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Abstract. The convergence of Rothe’s method in Hölder spaces is discussed. The obtained
results are based on uniform boundedness of Rothe’s approximate solutions in Hölder spaces
recently achieved by the first author. The convergence and its rate are derived inside a
parabolic cylinder assuming an additional compatibility conditions.
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Introduction

Let us consider the linear parabolic equation

∂tu + Au = f(t) in I × Ω,

where Ω ⊂ � N is a bounded domain, I = (0, T ), T < ∞, and

Au = −
N∑

i,j=1

∂xi(aij(x)∂xj u) + a0(x)u

with aij , a0 ∈ L∞(Ω). Let the boundary ∂Ω of Ω be Lipschitz continuous and let
Γ1, Γ2 ⊂ ∂Ω be relatively open subsets. We assume Γ1 ∩ Γ2 = ∅ and mesN−1 Γ1 +
mesN−1 Γ2 = mesN−1 ∂Ω.
Along with the parabolic equation we consider the mixed boundary conditions

u(t, x) = Ψ(t, x) on I × Γ1, −∂νAu = γ(x)u on I × Γ2,

*This work was supported by Japan grant JSPS.
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and the initial condition

u(0, x) = u0(x) on Ω,

where u0 ∈ L2(Ω) and −∂νAu =
N∑

i,j=1

aij(x)∂xj uνi, ν being the outward normal

to ∂Ω.
We consider the weak solution u(t) ∈ W 1

2 (Ω) of the introduced parabolic problem
which has to satisfy the identity

(∂tu(t), v) + ((u(t), v)) = (f(t), v) for a.e. t ∈ I, ∀v ∈ V,(1)

u(0) = u0,

where V = {v ∈ W 1
2 (Ω): v|Γ1 = 0} (W 1

2 (Ω) being the Sobolev space), (u, v) denotes
the scalar product in L2(Ω) and ((u, v)) is defined by

((u, v)) :=
∫

Ω

( N∑

i,j=1

aij∂xj u ∂xi v + a0uv

)
dx +

∫

Γ2

γuv dσ

for u, v ∈ V , where aij , a0, γ are measurable and bounded functions. Let uΨ(t) ∈
W 1

2 (Ω), t ∈ I , be such that uΨ(t) = Ψ(t) on Γ2 (in the sense of traces). Then,

additionally to (1), the weak solution u(t) has to satisfy u(t)− uΨ(t) ∈ V .
Let | · | denote the L2(Ω) norm and ‖ · ‖ the norm in W 1

2 (Ω). We assume that

(2) aij(x)ξiξj > Ce

N∑

i=1

ξ2
i ∀ ξ ∈ � N , a0, γ > 0, aij = aji, i, j = 1, . . . , N,

where C2 > 0.
�����������

1. The nonhomogeneous boundary condition

−∂νAu = γ(x)(u− ϕ1) + ϕ2 on I × Γ2

can be reduced by linear transformation to the homogeneous one (ϕ1 = ϕ2 = 0)
provided there exists a smooth function Θ on Ω satisfying

−∂νAΘ = γ(x)(Θ− ϕ1) + ϕ2 on I × Γ2.

The very common numerical approximation of (1) is Rothe’s method, the method of
lines, which corresponds to Euler backward approximation of ODE. In this concept,

time discretization is used and (1) is reduced to a sequence of elliptic problems in
the following way.
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Let h = T/n be a time step for any n ∈ � . On the time level t = ti = ih

(i = 1, 2, . . . , n) we successively determine ui ∈ W 1
2 (Ω), ui−uΨ(ti) ∈ V , from elliptic

problems

(3) (δui, v) + ((ui, v)) = (fi, v) ∀ v ∈ V,

where δui := (ui − ui−1)/h, fi = 1
τ

∫ ti

ti−1
f(s, x) ds and u0 is from (1) and ui−1 is

known from the previous time level. By means of ui (i = 1, 2, . . . , n) we construct
approximate solutions un(t) and un(t) of (1) as follows:

un(t) := ui−1 + (t− ti−1)δui,(4)

un(t) := ui for t ∈ (ti−1, ti], i = 1, 2, . . . , n,

un(0) = un(0) := u0.

The function un and the corresponding step function un are called Rothe’s functions.

For both numerical and theoretical reasons, appropriate functional space, conver-
gence and its rate are of importance. The convergence of {un} has been studied
in many papers, see [2]–[5], [9], [10]. The following functional spaces have been
considered: C(I, L2(Ω)), C(I × Ω), L2(I, C0,µ(Ω)), where C0,µ is the Hölder space,

see [11].
The main purpose of this section is to discuss the convergence of {un} in the space

C0,α(Qloc), where Q = I × Ω and Qloc ⊂ Q.

Our convergence result is based on the following one in [6]:

Theorem K. Let {un} be defined by (3), (4). If (2) is satisfied and if {un} is
uniformly bounded in L∞(Qloc), then there exist C > 0 and µ > 0 such that

|un(t, x)− un(t′, y)| 6 C(|t− t′|µ + |x− y|2µ) ∀ (t, x), (t′, y) ∈ Qloc

holds uniformly for n.

We can formulate our result as follows:
If the conditions of Theorem K are fulfilled and (5), (6) (see below) are satisfied,

then (cf. Theorem 1)

‖un − u‖C0,δµ(Qloc) 6 C(1/n + sup
|τ |6h

‖∂tu(·+ τ)− ∂tu(·)‖∞,Q

+ sup
|τ |62h

‖∂tuΨ(·+ τ) − ∂tuΨ(·)‖∞,Q

+ sup
|τ |62h

‖∂tf(·+ τ) − ∂tf(·)‖∞,Q)1−δ ,

where δ ∈ (0, 1) and µ is from Theorem K.
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Moreover, under some additional regularity of f and uΨ and smoothing effect of

parabolic problems we can localize the term ∂tu in the time variable, i.e., to the
interval (τ, T ), τ > 0. Then our final convergence result reads (cf. Theorem 3)

‖un − u‖C0,δµ(Qloc) 6 C(Ω, τ)n−(1−δ),

where Qloc ⊂ (τ, T ) × Ω. If, moreover, aij , a0, ∂tf ∈ C0,1(Q) and ∂2
t uΨ ∈

L2(I, W 2
2 (Ω)) ∩ L∞(Q) then we can take arbitrary 0 < µ < 1 and replace Qloc

by (τ, T )× Ω (cf. Theorem 5).
In Section 1 we prove the L∞(Q) convergence. In Section 2 we prove the

L∞((τ, T )× Ω) convergence and in Section 3 the C0,µ(Qloc) convergence.

Section 1

In addition to (2) we assume

(5) f ∈ L∞(Q), u0 ∈ V ∩ L∞(Ω),

and the following regularity concerning u0, f :

there exists z0 ∈ L∞(Ω) such that

(6) (z0, v) + ((u0, v)) = (f(0), v) ∀ v ∈ V.

�����������
2. The assumption (6) requires stronger regularity for u0 and a com-

patibility condition on the boundary ∂Ω for t = 0. Condition (6) is clearly satisfied
if u0 satisfies the stationary problem corresponding to (1) at t = 0.
�����������

3. The existence and uniqueness of ui ∈ V (i = 1, 2, . . . , n) satisfy-
ing (3) follows from the Lax-Milgram lemma.

We prove the uniform boundedness of {ui} in L∞(Ω). We set ‖g‖∞,D := ‖g‖L∞(D).

Lemma 1. If (2), (5) and ∂tuΨ ∈ L∞(Q) are satisfied, then

‖ui‖∞,Ω 6 C (i = 1, 2, . . . , n)

holds uniformly for n.
�������! 

. The unique weak solution ui of (3) can be represented in the form
ui = zi + uΨ,i, zi ∈ V (we denote uΨ,i ≡ uΨ(ti)), where zi is the unique point of

minimum of the functional

Φi(v) =
1
2h

∫

Ω

(v − ui−1)2 dx +
1
2
((v, v))− (fi, v)
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over the set uΨ,i + V . For K > 0 let uK
i be the truncation of ui defined by uK

i =
min

{
1, K/|ui|

}
ui (uK

i (x) = 0 if ui(x) = 0). We will prove that

Φi(ui)− Φi

(
uK

i

)
> 0

for

K = max{‖uΨ,i‖∞, ‖u0‖∞, ‖ui−1‖∞ + τ‖fi‖∞}.

Then from the uniqueness argument it follows that ‖ui‖∞ 6 K and, consequently,
from this recurrent estimate (K is dependent of ‖ui−1‖∞) we obtain

‖ui‖∞,Ω 6 ‖u0‖∞,Ω + ‖uΨ‖∞,Q +
∫

I

‖f(t)‖∞,Ω dt.

Here we can assume that ‖uΨ‖∞,Q = ‖Ψ‖∞,I×Γ1 , since in the place of uΨ we could
take uL

Ψ with L = ‖Ψ‖∞,I×Γ1.

We write

Φi(ui)− Φi(uK
i ) =

1
2h

∫

Ω

(ui − uK
i )(ui + uK

i − 2ui−1 − 2τfi) dx

+ ((ui − uK
i−1, ui − uK

i−1))

+
∫

Γ2

(ui − uK
i )(ui + uK

i − 2ui−1) dσ.

We find out easily that all three terms on R.H.S. are nonnegative due to our assump-

tions. �

Now, we shall prove the uniform boundedness of δui in L∞(Ω).

Lemma 2. If (2), (5), (6) hold and ∂tf, ∂tuΨ ∈ L∞(Q), then

‖δui‖∞,Ω 6 C (i = 1, 2, . . . , n), ‖∂tu‖∞,Q 6 C

uniformly for n.
�������! 

. We subtract (3) with indices i, i− 1 and obtain

(δui − δui−1, v) + h((δui, v)) = h(δfi, v) ∀v ∈ V.

If i = 1 then we use (6), where δu0 is replaced by z0. Then we proceed in the same
way as in the proof of Lemma 1 and conclude that

(7) ‖δui‖∞,Ω 6 C(‖z0‖∞,Ω + ‖∂tf‖∞,Q + ‖∂tuΨ‖∞,Q) 6 C (i = 1, 2, . . . , n)
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hold uniformly for n. Hence, we get un → u in C(I, L2) (see, e.g. [5]) and ∂tu
n ⇀ w

(weakly) in L2(Q) for n →∞. Therefore, by letting n →∞ in the identity

(un(t), v)− (u0, v) =
∫ t

0

(∂tu
n, v) ds ∀ v ∈ C∞

0 (Ω),

we find that

(u(t)− u0, v) =
∫ t

0

(w(s), v) ds ∀ v ∈ C∞
0 (Ω),

which implies

u(t)− u0 =
∫ t

0

w(s) ds in L2(Ω),

and hence, ∂tu = w. Moreover, from (7) we deduce

∫

I

∫

Ω

∂tuv dx dt = lim
n→∞

∫

I

∫

Ω

∂tu
nv dx dt

6 C(‖z0‖∞,Ω + ‖∂tf‖∞,Q + ‖∂tuΨ‖∞,Q)

×
∫

I

∫

Ω

|v| dx dt ∀ v ∈ C∞
0 (Q)

to obtain

‖∂tu‖∞,Q 6 C(‖z0‖∞,Ω + ‖∂tf‖∞,Q + ‖∂tuΨ‖∞,Q)

and the proof is complete. �

Now, we set ũi = h−1
∫

Ii
u(t) dt, ui = u(ti), and ei = ũi − ui for i = 1, 2, . . . , n,

and e0 = 0.

Theorem 1. If the assumptions of Lemma 2 are fulfilled, then

‖un − u‖∞,Q 6 C
( 1

n
+ sup
|τ |62h

‖∂tu(·+ τ)− ∂tu(·)‖∞,Q

+ sup
|τ |62h

‖∂tuΨ(·+ τ) − ∂tuΨ(·)‖∞,Q

+ sup
|τ |62h

‖f(·+ τ)− f(·)‖∞,Q

)
,

where u is the unique solution of (1) and {un} is from (3) and (4).
�������! 

. We integrate (1) over Ii = (ti−1, ti), 1 6 i 6 n, and obtain

(δui, v) + ((ũi, v)) = (f̃i, v) ∀ v ∈ V.
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Subtracting it from (3), we deduce

(8) (ei − ei−1, v) + h((ei, v)) = h(zi, v) + h(f̃i − fi, v) (i = 1, 2, . . . , n),

where

zi := δũi − δui = h−2

∫

Ii

(u(s)− u(s− h)) ds− h−1

∫

Ii

∂tu(s) ds

= h−1

∫

Ii

(
h−1

∫ s

s−h

∂tu(r) dr − ∂tu(s)
)

ds.

We recall that u ∈ L∞(Q) as a consequence of Lemma 1 and un(t) → u(t) in L2(Ω)
by the same argument as we have proved ∂tu ∈ L∞(Q). Now we estimate

‖zi‖∞,Ω 6 h−2

∫

Ii

∫ s

s−h

‖∂tu(s)− ∂tu(r)‖∞,Ω dr ds

6 sup
|τ |6h

h−1

∫

Ii

‖∂tu(s + τ) − ∂tu(s)‖∞,Ω ds

6 sup
|τ |62h

‖∂tu(t + τ)− ∂tu(t)‖∞,Ω

and similarly

‖f̃i − fi‖∞,Ω 6 sup
|τ |6h

h−1

∫

Ii

‖f(s + τ)− f(s)‖∞,Ω ds

6 sup
|τ |62h

‖f(t + τ)− f(t)‖∞,Ω

for any t ∈ Ii. The error ei in (8) can be considered as the unique point of minimum
of the functional

Φi(v) =
1
2h

∫

Ω

(v − ei−1)2 dx +
1
2
((v, v)) − (fi, v)

over the set wΨ,i + V , where wΨ,i = δũΨ,i − δuΨ,i−1. Proceeding as in the proof of
Lemma 1 and using the above estimates, we obtain

‖ei‖∞,Ω 6 C(Ω)( sup
|τ |62h

‖∂tu(t + τ)− ∂tu(t)‖∞,Ω

+ sup
|τ |62h

‖f(t + τ)− f(t)‖∞,Ω

+ sup
|τ |62h

‖∂tuΨ(t + τ) − ∂tuΨ(t)‖∞,Ω),
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where the term wΨ,i has been estimated in the same way as the term zi. Now, for

t ∈ Ii we estimate

‖un − u‖∞,Ω 6 ‖u− ui‖∞,Ω + ‖ũi − ui‖∞,Ω + ‖ũi − ui‖∞,Ω + 2h‖δui‖∞,Ω

6 C(h‖∂tu‖∞,Ω + h‖∂tu
n‖∞,Ω + sup

|τ |62h

‖∂tu(t + τ)− ∂tu(t)‖∞,Ω

+ sup
|τ |62h

‖f(t + τ)− f(t)‖∞,Ω + sup
|τ |62h

‖∂tuΨ(t + τ)− ∂tuΨ(t)‖∞,Ω).

Hence, our result follows from Lemma 2. �

Section 2

In this section we estimate ∂tu, ∂2
t u in Qτ = (τ, T )×Ω using the smoothing effect

of linear parabolic problems. We follow the idea from [5], [14]. Denote by

δpui :=
δp−1ui − δp−1ui−1

h
for p > 2.

From (3) we obtain, by subsequent subtracting,

(9) (δ2ui, v) + ((δui, v)) = (δfi, v) (i > 3), ∀ v ∈ V.

Lemma 3. Assume (2), (5), (6) and that ∂tf ∈ L2(Q), ∂tuΨ ∈ L∞(I, L2(Ω)),
∂tuΨ ∈ L2(I, W 1

2 (Ω)). Then the estimates

h

j∑

i=1

|δui|2 + ‖uj‖2 6 C and |δuj |2 + h

j∑

i=1

‖δui‖2 6 C

hold uniformly for j and n.
�������! 

. We test (3) with v = ui−uΨ,i and sum it up for i = 1, . . . , j. Then using

symmetry of ((w, w)) and Gronwall’s argument, we get the first estimate. To prove
the second inequality we subtract (3) with indices i, i− 1 and put v = δui − δuΨ,i.

Summing it up for i = 1, 2, . . . , j and using (6) and Gronwall’s argument, we obtain
the required second inequality. �

Now we prove the smoothing effect—see [5], [14].

Lemma 4. Assume (2), (5), (6), ∂3
t f ∈ L2(I, L2(Ω)), ∂3

t uΨ ∈ L∞(I, W 1
2 (Ω)),

and ∂4
t uΨ ∈ L2(I, W 1

2 (Ω)). Then the estimates

‖δui‖2 =
C

i0h
, |δ2ui|2 6 C

(i0h)2
, and |δ3ui|2 6 C

(i0h)4

hold uniformly for n, and i > 5i0, i0 > 4 is fixed.
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�������! 
. We test (9) with v = δui − δui−1 − (δuΨ,i − δuΨ,i−1) and sum it up for

i = r + 1, . . . , s. Using the symmetry of ((w, w)), we obtain

h

s∑

i=r+1

|δ2ui|2 +
1
2
Cl‖δus‖2 6 C1‖δur‖2 + C2h

s∑

i=r+1

‖δ2ui‖2

+ C3h
s∑

i=r+1

‖δ2fi‖2 + C4h
s∑

i=r+1

‖δ2uΨ,i‖2.

Then, using the estimates from Lemma 3 and Gronwall’s argument, we obtain

(10)
s∑

i=r+1

|δ2ui|2h + ‖δus‖2 6 C(1 + ‖δur‖2),

where C is independent of r and s. Here we consider s = 2i0 and i0 6 r 6 2i0. We
multiply (10) by h and sum it up for r = i0 + 1, . . . , 2i0. We find that (omitting the

first term)

i0h‖δu2i0‖2 6 C

(
T + h

2i0∑

r=i0+1

‖δur‖2

)
6 C,

because of Lemma 3. Using s > 2i0, from (10) we deduce (r = 2i0)

(11) ‖δus‖2 6 C

i0h
and h

s∑

i=r+1

|δ2ui|2 6 C

i0h
.

Now, we successively subtract (9) with i, i− 1 and put v = δ2ui − δ2uΨ,i. We sum

it up for i = r + 1, . . . , s and come to

1
2
|δ2us|2 −

1
2
|δ2ur|2 + h

s∑

i=r+1

‖δ2ui‖2 6 C

(
h

s∑

i=r+1

|δ2ui|2 + h

s∑

i=r+1

|δ2fi|2
)

+ εh

s∑

i=r+1

‖δ2ui‖2 + Cεh

s∑

i=r+1

‖δ2uΨ,i‖2,

where ε > 0. We take into account the regularity of f and uΨ. From Gronwall’s

argument and for ε small we obtain

(12) |δ2us|2 + h

s∑

i=r+1

‖δ2
ui
‖2 6 C(1 + |δ2ur|2).

Here, we proceed analogously as in (10). We consider s > 3i0 and r = 2i0+1, . . . , 3i0.

Using (11) we conclude |δ2u3i0 |2 6 C/(i0h)2 and applying it to (12), we get

(13) |δ2us|2 + h
s∑

i=r+1

‖δ2ui‖2 6 C

(i0h)2
for s > 3i0.
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Now we proceed analogously in estimating δ3ui. We use

(δ3ui, v) + ((δ2ui, v)) = (δ3fi, v) ∀ v ∈ V

and apply (13), (11). Then we deduce the required estimate. �

Section 3

Our main result will be obtained from Theorem 1 and Theorem K, interpolating
the spaces C0(Q) and C0,µ(Q). First we verify the following equality for any 0 <

β < α < 1:

(14) [w]β :=
|w(x) − w(y)|
|x− y|β = |w(y)− w(x)|β/α

( |w(x) − w(y)|
|x− y|γ

)χ

with γ = αβ/(α − β) and χ = (α− β)/α.

The first convergence result can be formulated as follows.

Theorem 2. Let the assumptions of Theorem 1 be satisfied. Then

‖un − u‖C0,δµ(Qloc) 6 C
( 1

n
+ sup
|τ |62h

‖∂tu(·+ τ) − ∂tu(·)‖∞,Q

+ sup
|τ |62h

‖∂tuΨ(·+ τ)− ∂tuΨ(·)‖∞,Q

+ sup
|τ |62h

‖f(·+ τ) − f(·)‖∞,Q

)1−δ

holds, where µ is from Theorem K.

For the proof we apply (14), where we put w = un − u, β := δµ, and choose α so
that γ = µ. Then β/α = 1− δ. We estimate the right-hand side in (14) by means of

Theorem 1 and Theorem K.

Since Theorem K is restricted only to Qloc we cannot obtain the convergence result
on Q. To estimate ∂tu(t + τ) − ∂tu(t) in the space L∞(Q) we need a higher order
regularity of ∂tu which requires very restrictive higher order compatibility conditions
at t = 0. To avoid it we will focus only to the time interval (τ, T ), 0 < τ < T , apply

Theorem 1 only to the domain Qτ = (τ, T )× Ω and use our results from Section 2.
We shall also restrict only to the Dirichlet boundary value problem, i.e., we shall

assume Γ2 = ∅. However, the results can be extended also to our original mixed
boundary conditions. We prove the following lemma.
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Lemma 5. Let the assumptions of Lemma 4 be satisfied and let Γ2 = ∅, ∂2
t uΨ ∈

L∞(Q) . Then there exists C = C(τ, Ω) such that

‖∂tu‖∞,Qτ + ‖∂2
t u‖∞,Qτ 6 C(τ, Ω)

holds in the case of N = 2, 3.

�������! 
. The function δ2ui is the solution of the elliptic problem

((δ2ui, v)) = −(δ3ui, v) + (δ2fi, v) =: (gi, v) ∀ v ∈ V, i > 3,

where gi is from L2(Ω), because of Lemma 4. Thus, δ2ui ∈ W 1
2 (Ω) and Sobolev

imbedding theorem gives δ2ui ∈ Lp(Ω) for p = 2N/(N−2) (forN = 2, p is arbitrarily
large). This implies gi ∈ Lq(Ω) for q > N/2 for N = 2, 3. Then from regularity
results, see Theorem 13.1 in [12], and Lemma 4

‖δ2ui‖∞,(t0,T )×Ω 6 C(t0, Ω)

uniformly for n, i > i0(n), hi0(n) 6 t0. Similarly, we obtain ‖δui‖∞,(t0,T )×Ω 6
C(t0, Ω) for i > i0(n) with hi0(n) > t0. Then we construct un

(1)(t), u
n
(1)(t); un

(2)(t),
un

(2)(t) by means of δui; δ2ui as in (4). From the above estimates we have un
(1) → ∂tu

in L2((t0, T ) × Ω) and since ∂tu
n
(1) = un

(2), we similarly obtain ∂tu
n
(1) = un

(2) → ∂2
t u

in L2((t0, T )×Ω). By virtue of the L∞ estimates for δui, δ
2ui we deduce ∂tu, ∂2

t u ∈
L∞((t0, T )× Ω) and the proof is complete. �

Our main result reads:

Theorem 3. Let the assumptions of Lemma 5 be satisfied and let ∂tf ∈ L∞(Q).
Then there exists C = C(t0, Ω) such that

‖un − u‖C0,δµ((t0,T )×Ω′) 6 C(t0, Ω)n−(1−δ)

holds for any δ ∈ (0, 1), where µ is from Theorem K, Ω
′ ⊂ Ω, u is the variational

solution of (1) and un is defined by (3) and (4).

For the proof we apply Lemma 5 in Theorem 2, where Qloc = (t0, T )× Ω′.

�����������
4. Our convergence result is valid only for aij , a0 ∈ L∞(Ω).

As a generalization of Lemmas 4 and 5 we have
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Theorem 4. Let the assumptions of Theorem 2 be fulfilled. If ∂p
t f ∈ L2(I×Ωloc),

∂p+2
t uΨ ∈ L2(I, W 1

2 (Ω)) and ∂p+1
t uΨ ∈ L∞(I, W 1

2 (Ω)) for p = 0, 1, . . . , L, then

h

s∑

i=r+1

|δp+1ui|2 + ‖δpus‖2 6 C(i0h)−2p+1,

h

s∑

i=r+1

‖δp+1ui‖2 + |δp+1us|2 6 C(i0h)−2p

holds uniformly for n, s > 3pi0, and p = 1, 2, . . . , L.
�����������

5. The results of Lemma 5 can be extended also for N = 4 using the
W 1

2+ε regularity for δ2ui, see Theorems 1 and 2 in [7].

If we assume C0,1(Ω) regularity of aij , then we can prove the convergence of {un}
in C0,1(t0, Ω). Then, in Theorem 3, we can take an arbitrary µ < 1.

Theorem 5. Let the assumptions of Theorem 2 be satisfied. If, moreover,
∂Ω ∈ C2, f, ∂tf ∈ C0,1((t0, T )×Ω) and a0, aij ∈ C0,1((t0, T )×Ω) (i, j = 1, 2, . . . , N),
then

‖un − u‖C0,δ′ ((t0,T )×Ω) 6 C(t0, Ω)n−(1−δ)

holds for any δ ∈ (0, 1) and δ′ < δ.
�������! 

. Because of the regularity assumptions we have—see [12], [1, Theo-
rem 8.12], that ui ∈ W 2

2 (Ω) for i = 1, 2, . . . , n. We can verify that Dβ(ui) with
|β| = 1 satisfies elliptic problem

(15) ((Dβ(ui), v)) = −(Dβ(δui), v) + (Dβfi, v) + (aD1ui, D
1v) ∀ v ∈ V,

where D1 are the first order partial derivatives and a represents a matrix from the
functions of the form D1ars. Then we insert v = Dβ(ui) into (15) and using Young’s
inequality and (2), we obtain the estimate

‖Dβui‖W 1
2 (Ω) 6 C(Ω)(‖ui‖+ ‖δui‖+ ‖fi‖) 6 C(Ω)/(i0h)2 ∀ i > i0h > t0

by virtue of Theorem 4 (with L = 1). This information we use again in (15) and we
also apply Theorem 13.1 from [12]. Similarly as in the proof of Lemma 5 we deduce

Dβui ∈ L∞(Ω) and ‖Dβui‖L∞(Ω) 6 C(t0, Ω)

for all i > i0 such that i0h > t0. Since β is arbitrary with |β| = 1, we conclude that

(16) ui ∈ W 1
∞(Ω) and ‖ui‖W 1

∞(Ω) 6 C(t0, Ω).
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From Lemma 2 we obtain

(17) ‖δui‖∞,Ω 6 C, ∀n, i = 1, 2, . . . , n,

which implies

(18) ‖ui − uj‖∞,Ω 6 C(t0, Ω)(i− j)h ∀n, i = 1, 2, . . . , n.

As a consequence of (16) and (18) we obtain

(19) |un(x, t)− un(y, t′)| 6 C(|t− t′|+ |y − x|)

uniformly in (t0, T ) × Ω, where C = C(t0, Ω). Then from Theorem 1, Lemma 5,
(14), and (19) we obtain the assertion of Theorem 5 similarly as we have obtained
Theorem 3. �
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