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CONVERGENCE OF DISCRETIZATION PROCEDURES FOR

PROBLEMS WHOSE ENTROPY SOLUTIONS ARE UNIQUELY

CHARACTERIZED BY ADDITIONAL RELATIONS

� ��� � � ��� � �
	��� �
, Hamburg

Abstract. Weak solutions of given problems are sometimes not necessarily unique. Rel-
evant solutions are then picked out of the set of weak solutions by so-called entropy con-
ditions. Connections between the original and the numerical entropy condition were often
discussed in the particular case of scalar conservation laws, and also a general theory was
presented in the literature for general scalar problems. The entropy conditions were realized
by certain inequalities not generalizable to systems of equations in a trivial way. It is a
concern of this article to extend the theory in such a way that inequalities can be replaced
by general relations, and this not only in an abstract way but also realized by examples.

1. Introduction

Often, (weak) solutions of problems like a system of conservation laws are not

necessarily unique. In order to pick out of the set of solutions the particular one
relevant from the point of view of the applications under consideration, additional

relations to be fulfilled by the seeked solution are added to the original problem. We
call a solution that fulfils these additional relations an entropy solution, and the set

of these additional relations itself is called an entropy condition.

In order to ensure that numerical procedures leading to approximate solutions

do really approximate the entropy solution instead of another (weak) solution, also
the numerical solutions have to fulfil certain additional relations. The set of these

conditions will be called a numerical entropy condition.
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2. The conception

As in [4], letX, Y, Xn ⊂ X be topological—normally metric—spaces (n = 1, 2, . . .).
Let the original given problem be written as

(1) Ãu = w

with Ã : X̃ → Y , X̃ ⊂ X .

If necessary, we replace problem (1) by a weak representation:
Find u ∈ X so that

(2) A(Φ̂)u = a(Φ̂), ∀Φ̂ ∈ Ĵ

where Ĵ is an index set, where {a(Φ̂) | Φ̂ ∈ Ĵ} ⊂ Y is a given set, and where

{A(Φ̂) | Φ̂ ∈ Ĵ} is a set of operators with joint domain D ⊂ X and with

A(Φ̂) : D → Y, ∀Φ̂ ∈ Ĵ .

The elements u ∈ S with

S = {u ∈ X | u solves (2)}

are called weak solutions of (1) or simply solutions if the following implications hold:
a) X̃ ⊂ D ∧ u solves (1) ⇒ u ∈ S,

b) u ∈ S ∩ X̃ ⇒ u solves (1).
We are now going to be concerned only with problem (2). The elements Φ̂ ∈ Ĵ

are called test elements.1

Assume Z to be a topological space, too, let {Ân : Xn → Z; n = 1, 2, . . .} be a
sequence of operators, and let {ân} be a compact sequence in Z.
For each fixed n ∈ � , we ask for an element un ∈ Xn with

(3) Ânun = ân (n = 1, 2, . . .).

Eq. (3) is looked upon as a numerical discretization procedure constructed in order
to solve problem (2) approximately. Let this method be suitable, i.e.

(4) Sn := {un ∈ Xn | un solves (3)} 6= ∅ (n = 1, 2, . . .),

but each Sn is allowed to contain more than one element2.

1Here, Ĵ ⊂ X can occur.
2 as it sometimes happens if implicit finite-difference methods are used in order to solve
certain differential equations
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The elements un ∈ Sn (n = 1, 2, . . .) are called approximate solutions or numerical
solutions of problem (2) where suitable connections between the problems (2) and
(3) have still to be formulated.

Problem (3) was expected to be independent of test elements3. Nevertheless, we
assume that (3) can also be formulated in a weak sense, namely that for every Φ̂ ∈ Ĵ

there is a sequence of operators

{An(Φ̂) | Φ̂ ∈ Ĵ , n ∈ � }

with

An(Φ̂) : Xn → Y, ∀Φ̂ ∈ Ĵ

s well as a sequence {an(Φ̂)} in Y with

(5) lim
n→∞

an(Φ̂) = a(Φ̂)

so that

(6) An(Φ̂)un = an(Φ̂), ∀Φ̂ ∈ Ĵ , ∀un ∈ Sn (n = 1, 2, . . .).

We call formula (6) a weak formulation of the numerical procedure.

3. A convergence theorem

Definition 3.1. A pair [{Cn}, C] consisting of an operator sequence {Cn} and
of an operator C is called asymptotically closed if the implication

(7) vn → v ∧ Cnvn → z ⇒ Cv = z

holds.

Definition 3.2. An operator sequence {Cn} is called asymptotically regular if
the implication

(8) {Cnvn} compact in Y ⇒ {vn} compact in X

holds.

3 because computers do not understand what test elements are
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Definition 3.3. The numerical procedure (3) is called convergent if set conver-
gence

(9) Sn → S

is ensured in the following sense:

{Sn} is discretely compact, i.e. each sequence {un | un ∈ Sn; n = 1, 2, . . .} is compact
in X , and if u is the limit of a convergent subsequence, u ∈ S follows.

Using these definitions, the following theorem can be stated:

Convergence Theorem.
(i) Let [{An(Φ̂)}, A(Φ̂)] be asymptotically closed for every fixed Φ̂ ∈ Ĵ ;

(ii) let {Ân} be asymptotically regular.
Then

(10) Sn → S

holds.

���������
. For the proof, cf. [4]. �

�����������
3.1. It should be mentioned that the assumption (ii) can be replaced

by the weaker assumption

{Sn} is discretely compact

as far as the right-hand sides {ân | n = 1, 2, . . .} are constant:

â1 = â2 = â3 = . . . .

In this case, only

u ∈ S for every limit of a subset

has to be shown.

�����������
3.2. If the result (10) is guaranteed, S 6= ∅ follows so that even the

existence of (weak) solutions of the given problem is established.
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4. Existence and uniqueness of entropy solutions

Let R be a relation between X and the set Ĵ . This means that there is a statement
concerning ordered pairs (u, Φ̂) of elements u ∈ X , Φ̂ ∈ Ĵ so that it can be decided

whether or not this statement is true for the given pair.
If it is true, we write

u R Φ̂.

Assume that there is a uniqueness theorem available of the following type:

There is at most one element u ∈ S with

(11) u R Φ̂, ∀Φ̂ ∈ Ĵ .

If such an element exists, we call it the entropy solution uE and the relation R is

called the entropy condition.
Moreover, we assume that for each n ∈ � there is a relation Rn between Xn and

Ĵ , and at least one element un ∈ Sn with

(12) un Rn Φ̂ ∀Φ̂ ∈ Ĵ .

The sequence {Rn} is called the numerical entropy condition.
Finally, let the relations Rn (n = 1, 2, . . .) be continuously convergent to R in the

following sense:
For every fixed Φ̂ ∈ Ĵ , the implication

(13) {un | un ∈ Xn, un Rn Φ̂} → u ⇒ u R Φ̂

holds.

Theorem. Under the assumptions of the Convergence Theorem and of this sec-
tion, the entropy solution uE exists uniquely, and each of the sequences {un | un ∈
Sn; n = 1, 2, . . .} converges to uE .
���������

. The Convergence Theorem leads to the validity of property (10),
i.e. each sequence {un | un ∈ Sn; n = 1, 2, . . .} contains a convergent subsequence
{un′ | n′ ∈ � ′ ⊂ � } with a certain limit u ∈ S.
Consider now in particular a sequence

(14) {un | un ∈ Sn; un Rn Φ̂, ∀Φ̂ ∈ Ĵ ; n ∈ � }.

Sequences of this type exist because of the assumptions made before, and each of
these sequences contains a convergent subsequence.
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Take one of these sequences and then one of its convergent subsequences. Denote

its limit by uE . Hence, uE ∈ S.

From (13),

(15) uE R Φ̂, ∀Φ̂ ∈ Ĵ

follows, and because of the uniqueness theorem, the whole sequence (14) converges
to this limit uE, and all sequences of type (14) behave so. Thus, uE is the unique

entropy solution. �

5. Examples

One-dimensional scalar conservation law.
Let

Ω = {(x, t) | x ∈  , t ∈ [0, T ]}, X = Lloc
1 (Ω), X̃ = C1(Ω), Y = C(Ω),

Ãu =





∂tu + ∂xf(u) = 0, f ∈ C1(  ) strictly convex ,

f > 0, f(0) = 0

u(x, 0) = u0(x).

(16)

Let

Ĵ = {Φ̂ = (Φ, c) | Φ ∈ C1
0 (Ω) := J, c ∈  }

where J is the space of functions continuously differentiable on Ω and with compact
support.

Formula (2) will then be realized by

[A(Φ̂)u](x, t) = −
∫

Ω

[∂tΦ(x, t)u(x, t) + ∂xΦ(x, t)f(u(x, t))] dΩ(17)

−
∫
! Φ(x, 0)u0(x) dx = 0.

In order to concretize the numerical procedure (3), we are going to use an explicit

one-step three-point FDM in conservation form:

For each fixed n ∈ � , let ∆t = T/n be the time step size and ∆x > 0 the spatial
step size where

σ =
∆t

∆x

is assumed to be a prescribed constant.
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With um(xi) expected to become an approximation to the solution u(i∆x, m∆t)
(i = 0,±1,±2, . . . ; m = 0, 1, 2, . . .), the general 3-point scheme is described as

(18) um+1(xi) = um(xi)− σ{g(um(xi+1), um(xi))− g(um(xi), um(xi−1))}.

Here, the numerical flux g is assumed to fulfil the consistency condition

(19) g(v, v) = f(v) ∀v ∈  ,

and the numerical initial values are constructed by

(20) u0(xi) =
1

∆x

∫ x
i+1

2

x
i− 1

2

u0(ξ) dξ.

We assume that the CFL-condition

(21) σ|f ′|∗∞ < 1

with |f ′|∗∞ := max{|f ′(u)|, |u| 6 ‖u0‖L∞} is fulfilled, too.
un ∈ Lloc

1 (Ω) = X will then be defined as a piecewise constant function by

un(x, t) := um(xi) for

(22)

{
xi 6 x < xi+1 (i = 0,±1,±2, . . .)

m∆t 6 t < (m + 1)∆t (m = 0, 1, . . .)

(n = 0, 1, 2, . . .).
The weak formulation (6) of our particular method (18) can then be read as

∫

Ω

Φ(x, t)
{

1
∆t

[un(x, t + ∆t)− un(x, t)](23)

+
1

∆x
[g(un(x + ∆x, t), un(x, t))

− g(un(x, t), un(x−∆x, t))]
}

dΩ = 0,

so that the requirement (5) is fulfilled naturally.

In order to show the validity of the Convergence Theorem, it suffices to prove that
[{An(Φ)}, A(Φ)] is at least asymptotically closed with respect to sequences {vn} with

(24) vn = un ∈ Sn (n = 0, 1, 2, . . .).
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For these sequences, (7) holds with z = 0 so that

(25) A(Φ)u = 0

follows for convergent sequences un → u by virtue of the Lax-Wendroff theorem [5].

By the way, (16)–(25) can also be considered as a description of the situation

defined by systems of conservation laws provided that the CFL-condition (21) is
formulated in a suitable way, and also the Lax-Wendroff theorem holds in this case.

We are going to take advantage of that later.

But let us now restrict ourselves to the scalar case where we will realize the nu-
merical procedure (3) by means of the monotone Engquist-Osher scheme [2]. The

numerical solutions un ∈ Sn are then bounded with respect to the L1-norm on each
compact subset of Ω so that they form an L1-contraction (cf. [1]) which makes their

sequences convergent ones with respect to the Lloc
1 -topology. (cf. [6]).

In order to ensure that the limit function coincides with the entropy solution, we
consider a particular realization of the relation R by

u R Φ ⇐⇒ −
∫

Ω

{∂tΦ(x, t)V (u(x, t), c)(26)

+ ∂xΦ(x, t)F (u(x, t), c)} dΩ

−
∫
! Φ(x, 0)V (u0(x), c) dx 6 0, ∀Φ̂ ∈ Ĵ ,

where {V (·, c) | c ∈  } is a one-parameter family of real functions which are contin-
uous, convex and piecewise differentiable with respect to x for every fixed c ∈  .
We choose in particular

(27) V (u, c) = |u− c|,

call it the entropy functional and determine the entropy flux F :  ×  →  by the
reqirement to fulfil weakly

∂tV (u(x, t), c) + ∂xF (u(x, t), c) = 0,(28)

∀c ∈  and for every smooth solution u.

In the scalar case, there is at most one (weak) solution u fulfilling the inequal-

ity (26) for all c ∈  , indeed (cf. [7]).
Let us now introduce a numerical flux function G by

G(α, β; c) := F+(α, c) + F−(β, c)
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with

(29) F+(α, c) =

{
F (α, c), α > c,

0, α < c,
F−(β, c) =

{
0, β > c,

F (β, c), β < c.

Because of formulas (27), (28), formula (29) together with (16) leads to

(30) F+(α, c) =

{
f(α), α > c,

0, α < c,
F−(β, c) =

{
0, β > c,

−f(β), β < c.

If the relations Rn (n = 1, 2, . . .) will then be realized as

un Rn Φ̂ ⇐⇒
∫

Ω

Φ(x, t)
{

V (un(x, t + ∆t), c)− V (un(x, t), c)
∆t

(31)

+
G(un(x, t), un(x + ∆x, t); c) −G(un(x−∆x, t), un(x, t); c)

∆x

}
dΩ 6 0,

∀c ∈  ,

the convergence property (13) will hold as was shown in [3], [4].

6. One-dimensional systems of conservation laws

Let us now look at systems of conservation law problems of the type (16) and of

two or more equations, say r equations (2 6 r ∈ � ).
Moreover, these systems are assumed to be strictly hyperbolic and genuinely non-

linear where smooth solutions fulfil the equation (28) automaticaly with a strictly

convex function V .
Let the numerical solution be computed by means of the Glimm-finite-difference

scheme (cf. [8]). It follows from [8] that these numerical solutions converge for in-
creasing n, i.e. for decreasing step sizes, to a (weak) solution uE of the original

problem. Moreover, uE fulfils the Lax entropy conditions

λk−1(uE
l ) < s < λk(uE

l ),(32)

λk(uE
r ) < s < λk+1(uE

r )

for an integer k ∈ {2, . . . , r − 1}.
Here, the values λl, . . . , λr are the eigenvalues of the Jacobian of the flux f , s is

the velocity of a k-shock, and uE
l , u

E
r are the values of u

E at the left or at the right

side of this shock, respectively. We suppose that the inequalities (32) guarantee the
uniqueness of uE as is suggested by arguments of information theory.
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But (32) only holds if and only if the inequality

(33) (Vl − Vr)s 6 F (Vl)− F (Vr)

holds along the shock, and this property is equivalent to inequality (26), i.e. to

u R Φ̂.

Moreover, the Glimm scheme fulfils for positive step sizes also the relations

un Rn Φ̂ (n = 1, 2, . . .)

because of (31), so that the considerations concerning the scalar case can immediately

be transferred to the situation studied here (cf. [9], p. 337).
Here, in the case of the Glimm scheme, the numerical flux G reads

Ĵ = J,(34)

G(un
i , un

i+1) :=
1

∆t

∫ tn+1

tn

F
(
vn

(
xi +

∆x

2
, t

))
dt

where vn(x, t) solves the local Riemann problem

∂tv
n + ∂xf(vn) = 0 on [xi, xi+1]× [tn, tn+1]

where

(35) vn(x, tn) =

{
un

i for x < xi+ 1
2
,

un+1
i for x > xi+ 1

2
.
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