by means of a blackbox solver for ODEs. For

the numerical stability of this step it is important that the projected vector field GQ

does not contain unstable modes.
Let us resume that one step of coupled iteration can be written in the form

p(k+1) = FP (p(k), q(k), λ),(16)

q(k+1) = FQ(p(k), q(k), λ),(17)

u(k+1) = Z1p
(k+1) + Z2q

(k+1),(18,)

where

(19) FP (p, q, λ) = p− (DpG
P (p, q, λ))−1GP (p, q, λ)

and

(20) FQ(p, q, λ) = ψ(∆t, q; p, λ).

In fact, the basis Z2 need not be computed at all. Indeed, according to the

equation (18) we only need to evaluate the quantity Z2q. To this end we set v(t) =
Z2q(t). After differentiating v with respect to t and inserting into (13), (14) we arrive
at the dynamical system

v̇(t) = Z2Z
T
2 G(Z1p+ v(t), λ) = (I − Z1Z

T
1 )G(Z1p+ v(t), λ),(21)

v(0) = Z2q = v.(22)

Let ϕ(t, v; p, λ) be the relevant flow of the above dynamical system. Then Z2q
(k+1)

in (18) reads

(23) Z2q
(k+1) = ϕ(∆t, v; p(k), λ)

with v = u(k) − Z1p
(k).

2.2. Pathfollowing.
We intend to use the coupled iterations (16)–(18) in the context of a standard

pathfollowing (u(s), λ(s)) of (2). The idea is to project (u(s), λ(s)) ∈ � (n+1) to
(p(s), λ(s)) ∈ � (m+1) .

We consider a predictor-corrector continuation. Let (u0, λ0) be a point on Γ. Let
(u̇, λ̇) be the unit tangent vector (or its approximation) at (u0, λ0). Let (u(0), λ(0))
be the relevant predictor, i.e.

(24) u(0) = u0 + u̇ δs, λ(0) = λ0 + λ̇ δs
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where δs > 0 is the arclength increment. Note that in the actual computation we
have used the secant method.
Let A = DuG(u0, λ0). Let m modes of A exceed the stability boundary. These

modes span an invariant subspace. Let Z1 be an orthonormal basis of this subspace.

Finally, let ṗ = ZT
1 u̇.

We generate the sequence (u(k), λ(k)) of correctors via the following recurrence:
Instead of (12), we require

DpG
P (p(k), q(k), λ(k))(p(k+1) − p(k)) +DλG

P (p(k), q(k), λ(k))(λ(k+1) − λ(k))(25)

= −GP (p(k), q(k), λ(k))

with the constraint

(26) ṗT (p(k+1) − p(k)) + λ̇(λ(k+1) − λ(k)) = 0,

see [11]. The linear system (25), (26) is to be solved for p(k+1) and λ(k+1). Motivated
by (18) and (23), we set

(27) u(k+1) = Z1p
(k+1) + ϕ(∆t, u(k) − Z1p

(k); p(k), λ(k)).

The corrector step is resumed in Section 2.4.

2.3. Approximation of the basis Z1.
After the predictor-corrector step we need to update Z1. Note that also the

dimension m, see (6), may change from time to time.

In [11] it was suggested to use subspace iterations (in principle) to modify Z1.
These iterations converge to dominant modes of A which are not necessarily the

rightmost ones.
The remedy is to use the so called Cayley transform of A. The resulting algo-

rithm is referred to as subspace iterations preconditioned by the Cayley transform in
literature. In the following we will outline the basic idea behind it, for details see [4].

The Cayley transform of a matrix A is defined by

C(A) = (A− α1I)−1(A− α2I)

for α2 < α1, α1 /∈ σ(A). The most important property is that it maps the eigenvalues
with <µ < 1

2 (α1+α2) inside the unit circle and the eigenvalues with <µ > 1
2 (α1+α2)

outside the unit circle.

Given the stability boundary γ < 0, we fix some ω > 0 and

(28) α1 = γ + ω, α2 = γ − ω.
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Let m eigenvectors of A exceed the stability boundary γ; let Z1 be an orthonormal

basis of the relevant invariant subspace.

Initialize Q(0) ∈ � n×m randomly (it should not be deficient in Z1). We consider

the following iterative process:

do
V(k) = C(A)Q(k−1);

Q(k) = orth(V(k));
until convergence

Then Q(k) −→ Z1.

In the above loop and in the sequel, orth(V)∈ � n×m is the orthonormalisation of

a given V ∈ � n×m via the modified Gramm-Schmidt process, see e.g. [5].

So far the revision. In our context, A = Du(u0, λ0) where (u0, λ0) was just up-
dated by the predictor-corrector, see Section 2.2. Obviously, we do not know the
relevant Z1 and m. On the other hand, we are able to recall Z1 and m at the

previous continuation step. They may play the role of initial guesses.

We propose the following

procedure CorrectBasisViaCayley(u0, λ0, Z1, m)
A = Gu(u0, λ0);
Augment Z1 by r randomly initialized columns;

Q(0) = orth(Z1);
C(A) = (A− α1I)−1(A− α2I)
for k = 1, . . . , kmax do

V(k) = C(A)Q(k−1);

Q(k) = orth(V(k));
end for
Q = Q(kmax); H = QTAQ;

Compute σ(H) = {µ1, . . . , µm+r};
Find zk: Hzk = µkzk, ‖zk‖ = 1 as k = 1, . . . , m + r;

mnew = 0, empty Z1;

for k = 1, . . . , m + r do
if <µk > γ then
Augment Z1 by the column Q zk;

mnew = mnew + 1;

end if;
end for;
m = mnew;

The procedure returns Z1 and m: m equals the number of modes that exceed the
stability boundary. The particular eigenvectors of A are stored as columns of Z1 ∈
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� n×m . Therefore, Z1 = orth(Z1) would be the actual update of Z1. Parameters to

be fixed are r, kmax and (28).

In the heart of the algorithm is the loop of subspace iterations preconditioned by
the Cayley transform. The matrix Q ∈ � n×(m+r) contains an approximation of an

invariant subspace of A; kmax controls the quality of the approximation. The action
of A on Q is represented by the matrix H ∈ � (m+r)×(m+r) . Since the size of H is

comparatively small, we use the QR Algorithm, see e.g. [5], to find the spectrum σ(H)
and the relevant eigenvectors zk. We accept only those modes that do not exceed

the stability boundary γ.

Recall that one of the aims is to indicate the stability exchange: We just count
the modes of H with <µk > 0.
Let us discuss the performance of the algorithm. Assume that there was no need

to update m. We could set r = 0 and the algorithm would converge in few steps.
Troubles start when a) some of the modes in the “old” Z1 converge to modes that

do not exceed the stability boundary, b) a new mode exceeds the stability boundary.
Let us call the trouble making eigenvectors the transition modes. The natural idea is

to augment the initial Z1 by r randomly initialized columns. One expects that tran-
sition modes would contribute to the invariant subspace Q ∈ � n×(m+r) . Therefore,

these eigenvectors could be extracted from σ(H) and be “recognized”. This strategy
requires a larger kmax.

Let us fix a finite kmax. One should be aware of the fact that not all eigenvectors

of σ(H) are approximated with the same precision. The domain of confidence of the
Cayley transform, see [4], would indicate which modes are approximated best/worst.

Parameters should be set in such a way that the eigenvectors z of H with <µ > 0
should be particularly well-approximated. Obviously, parameter tuning is problem-

dependent.

2.4. Code of the Projected RPM.

Combining all the things together, i.e. coupled iterations, the pseudo-arclength
condition and the CorrectBasisViaCayley procedure, we arrive at the following

corrector step:

procedure ProjectedRPM (u(0), λ(0), Z1, m)
G = G(u(0), λ(0));
p(0) = ZT1u

(0); v(0) = u(0) − Z1p(0);
H = ZT1Gu(u(0), λ(0))Z1;
k := 0;

while (‖G‖ > tolRes) do
v(k+1) = RK(∆t, p(k), v(k), λ(k), tol);
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(
p(k+1)

λ(k+1)

)
=

(
p(k)

λ(k)

)
−

(
H ZT

1 Gλ

ṗ λ̇

)−1 (
ZT

1 G

0

)
;

u(k+1) = Z1p(k+1) + v(k+1);
G = G(u(k+1), λ(k+1));
H = ZT1Gu(u(k+1), λ(k+1))Z1;
k = k + 1;
endwhile;
Update u0 = u(k+1), λ0 = λ(k+1);

CorrectBasisViaCayley(u0, λ0, Z1, m);
Z1 = orth(Z1);

end

In order to approximate the flow ϕ, see (21), (22), we have employed a standard
Runge-Kutta integrator with automatic step control:

ϕ(∆t, v; p, λ) ≈ RK(∆t, p, v, λ, tol).

The last parameter sent to the Runge-Kutta procedure is the local discretization error
tolerance tol. The following table lists the parameters used in the above algorithm

together with the particular values we have used in the computations (see Section 4):

δs = 0.15 —arclength increment
∆t = 0.1 —time increment in the dynamical simulation

tolRes = 10−4—stopping criterion in corrector loop
tol = 10−3 —see Runge-Kutta integrator
γ = −5.0 —stability boundary

α1 = γ + 1.4 —see (28)
α2 = γ − 1.4 —see (28)

r = 6 —augmenting Z1
kmax = 11 —number of loops in preconditioned subspace iterations

3. Convergence analysis

We will provide the proof of a local convergence of the iterations defined in Sec-
tion 2.1. We are aware that this is just the first step towards a justification of our

algorithm. Consider u∗, p∗, q∗, λ∗, A = DuG(u∗, λ∗), � , Z1, Z2, m and γ being
defined as in Section 2.1.

Lemma 1. The matrix ZT
2 AZ1 satisfies ZT

2 AZ1 = 0 ∈ � (n−m)×m .
�������! 

. The stamement follows from (7) and (9). �
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As a preliminary step, let us investigate properties of the matrix

AQ ∈ � (n−m)×(n−m)

being defined as the projection of A on � n−m ,

AQ = ZT
2 AZ2.

Lemma 2. The matrix AQ has n−m eigenvalues µm+1, . . . , µn.
�������! 

. Let the columns of the matrix Z̃2 ∈ � n×(n−m) form a basis in the

invariant subspace of A corresponding to the last n−m eigenvalues, i.e. AZ̃2 = Z̃2Λ2

with σ(Λ2) = {µm+1, . . . , µn}. Note that the columns of both Z1 and Z̃2 together

form a basis of � n and hence

(29) � n = � ⊕ Z̃2( � n−m).

As a next step we will show that the columns of the matrix

V2 = ZT
2 Z̃2 ∈ � (n−m)×(n−m)

span an invariant subspace of AQ. Indeed,

AQV2 = ZT
2 AZ2Z

T
2 Z̃2 = ZT

2 A(Z1Z
T
1 + Z2Z

T
2 )Z̃2 = ZT

2 AZ̃2 = V2Λ2.

Here we have used Lemma 1. Moreover, Z1Z
T
1 and Z2Z

T
2 are projectors, therefore

Z1Z
T
1 + Z2Z

T
2 = I . The latter identity in the chain above is a simple consequence

of the decomposition � n = Z1( � m ) ⊕ Z2( � n−m ). To complete the proof it suffices
to show that the columns of V2 are linearly independent.

Suppose that there exists a vector 0 6= q ∈ � n−m such that V2q = ZT
2 Z̃2q = 0.

Therefore, Z̃2q ∈ � . Due to the splitting (29), Z̃2q = 0. Since Z̃2 is a full rank
matrix, q = 0, which is a contradiction. �

Before we prove the main result of this section we need to evaluate three differen-
tials. This is done in the following three lemmas.

Lemma 3. Let G be from the class C2. Assume that det(DpG
P (p∗, q∗, λ∗)) 6= 0.

Then

DpF
P (p∗, q∗, λ∗) = 0 ∈ � m×m .

�������! 
. Differentiating FQ with respect to p we obtain

DpF
Q = I −Dp[(DpG

P )−1]GP − (DpG
P )−1DpG

P = −Dp[(DpG
P )−1]GP .

For the particular (p∗, q∗, λ∗) we have GP = 0. �
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Lemma 4. Let G be from the class C1. Then

DqF
Q(p∗, q∗, λ∗) = eZT

2 AZ2∆t.

�������! 
. By definition (20), DqF

Q(p, q, λ∗) = Dqψ(∆t, q; p, λ). Consider the
directional derivative

z(t) = Dqψ(t, q; p, λ∗) · δq
as a function of time t for an arbitrary fixed δq ∈ � n−m . For the existence, see
e.g. [9], Theorem 13.1.4. The particular z(∆)t can be computed by integrating the
equation in variations, see e.g. [9], eq. (1.11) on page 232:

ż(t) = DqF
Q(p, q(t), λ∗)z(t),

z(0) = δq

where q(t) = ψ(t, q; p, λ∗). At the steady state (p∗, q∗, λ∗), we have q(t) ≡ q∗ and

ż(t) = ZT
2 AZ2z(t),(30)

z(0) = δq.(31)

Hence we can deduce that z(∆t) = eZT
2 AZ2∆tδq. �

Lemma 5. Let G be from the class C1. Then

DpF
Q(p∗, q∗, λ∗) = 0 ∈ � (n−m)×m .

�������! 
. In accordance with definition (20), DpF

Q(p, q, λ∗) = Dpψ(∆t, q; p, λ∗).
We consider the variation

v(t) = Dpψ(t, q; p, λ∗) · δp

as a function of time t for an arbitrary fixed δp ∈ � m . Under the conditions on
the smoothness of the mapping G the existence of the differential with respect to p

is guaranteed, see [9], Theorem 14.2.1. Then according to [9], eq. (2.8), (2.9) on
page 245, v(t) satisfies the differential equation

v̇(t) = DqG
Q(p, q(t), λ∗)v(t) +DpG

Q(p, q(t), λ∗) · δp,
v(0) = 0.

At the steady state (p∗, q∗, λ∗) we have q(t) ≡ q∗. Therefore, v(t) satisfies

v̇(t) = ZT
2 AZ2v(t) + ZT

2 AZ1δp = ZT
2 AZ2v(t),(32)

v(0) = 0.(33)

Clearly the only solution of the above system is v(t) = 0. �
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Theorem. Let G be from the class C2; let det(DpG
P (p∗, q∗, λ∗)) 6= 0. Then the

iterations (16), (17) are locally convergent with

lim
k→∞

p(k) = p∗, lim
k→∞

q(k) = q∗.

�������! 
. Let us consider a composite mapping H : � m × � n−m → � m × � n−m

defined as

H(p, q, λ∗) =
(
FP (p, q, λ∗)
FQ(p, q, λ∗)

)
.

To prove local convergence it is sufficient to show that the spectral radius satisfies
the condition

(34) %(Dp,qH(p∗, q∗, λ∗)) < 1.

For the differential Dp,qH(p∗, q∗, λ∗) we obtain

Dp,qH(p∗, q∗, λ∗) =
(

0 DqF
P (p∗, q∗, λ∗)

0 eZT
2 AZ2∆t

)

due to Lemmas 3, 4 and 5. Lemma 1 yields that the eigenvalues of the Jacobian

matrix of H are 0, . . . , 0, eµm+1∆t, . . . , eµn∆t; there are m zeroes at the beginning of
the list. Since

<µi < 0, i = m+ 1, . . . , n

we get eµi∆t < 1 and thus (34) holds. �

4. Numerical experiment

In order to compare the performance of both the original RPM and the Projected

RPM we have chosen the same example as in [11], i.e. the nonsymmetric system
of PDEs

∂v

∂t
=

1
5
∂2v

∂x2
+ λ(v − w) +

1
5
λ2ev,

∂w

∂t
=

1
5
∂2w

∂x2
+ λ(v + w) +

1
5
λ2ew

with

v(0) = v(1) = 0, w(0) = w(1) = 0.
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Figure 1. Solution path of nonsymmetric system in for nx = 40 computed by the Projected
RPM.

The above system is discretized by finite differences. The number of mesh points is

denoted by nx. Notice that the dimension of the resulting problem is n = 2 ∗ nx.
Fig. 1 depicts the solution curve computed by Projected RPM for nx = 40. Dis-

continuities of m are marked. All four bifurcation points were safely detected: two
Hopf bifurcation points, one turning point and one symmetry breaking bifurcation

point. Note that the original RPM failed to detect the Hopf bifurcation point for
λ ≈ 4.5.

λ ‖u‖ µ | µ̂−µ
µ̂ |

1.3918 1.6824 −0.1566 + 1.3861i 1.5·10−9

1.5456 1.903 0.0767 + 1.5363i 2.5·10−9

4.4477 3.4694 −0.2733 + 4.3172i 1.4·10−7

4.5973 3.5427 0.0821 + 4.4481i 4.8·10−7

7.0235 7.1372 −0.2391 1.1·10−4

7.0230 7.2211 0.8011 1.5·10−4

6.6935 9.2843 0.6832 1.2·10−4

6.5597 9.7910 −0.0401 4.0·10−5

Table 1. Accuracy of the computed eigenvalues near bifurcation points.

Tab. 1 refers to the stability exchange: While following the solution path
(u(s), λ(s)) numerically, we produce and process the path of the relevant µ ∈
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Figure 2. Eigenvalue movie.

σ(H(u(s), λ(s))), see CorrectBasisViaCayley in Section 2.3. Two consecutive

points on the numerical branch with µ just crossing the imaginary axis indicate
stability exchange. For comparison, we computed σ(A) via QR and marked by µ̂
the eigenvalue closest to the imaginary axis. From the table we can conclude that
all the eigenvalues needed for the detection of the bifurcation points were computed

within a satisfactory accuracy.

Finally, Fig. 2 shows the eigenvalue movie, i.e. the dependence of the real parts of

the rightmost eigenvalues on the pseudo-arclength parameter. Bold lines correspond
to the complex conjugate pairs of eigenvalues.
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