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ON FUZZY INPUT DATA AND THE WORST SCENARIO METHOD*
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Abstract. In practice, input data entering a state problem are almost always uncertain
to some extent. Thus it is natural to consider a set Uad of admissible input data instead
of a fixed and unique input. The worst scenario method takes into account all states
generated by Uad and maximizes a functional criterion reflecting a particular feature of the
state solution, as local stress, displacement, or temperature, for instance. An increase in
the criterion value indicates a deterioration in the featured quantity. The method takes
all the elements of Uad as equally important though this can be unrealistic and can lead
to too pessimistic conclusions. Often, however, additional information expressed through
a membership function of Uad is available, i.e., Uad becomes a fuzzy set. In the article,
infinite-dimensional Uad are considered, two ways of introducing fuzziness into Uad are
suggested, and the worst scenario method operating on fuzzy admissible sets is proposed to
obtain a fuzzy set of outputs.
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1. Introduction

We can distinguish three basic ingredients of a modeling process: an input pa-
rameter (or parameters) a, an a-dependent state problem S(a;u) the solution of
which is u = u(a), and a criterion Φ evaluating a feature of u(a). The criterion
can also directly depend on a, i.e., Φ = Φ(a;u(a)). Problem S(a;u) represents a
mathematical model of the observed phenomenon, engineering structure, etc. Local

(mean) values of temperature, velocity, mechanical displacement or stress are exam-
ples of Φ. Parameter(s) a can take the form of coefficients of an equation underlying
the problem S(a;u), for instance.

*This work was supported by the Grant Agency of the Czech Republic under grant
No. 201/02/1058.
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In modeling real-life problems, parameters a often originate from measurements,

identification procedures or even hypotheses and so they are burdened with uncer-
tainty. As a consequence, it is natural and responsible to consider a ∈ Uad, where
Uad is a set of admissible parameters. The admissible set Uad reflects the uncertainty

of inputs. Having the set Uad of admissible inputs, we arrive at the set of possible
outputs {u(a) | a ∈ Uad} and, consequently, at the set C = {Φ(a;u(a)) | a ∈ Uad}
comprising achievable values of the criterion functional. An analysis of C is the
primary goal in many applications.

If additional information is known about Uad, then it is highly desirable to utilize
it in determining the features of C. Take the probabilistic character of inputs trans-
formed into the probabilistic character of outputs, for instance. Different approaches
are presented in [3].

The scheme described in the previous paragraphs has been at least partly applied
to many models and corresponds to well established engineering rules of design safety

analysis, though not all implementations of this scheme have been mathematically
rigorous. However, we can observe growing interest in uncertainty in inputs and its

propagation into outputs during the last decade, see, e.g., [1], [2], [8], [9], [12].
Investigating inputs a and states u(a) indicated by high values of Ψ(a) =

Φ(a;u(a)), one wishes to know sup
a∈Uad

Ψ(a). Though general, the supremum con-

cept leads to difficulties both in theory and numerical approximation. This is why
the worst scenario method aims at a modified problem:

(1) Find a0 ∈ Uad, a0 = argmax
a∈Uad

Ψ(a).

Conditions sufficient for the existence of a0 are presented in [11]: Uad is a compact

subset of a Banach space, u(a) belongs to a reflexive Banach space V and is unique,
the strong convergence of {an} ⊂ Uad implies the weak convergence of {u(an)} ⊂ V ,

and Φ: Uad×V → � is upper semi-continuous with respect to the strong convergence
in Uad and the weak convergence in V . Further details and modifications can be found

in [11].
Knowing a0, we are sure that the criterion value Ψ(a0) cannot be exceeded,

i.e., that “nothing worse can happen” if a is taken from Uad. This is related to
the classical engineering safe-side rule, which asks safe design even if the worst poss-

ible circumstances occur. In terms of (1), Ψ(a0) 6 ψsaf , where ψsaf is a lower bound
of the safety measure.

A sound mathematical formulation of the worst scenario method was allegedly
first suggested in [4], [5]. In [1], where convex Uad are considered, it appears as

convex modeling of uncertainty. The worst scenario method is also known as anti-
optimization in [7].
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Problem (1) gives only an upper bound of the achievable values. However, it is also

desirable to know the whole range of the criterion values generated by the admissible
uncertain input parameters. To this end, we suppose that Ψ is continuous and define
the maximum (or range) span problem:

(2) Besides a0, find also a0 = argmin
a∈Uad

Ψ(a).

The range of Ψ(a) on Uad is then equal to [Ψ(a0),Ψ(a0)].
The worst scenario method takes all the elements of Uad as equally important

though this can be unrealistic and can lead to too pessimistic conclusions. This can
happen if more information on the admissible set Uad is known. Some input values

are quite possible, some are possible but with a shred of doubt, others seem to be
almost excluded. As a consequence, we wish to use this additional information and

to transform it into a stratification of the possibility of outputs. We are led to a
coupling of the worst scenario method with fuzzy sets.

2. Fuzzy admissible sets

A set U of a universe set X is uniquely related to the characteristic function

χU : X → {0, 1}, x ∈ U ⇒ χU (x) = 1, x /∈ U ⇒ χU (x) = 0. A fuzzy set U
is characterized by a membership function µU : X → [0, 1] expressing the degree
of truth of the statement “x ∈ X belongs to U .” This characterization suggests
µU (x) = 0 ⇒ x /∈ U . As U will be closed in our setting, µU (x) = 0 might lead to an
ambiguous interpretation, i.e., x /∈ U or x ∈ ∂U if µU is continuous, for instance.
This is why we interpret µU in a slightly different way. We consider U given in the

classical (crisp) sense and use µU (x) to express the degree of possibility that x ∈ U
represents a really feasible input parameter. It means that µU (x) = 0 and x ∈ U

are no longer in contradiction, x is used in computation but, from the view point of
possibility, it plays the role of a dummy value. Moreover, x ∈ X \ U ⇒ µU (x) = 0
can be in effect. The range of µU need not be the whole set [0, 1].
We will exploit another fuzzy sets theory notion, namely the α-cut of a fuzzy set :

αU = {x ∈ U | µU (x) > α}, α ∈ [0, 1].

Let us note that 0U = U .

Lemma 1. Let U be a compact subset of a Banach space X and let µU restricted

to U be a continuous map U → [0, 1]. Then for any α ∈ [0, 1] the set αU is a compact

subset of X .
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��������
. Due to the continuity of µU , the α-cut αU is a closed subset of the

compact set U . �

Let us suppose that the admissible set Uad is endowed with a membership func-

tion µUad . If J is, for example, a finite set of m equidistant values αj , 0 = α1 <

α2 < . . . < αm = 1, then we can define a sequence of α-cuts {αUad}α∈J and solve

the maximum span problem (2) on every αUad to get a sequence of intervals αI =
[Ψ(a0,α),Ψ(a0,α)]. Here, the compactness of α-cuts is substantial. The intervals αI

can be interpreted as α-cuts derived from the fuzzy set MΦ = {Φ(a, u(a)) | a ∈ Uad}
through a (not necessarily continuous) membership function defined by

µMΦ(y) = max
α∈J

min(α, χαI(y));

see [3], where also examples based on finite-dimensional sets of fuzzy parameters are

given.

However, admissible sets are infinite-dimensional in advanced worst scenario prob-
lems, see [6], [10], for example. To apply the formula for µMΦ , i.e., to extend the

fuzziness from inputs to outputs, we need membership functions suitable for admis-
sible sets common for complex worst scenario problems.

We will deal with a fairly typical example of an infinite-dimensional admissible

set Uad in the next paragraphs. To this end, we introduce the set C
(0),1
B (Ω) of

Lipschitz functions defined on Ω ≡ [0, l] ⊂ � and such that |a′(x)| 6 B a.e. in (0, l),
B > 0, the prime standing for the derivative. We define

(3) Uad =
{
a ∈ C(0),1

B (Ω) | c0(x) 6 a(x) 6 c0(x) ∀x ∈ Ω
}
,

where c0, c0 ∈ C
(0),1
B (Ω) are functions given and positive on [0, l]. In virtue of the

Ascoli-Arzelà theorem, the admissible set Uad is compact in the space of continuous
functions, i.e., in the C(Ω)-norm.

It may happen that elements of Uad are not equally possible. Then we need a tool

for introducing fuzziness into Uad. In this article, we present two ways of making Uad

fuzzy.

The first method uses fuzzy bounds instead of crisp functions c0 and c0. Let us
explain it in detail.

We assume that besides c0 and c0, two other functions c̄0, c̄0 ∈ C(0),1
B (Ω) are given

such that

c0(x) < c̄0(x) 6 c̄0(x) < c0(x) ∀x ∈ Ω.
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Then, avoiding the direct presentation of a fuzzy admissible set, we define its (com-

pact) α-cuts for α ∈ [0, 1]:

αUad =
{
a ∈ C(0),1

B (Ω) | (1− α)c0(x) + αc̄0(x) 6 a(x)(4)

6 (1− α)c0(x) + αc̄0(x) ∀x ∈ Ω
}
.

The corresponding membership function µUad reads

(5) µUad(a) = max
{α∈[0,1]|a∈αUad}

α.

Let us discuss (4) and (5). Definition (4) is advantageous for its simplicity, and
αUad are easy to approximate as we will see later. However, the membership func-

tion (5) does not distinguish between a local and global behavior of a function
a ∈ Uad. We illustrate this by an example.

Let a1 = (1 − α)c0 + αc̄0 for a fixed α ∈ [0, 1/2], and let a2 also belong to αUad,
a1(0) = a2(0). If B is sufficiently large, then we can find a2 such that a2|K falls
between c̄0 and c̄0, where K ⊂ Ω and meas(K) is not small, i.e., a substantial part
of a2 is constrained by bounds defining the α-cut with α = 1. Despite of this,
µUad(a1) = µUad(a2).
If functions a come from measurements, for instance, the equality does not seem to

properly reflect the phenomena which we observe there. Indeed, roughly speaking, we
expect that fluctuations only rarely and locally exceeding c̄0 or c̄0 are more possible

than those exceeding c̄0 or c̄0 often or almost globally.
The other method introducing fuzziness into Uad is designed to avoid the just

mentioned drawback of (4) and (5).

First, we define a set

Q = {(x, y) ∈ � 2 | x ∈ Ω, c0(x) 6 y 6 c0(x)}.

Next, we consider a continuous function

(6) % : Q→ [0, 1]

such that

(7) ∀x ∈ Ω %(x, ·) is concave in [c0(x), c0(x)].

We are ready to define a new membership function

(8) µ̂Uad(a) = l−1

∫ l

0

%(x, a(x)) dx.
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Figure 1.

Fig. 1 depicts c0 and c0 (dashed lines), a function a (solid line) as well as the graph
of % and %(x, a(x)) (solid line located on the surface determined by %). The function %
is continuously extended by zero outside Q, i.e., %(x, c0(x)) = 0 = %(x, c0(x)), x ∈ Ω,
in this example.
Going back to the above-mentioned example of functions a1, a2 indistinguishable

by µUad , we see that µ̂Uad(a1) < µ̂Uad(a2).

Lemma 2. Let the admissible set and the membership function be given by (3)
and (8), respectively. Then the corresponding α-cuts are compact with respect to

the C(Ω)-norm.

��������

. The mapping µ̂Uad : Uad → [0, 1] is continuous with respect to the
C(Ω)-norm, therefore Lemma 1 can be applied. �

The function % can be designed on the basis of measurements, for instance.

Lemma 2 guarantees that we can construct the intervals αI and investigate the
fuzziness of the range of Ψ.
The parameter B (see (3)) can also be endowed with a sort of fuzziness.
Following the idea leading to (5), we start with a constant B, 0 < B < B, and

define

(9) µUad(a) =

{
1 if ‖a′‖∞ 6 B,

(B − ‖a′‖∞)/(B −B) if ‖a′‖∞ > B,

where ‖a′‖∞ stands for the L∞(Ω)-norm of a′, a ∈ Uad.
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The fuzzy sets intersection rule takes the minimum membership value at points

belonging to the intersection to establish the intersection membership function. We
do the same defining

(10) µ̌Uad(a) = min(µUad(a), µUad(a)), a ∈ Uad.

A parallel to (6)–(8) is constructed through a continuous function � ,

� : Ω× [−B,B] → [0, 1], ∀x ∈ Ω � (x, ·) is concave in [−B,B],

µ̃Uad(a) = l−1

∫ l

0

� (x, a′(x)) dx.

Just as in (10), we set

(11) µUad(a) = min(µ̂Uad(a), µ̃Uad(a)), a ∈ Uad.

Lemma 3. Let αUad be an α-cut of Uad determined by α ∈ [0, 1] and by the
membership function (10) or (11). Then αUad is compact in the C(Ω)-norm.

��������

. Since the membership functions are continuous, αUad is a closed subset

of a compact set. �

3. Approximation of Uad

To approximate Uad, we fix a mesh {xi}N
i=1 in Ω, 0 = x1 < x2 < . . . < xN = l,

and set h = max
i∈{2,...,N}

(xi − xi−1).

By means of

PN
1 = {g ∈ C(Ω) | g|[xi−1,xi] is linear, i = 2, . . . , N},

we define

(12) Uh
ad =

{
a ∈ PN

1 ∩ C(0),1
B (Ω) | c0(xi) 6 a(xi) 6 c0(xi), i = 1, . . . , N

}
.

�����������
1. In general, Uh

ad 6⊂ Uad (take c0 concave or c0 convex, for example).

To guarantee Uh
ad ⊂ Uad, we could start with a sequence {Uh

ad}h→0 and define Uad as
the closure of

⋃
h→0

Uh
ad, see [6].
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It can be proved that for any ε > 0 there exists a parameter h > 0 such that Uad

is uniformly approximated by Uh
ad with the error less than or equal to ε, i.e., ∀ a ∈

Uad ∃ah ∈ Uh
ad ‖a− ah‖C(Ω) 6 ε.

The fact that {Uh
ad}h→0 converges to Uad is substantial for convergence relation-

ships between the original state and the worst scenario problems and their approxi-
mations, see [10], [11]. We do not focus on these subjects here, however.

We take an interest in computational aspects of the worst scenario problems stem-
ming from fuzzy admissible sets.

To supply fuzziness to Uh
ad, we can use approaches already described in Section 2.

Let us suppose that, after a full discretization of the worst scenario problem (1),

the criterion Ψ becomes a continuous mapping Ψh : Uh
ad → � . Then the pivotal task

is to solve the maximum span problem on α-cuts, i.e., to find

(13) a0,h = argmin
ah∈αUh

ad

Ψh(ah), a0
h = argmax

ah∈αUh
ad

Ψh(ah).

Each function ah can be identified with the N -tuple yh = (ah(x1), . . . , ah(xN )).
As a consequence, each αUh

ad is identified with
α � h

ad ⊂ � N and Ψh(ah) defines a
continuous function

ψh : α � h
ad → � , ψh(yh) = Ψh(ah).

Problem (13) is then interpreted as the search for extremes over a constrained

subset of � N . Let us further analyze the nature of those constraints.
If α � h

ad originates from a fuzzy set given through α-dependent bounds as in (4),

then the constraints are simple:

(1− α)c0(xi) + αc̄0(xi) 6 ah(xi) 6 (1− α)c0(xi) + αc̄0(xi),(14)

−B 6 (ah(xj)− ah(xj−1))/(xj − xj−1) 6 B,(15)

where i = 1, . . . , N and j = 2, . . . , N . Box (see (14)) and linear (see (15)) con-
straints are implemented in many software routines used in advanced optimization.

Therefore, we can profit from standard and ready-to-use procedures in solving (13).
We omitted the fuzziness of B (cf. (9), (10)) but it could have been implemented

in a way similar to (14).
We face more difficult situation if fuzzy admissible sets are given via (6)–(8).

Though (15) applies to this case too and some constraints copy (14),

c0(xi) 6 ah(xi) 6 c0(xi), i = 1, . . . , N,

the others are more complicated as we will see below.
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Since the goal is to express µ̂Uad(ah) as a function λ of yh, λ(yh) = µ̂Uad(ah),
the complexity (simplicity) of % is crucial. The function λ is nonlinear in general.
Computer algebra systems can assist in deriving λ.

We can make the problem somewhat easier if we resort to a numerical integration

formula, i.e., if we approximate µ̂Uad(ah) by
N∑

i=1

wiθi, where θi = %(xi, ah(xi)) and

wi is the respective weight parameter. Generally, the function %(xi, ·) is nonlinear.
We can go further in simplification. It is reasonable to have % such that the graph

of %(x, ·) has a triangular or trapezoidal shape. Then each θi, viewed as θi(y) =
%(xi, y), is a continuous piecewise linear function and this linearity is reflected in
piecewise linear constraints put on yh. However, due to their piecewise character, the
constraints depend on yh. In detail, the matrix A appearing in inequalities Ayh 6 b

comprises constant elements the value of which depends on yh, i.e., A(yh)yh 6 b.
The matrix A changes whenever ah(xi) leaves one linear segment and enters the
adjoint linear segment of %(xi, ·). As a consequence, an algorithm for solving (13) is
more complex than in the case of constraints (14) and (15).

4. Conclusion

Two sorts of fuzzy infinite-dimensional admissible sets have been proposed. As
regards (4), it is easy to define and to calculate with but it does not properly reflect

some features of uncertain input data. The way illustrated by (6)–(8) avoids this
drawback but asks for more complicated numerical algorithms.
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