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THE METHOD OF ROTHE AND TWO-SCALE CONVERGENCE

IN NONLINEAR PROBLEMS*
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, Brno

Abstract. Modelling of macroscopic behaviour of materials, consisting of several layers or
components, cannot avoid their microstructural properties. This article demonstrates how
the method of Rothe, described in the book of K. Rektorys The Method of Discretization in
Time, together with the two-scale homogenization technique can be applied to the existence
and convergence analysis of some strongly nonlinear time-dependent problems of this type.
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1. Introduction

This article arose as a modified and extended version of the author’s contribu-
tion [25] at the International Conference in honour of the 80th birthday of Professor

Karel Rektorys. Its aim is to demonstrate how the seemingly very classical and sim-
ple method of discretization in time, whose basic idea (coming from the implicit Euler

formula) was investigated by Rothe (cf. [20]), well-known to both mathematicians
and physicists or engineers just from Rektorys’ monograph [19], can be applied not

only to the effective numerical analysis of standard problems, as described in [22],
but, moreover, to the verification of existence and properties of solutions in rather

complicated variational formulations, including those typical for the mechanics of
composites and other materials consisting of several finely mixed constituents with

a (quasi)periodic structure. Such materials are widely used in modern industry:
e.g., it is well-known (for details see [23]) that the most effective way how the creep

resistance of metals at high temperatures can be improved is their reinforcement by

*This work was supported by the Ministry of Education, Youth and Sports of the Czech
Republic, Reg. No. CEZ:J22:261100007.

587



hard particles—such particles can precipitate in the matrix during the heat treat-

ment of the material (as in the case of superalloys), can be added into the matrix
or can precipitate in the matrix during solidification (as in the case of metal matrix
composites).

From the practical point of view, the principal computational difficulty is that
most significant material heterogeneities are very small (in our example the size of

particles and their mutual distances are typically in micrometers) in comparison with
the global dimension of a material sample in the laboratory or of a bearing element

of some engineering construction (in meters). Standard software packages typically
include some heuristic construction of “mean values” of material characteristics; un-

fortunately, their strange results, not observed in the nature yet, are able to illustrate
the conflict between the “verification” and the “validation”, introduced in [4]—the

example in [25, p. 360], refers to non-realistic results even in case of a simple lay-
ered material. However, direct application of finite element or similar techniques

can incorporate no correct information about the microstructure without extremely
large, slow and expensive calculations. On the other hand, all reasonable calcula-

tions at the microstructural level require strict assumptions on the macroperiodicity
of external loads, usually far from the practical ones.

The natural idea how to overcome this difficulty is to improve the “mean value”
approach to avoid or simplify the computational microanalysis. This is the princi-

pal (and more than 25 years old—cf. [3]) idea of all the so-called homogenization
techniques—beginning from the formal asymptotic expansion, adopted to the study

of periodic problems, leading to the multiple-scale method (understood in sense of
[7, p. 125]), and continuing to the method of oscillating test functions (cf. [7, p. 138])

and to more advanced approaches based on the G-convergence, the H-convergence
and the Γ-convergence (corresponding references can be found in [16] and [24]). But
certain disadvantages seem to be typical for any such approach: rather complicated

definitions, making use of tricky test functions with no clear physical interpretation,
and reader-unfriendly proofs of lemmas with numerous non-constructive steps gen-

erating non-trivial auxiliary problems (unlike, e.g., the method of Rothe, discussed
above) cause that most physicists and engineers are not ready to accept them. More-

over, in particular for nonlinear problems the differences between various types of
convergence are often not transparent (see the relations between the G-convergence

and the H-convergence in [7, p. 243], for illustration).

An alternative approach to homogenization, based on the original notion of the

so-called two-scale convergence, occurred in 1989; its basic definitions and lemmas
(later published in essentially generalized forms—more references are in [24] again)

can be found in [18] and [1]. This approach incorporates a compensated compact-
ness phenomenon due to a particular (not very artificial) choice of test functions.
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Moreover, this seems to be equivalent to another idea of [2], applying a certain

transform of a spatial variable with respect to a hidden microstructural one. (The
natural generalization of this approach, the s-scale convergence with some integer
s > 1, it is known as the “reiterated homogenization” by [1, p. 1492], or as the
“multi-scale convergence” by [15, p. 10]). Since we intend to demonstrate that the
properties of two-scale limits can be understood without a deep study of special

function spaces, measure theory, etc., we shall work, following [18], [1] and [2], with
the Lebesgue measure on a domain Ω in the 3-dimensional Euclidean space � 3 and

with the Hausdorff measure on its boundary ∂Ω; this gives us a chance to apply
the standard notion of Lebesgue and Sobolev spaces and compare the properties of

the two-scale convergence with the well-known strong or weak one. Nevertheless, we
must mention the progress in last several years: for problems with particles of lower

dimension (e.g. long fibers or thin plates) in composites as well as problems with
cracks, cavitation and capillary channels (as those described in [8]) [6] replaces the

Lebesgue measure by a certain class of periodic Radon measures (for practical appli-
cation see [27]), [15] on base of the theory of Young measures introduces the so-called

α-convergence, in a special case degenerating to the s-scale convergence (s = 2 in our
considerations), and finds its relation to the Γ-convergence, [16] studies the proper-
ties of various finite element techniques for both micro- and macroapproximation in
� 3 , etc.

2. Definition and properties of the two-scale convergence

Up to now, we have mentioned (using a macroscale) only a domain Ω in � 3 . To
be able to study also the material microstructure, let us have a unit cube Y in � 3 .

(The reason for such special choice is its formal simplicity—it is easy to replace,
following [7, p. 173], a unit cube here by an arbitrary rectangular parallelepiped).

For Cartesian coordinates in � 3 we shall use the standard notation x = (x1, x2, x3)
in Ω and ∂Ω and y = (y1, y2, y3) in Y without additional comments. The index #

will force the Y -periodicity, the index Y will emphasize that the operator in ques-
tion is related only to the microstructural variable, defined on Y , the index Ω the

same related to the macrostructural variable, defined on Ω (needed in the proof of
Theorem 2 only) and, finally, the index ∗ will be used for a constant extension of

a function from Ω to Ω × Y . The underlined symbol highlights sequences: namely,
vε denotes a sequence of elements vε in an appropriate function space, correspond-

ing to a sequence of positive numbers ε decreasing to zero. Let us remark that
in proofs of Theorem 1 and Theorem 2 we will use also the hat symbol for se-

quences indexed by integers directly: e.g. v̂k will mean a sequence of elements vk

for k ∈ {1, 2, . . .}. Moreover, let us consider a real couple (p, q) with p > 1 and
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q = p/(p − 1) and an integer dimension n (the number of unknown fields in ap-
plications). Then the following definitions introduce the two-scale convergence in
Lp(Ω)n:

Definition 1. Let u0 be an element of Lp(Ω× Y )n. We say that a sequence uε

from Lp(Ω)n (weakly) two-scale converges to u0 if

lim
ε→0

∫

Ω

uε(x) · ψ(x, x/ε) dx =
∫

Ω

∫

Y

u0(x, y) · ψ(x, y) dy dx ∀ψ ∈ C∞0 (Ω, C∞# (Y )n);

briefly uε ⇀⇀ u0.

Definition 2. Let u0 be an element of Lp(Ω× Y )n. We say that a sequence uε

from Lp(Ω)n strongly two-scale converges to u0 if uε ⇀⇀ u0 and, in addition,

lim
ε→0

∫

Ω

|uε(x)|p dx =
∫

Ω

∫

Y

|u0(x, y)|p dy dx;

briefly uε →→ u0.

Let us notice that we could replace C∞0 (Ω, C∞# (y)n) by Lp(Ω, C#(Y )n) in Defini-
tion 1, using the obvious density arguments. Moreover, it is possible to formulate

Definition 2 with 6 instead of = because the remaining inequality is guaranteed by
Definition 1 (for all details see [6, p. 1202]). The generalization of both the defini-

tions to sequences in a space Lp(Ω)n×3 instead of Lp(Ω)n is evident; (p, q) in both
the definitions can be mutually exchanged or replaced by another analogous couple

(e.g. (2,2)), too. The simplified notation X := L2(∂Ω)n and H := L2(Ω)n will be
also applied.

The most useful properties of the two-scale convergence can be expressed in the

following four lemmas, whose first versions were published in [18] and [1] and whose
complete proofs (even for much more general function spaces) are given in [26]:

Lemma 1. If uε is bounded in Lp(Ω)n then there exists such a u0 ∈ Lp(Ω×Y )n

that, up to a subsequence, uε ⇀⇀ u0.

Lemma 2. If uε →→ u0 and vε ⇀⇀ v0, where u0 ∈ Lp(Ω × Y )n and v0 ∈
Lp(Ω× Y )n, then also

lim
ε→0

∫

Ω

uε(x) · vε(x) dx =
∫

Ω

∫

Y

u0(x, y) · v0(x, y) dy dx.
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Lemma 3.
(i) If uε → u in Lp(Ω)n then also uε →→ u∗.

(ii) If uε ⇀⇀ u0 then uε ⇀ u for

u(x) :=
∫

Y

u0(x, y) dy.

Lemma 4. If uε is bounded in Lp(Ω)n and ∇uε is bounded in Lp(Ω)n×3 then

there exist such u ∈ W 1,p(Ω)n and ũ ∈ Lp(Ω,W 1,p
# (Y )n) that, up to a subsequence,

uε ⇀⇀ u∗ and also ∇uε ⇀⇀ ∇u∗ +∇Y ũ.

The above mentioned lemmas are not sufficient to handle non-trivial time-

dependent problems. The problems of evolution have been analyzed (even with
slightly more general definition of the two-scale convergence, including time-

integration) in [11] but, unfortunately, most conclusions cannot be directly applied
to nonlinear formulations, where relatively simple “corrector-type results” are not

available. To be able to make use of the properties of sequences of Rothe, we need
another lemma.

For some positive final time T let us define a time interval I = {t ∈ � + : t 6 T}.
Let us select such positive ε that I can be covered (except the zero time) by a finite

number m := T/ε (m must be an integer) of subintervals I = {0} ∪ Iε
1 ∪ . . . ∪ Iε

m

where

Iε
i := {t ∈ � + : (i− 1)ε < t 6 iε} ∀ i ∈ {1, . . . ,m}.

Let us consider a subspace V of a Sobolev space W 1,p(Ω)n, satisfying homogeneous
Dirichlet boundary conditions on a certain part of ∂Ω. Following [19, p. 166], using
the formulae

uε(t) := uε
i +

t− iε

ε
(uε

i − uε
i−1), uε(t) := uε

i ∀ t ∈ Iε
i ∀ i ∈ {1, . . . ,m}

for arbitrary uε
0, . . . , u

ε
m ∈ V (for t = 0 both uε and uε can be set equal to uε

0), we
are able to introduce two special abstract functions uε, uε : I 7→ V ; uε is piecewise

linear, uε is piecewise constant. (Clearly, uε, uε, etc. are variable in Ω, too; this will
be emphasized explicitly only in cases of potential misunderstanding). The set of all

such uε will be denoted by Sε(I, V ); uε can be always derived from uε uniquely. For
ε → 0, uε, uε and u̇ε (a dot symbol is reserved for the derivatives by t everywhere)

then generate the well-known sequences of Rothe.
Both V and H are reflexive Banach spaces. Moreover, in all considerations we will

assume that a compact imbedding of V into H exists. The geometrical interpretation
of such assumption (forcing the validity of the corresponding Sobolev imbedding
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theorem) is studied in [17, p. 62] in great detail. (To avoid technical difficulties, in

the next section we will add some further requirements.) The following “two-scale
modification” of the widely used result from [13, p. 25] is true:

Lemma 5. If uε(t) is bounded in V and u̇ε(t) is bounded in H for any t ∈ I

then there exist such u ∈ C(I,H) ∩ L∞(I, V ) with a time derivative u̇ ∈ L∞(I,H)
and such ũ ∈ L∞(I, Lp(Ω,W 1,p

# (Y )n)) that, up to a subsequence,
a) uε(t) ⇀ u(t) in V for every t ∈ I ,
b) uε → u in C(I,H),
c) uε(t) ⇀⇀ u∗(t) for every t ∈ I ,
d) ∇uε(t) ⇀⇀ ∇u∗(t) +∇Y ũ(t) for every t ∈ I ,
e) u̇ε(t) ⇀⇀ u̇∗(t) for every t ∈ I .
��������

. Since V is reflexive, the assertion a) with u ∈ L∞(I, V ) follows from the
Eberlein-Shmul’yan theorem (see [10, p. 197]). The assertions c) and d) are simple

consequences of Lemma 4; Lemma 3 forces that the two-scale limit of a sequence uε(t)
and its strong limit in H must coincide for each t ∈ I . Thanks to the estimates

max
τ∈I

‖uε(τ)‖V = max
τ∈I

‖uε(τ)‖V 6 C, ‖uε(t)− uε(t)‖H 6 εmax
τ∈I

‖u̇ε(τ)‖H 6 Cε

∀ t ∈ I

for some positive constant C (independent of ε) the same convergence properties are
guaranteed for both uε and uε. Moreover, we have

‖uε(t)− uε(t′)‖H 6 |t− t′|max
τ∈I

‖u̇ε(τ)‖H 6 C|t− t′| ∀ t, t′ ∈ I.

Thus, the compactness of the imbedding of V into H and the Arzelà-Ascoli theorem
(see [13, p. 24] and [14, p. 35 and 44]) imply the assertion b), which guarantees

u ∈ C(I,H), too.
Lemma 1 yields the assertion e) with some u′(t) ∈ L2(Ω × Y )n instead of u̇(t).

Integrating the relation

lim
ε→0

∫

Ω

u̇ε(x, t) ·ψ(x, x/ε) dx =
∫

Ω

∫

Y

u′(x, y, t) ·ψ(x, y) dy dx ∀ψ ∈ C∞0 (Ω, C∞# (Y )n)

in time, we obtain

lim
ε→0

∫

Ω

(uε(x, t)− u0(x)) · ψ(x, x/ε) dx =
∫

Ω

∫

Y

(∫ t

0

u′(x, y, τ) dτ
)
· ψ(x, y) dy dx.

The convergence uε(t) ⇀⇀ u∗(t) (see the assertion c)) then gives

u(x, t) = u0(x) +
∫ t

0

u′(x, y, τ) dτ

for almost every x ∈ Ω and y ∈ Y ; this enables us to identify u′ with u̇∗ only. �
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3. Formulation and analysis of a model problem

To make the notation as simple as possible, for arbitrary positive integers l, r,

s let us introduce some special classes of functions. Let Carl(Ω, Y, � r )s be a class
of all functions ζ : Ω × Y × � r 7→ � s (later we will have in particular l ∈ {2, p},
r ∈ {n, n× 3 + n} and s ∈ {n, n× 3)}) with the following properties:
A) The function ζ is Y -periodic. Moreover, for almost every x ∈ Ω and y ∈ Y and
for each w ∈ � s the growth condition |ζ(x, y, w)| 6 Kζ(1 + |w|l−1) is satisfied
for some positive constant Kζ .

B) The function ζϕ(x, y) := ζ(x, y, ϕ(x, y)) applied to every x and y from A) for
any ϕ ∈ Lp(Ω, C#(Y )n) defines a continuous mapping ζϕ : Lp(Ω, C#(Y )r) 7→
Lq(Ω, C#(Y )s).

(In many cases the Nemytskĭı operators from [21, p. 36] and [10, p. 75] are useful
to verify such properties.) A class Car2(∂Ω, � 3 ) can be introduced in the same way
with small changes: only l = 2 and r = s = n will be needed, Ω is substituted by ∂Ω
(the 2-dimensional Hausdorff measure σ is considered here instead of the standard

3-dimensional Lebesgue measure), in both A) and B) the variable y is missing, the
requirement on periodicity in A) disappears.

Making use of A) and B), let us assume that a ∈ Carp(Ω, Y, � n×3+n )n×3, b ∈
L∞(Ω × Y )n (in most applications “material characteristics” a and b are time-

independent explicitly) and f(t) ∈ Car2(Ω, Y, � 3 )n, g(t) ∈ Car2(∂Ω, � 3 )n for any
t ∈ I (the process of evolution is driven by “external loads” g and “internal loads” f).
Let some u0 ∈ V be given. Now we are ready to formulate two closely related prob-
lems:
������������

1. For an arbitrary ε ∈ � + find such uε ∈ Sε(I, V ) that
∫

Ω

b(x, x/ε)u̇ε(x, t) · v(x) dx+
∫

Ω

a(x, x/ε, uε(x, t),∇uε(x, t)) · ∇v(x) dx(1)

+
∫

∂Ω

g(x, uε(x, t), t̄ε) · v(x) dσ(x) =
∫

Ω

f(x, x/ε, uε(x, t), t̄ε) · v(x) dx

for all v ∈ V and at every time t ∈ I (represented by its piecewise constant approxi-
mation t̄ε) if uε(x, 0) = u0(x) for almost every x ∈ Ω.
������������

2. Find such u ∈ C(I,H) ∩ L∞(I, V ) with a time derivative u̇ ∈
L∞(I,H) and such ũ ∈ L∞(I, Lp(Ω,W 1,p

# (Y )n)) that

∫ t

0

∫

Ω

b̃(x)(u(x, τ) − u0(x)) · v(x) dx dτ(2)

+
∫ t

0

∫

Ω

∫

Y

a(x, y, u(x, τ),∇u(x, τ) +∇Y ũ(x, y, τ), τ) · ∇v(x) dy dx dτ
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+
∫ t

0

∫

∂Ω

g(x, u(x, τ), τ) · v(x) ds dτ

=
∫ t

0

∫

Ω

∫

Y

f(x, y, u(x, τ), τ) · v(x) dy dx dτ

for all v ∈ V and at every time t ∈ I if u(x, 0) = u0(x) for almost every x ∈ Ω; the
notation

b̃(x) :=
∫

Y

b(x, y) dy

is used here.

Let us notice that (2) can be obtained by integration in time from

∫

Ω

b̄(x)u̇(x, t) · v(x) dx(3)

+
∫

Ω

∫

Y

a(x, y, u(x, t),∇u(x, t) +∇Y ũ(x, y, t), t) · ∇v(x) dy dx

+
∫

∂Ω

g(x, u(x, t), t) · v(x) dσ(x)

=
∫

Ω

∫

Y

f(x, y, u(x, t), t) · v(x) dy dx;

in this way (1) seems to be a suitable “time-discretized representation” of (2). More-
over, (1) can be rewritten, step-by-step for i ∈ {1, . . . ,m}, in its alternative form

ε−1

∫

Ω

b(x, x/ε)(uε
i (x) − uε

i−1(x)) · v(x) dx(4)

+
∫

Ω

a(x, x/ε, uε
i (x),∇uε

i (x)) · ∇v(x) dx

+
∫

∂Ω

g(x, uε
i (x), iε) · v(x) dσ(x)

=
∫

Ω

f(x, x/ε, uε
i (x), iε) · v(x) dx

for all v ∈ V ; the algorithm starts with uε
0(x) := u0(x). Thus, to solve Problem 1

means to verify the correctness of the suggested algorithm. The analysis of the limit

behavior of uε, uε and u̇ε from (1), based on Lemma 5, should be helpful for solving
Problem 2.

To avoid technical difficulties, let us assume p > 2 and accept some additional
requirements:

C) Dirichlet boundary conditions prescribed on ∂Ω force the equivalence of
norms ‖v‖V , ‖∇v‖Lp(Ω)n×3 and ‖∇v‖Lp(Ω)n×3 + ‖v‖X for all v ∈ V (this
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refers to the generalized Friedrichs inequality and to the trace theorem—cf. [17,

pp. 216 and 222]).
D) The estimates

a(x, y, z, θ) · θ > κ|θ|p, (a(x, y, z, θ)− a(x, y, z, θ′)) · (θ − θ′) > 0

are true for almost every x ∈ Ω and y ∈ Y , for all z ∈ � n and for arbitrary θ,

θ′ ∈ � n×3 ; κ in the first estimate is a positive real constant. If θ 6= θ′ then the
second estimate holds also with > instead of >.

E) The estimates
b(x, y)z · z > β|z|2, |b(x, y)| 6 β′

are valid for almost every x ∈ Ω and y ∈ Y and for all z ∈ � n with some

positive constants β, β′.
F) The estimate

(g(x, z, t)− g(x, z′, t)) · (z − z′) > 0

holds for almost every x ∈ Ω and for all z, z′ ∈ � n at each time t ∈ I .
G) There exists such u̇0 ∈ L2(Ω × Y )n (substituting the unknown initial time
derivative—this fact is emphasized by a dot symbol here) that the equation

(description of a stationary initial state)
∫

Ω

∫

Y

b(x, y)u̇0(x) · v(x) dy dx+
∫

Ω

∫

Y

a(x, y, u0(x),∇u0(x)) · ∇v(x) dy dx

+
∫

∂Ω

g(x, u0(x), 0) · v(x) dσ(x) =
∫

Ω

∫

Y

f(x, y, u0(x), 0) · v(x) dy dx

is true for any v ∈ V .
H) The symmetry

b(x, y)z · z′ = b(x, y)z′ · z
is preserved for almost every x ∈ Ω and y ∈ Y and for all z, z ′ ∈ � n .

I) The estimates

|f(x, y, z, t)− f(x, y, z′, t)| 6 ξf |z − z′|,
|f(x, y, z, t)− f(x, y, z, t′)| 6 ξf |t− t′|

are true for almost every x ∈ Ω and y ∈ Y and for all z, z ′ ∈ � n at arbitrary
times t, t′ ∈ I with a positive constant ξf .

J) The imbedding of V into X (guaranteed by C)) is compact (cf. [17, p. 221]) and
the estimates

|g(x, z, t)− g(x, z′, t)| 6 ξg |z − z′|,
|g(x, z, t)− g(x, z, t′)| 6 ξg |t− t′|
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are true for almost every x ∈ ∂Ω and for all z, z′ ∈ � n at arbitrary times t, t′ ∈ I
with a positive constant ξg .

Theorem 1. Let the assumptions C), D), E) and F) be satisfied. Then Problem 1
has a solution.

��������
. Let us introduce the notation of scalar products in H

(Bεu, v) :=
∫

Ω

b(x, x/ε)u(x) · v(x) dσ(x),

(F ε
i u, v) :=

∫

Ω

f(x, x/ε, u(x), iε) · v(x) dx

and of dualities between V and V ?

〈Aεu, v〉 :=
∫

Ω

a(x, x/ε, u(x),∇u(x)) · ∇v(x) dx,

〈Gε
iu, v〉 :=

∫

∂Ω

g(x, u(x), iε) · v(x) dσ(x),

〈T ε
i u, v〉 := ε−1(Bεu−Bεui−1, v) + 〈Aεu, v〉+ 〈Gε

iu, v〉 − (F ε
i u, v)

for any u, v ∈ V (i ∈ {1, . . . ,m}). Using this notation, (4) assumes the form
〈T ε

i u
ε
i , v〉 = 0 for all v ∈ V . By [9, p. 279], if

i) T ε
i is coercive,

ii) T ε
i is demicontinuous,

iii) T ε
i is bounded and

iv) the estimate

(5) lim sup
k→∞

〈T ε
i v

k − T ε
i v, v

k − v〉 6 0

for an arbitrary sequence v̂k in V together with v̂k ⇀ v ∈ V forces v̂k → v

then T ε
i is also surjective; this would imply the existence of a solution u

ε
i ∈ V of (4)

immediately. Consequently, it remains to verify the four conditions i), ii), iii), iv).

i) Directly from the definition of T ε
i (with u = v) we have

〈T ε
i v, v〉 = ε−1(Bεv, v) + 〈Aεv〉+ 〈Gε

i v, v〉 − (F ε
i v, v)− ε−1(Bεv, uε

i−1)

where the assumpions D) and E) imply

〈Aεv, v〉 > κ‖∇v‖p
Lp(Ω)n×3 > κ′‖v‖p

V , (Bεv, v) > β‖v‖2
H ;
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the existence of a new positive constant κ′ here follows from the assumption C). The

assumption F) with respect to the assumption A) for any δ ∈ � + (o denotes a zero
vector in � n ) gives similarly

〈Gε
i v, v〉 = 〈Gε

i v −Gε
i o, v〉+ 〈Gε

i o, v〉 > 〈Gε
i o, v〉 > −Kg‖v‖X

> − Kg

4δ
σ(∂Ω)−Kgδ‖v‖2

X > −Kg

4δ
σ(∂Ω)−K ′

gδ‖v‖2
V

> − Kg

4δ
σ(∂Ω)−K ′

gδ(1 + ‖v‖p
V );

the existence of a new positive constant K ′
g here follows from the assumption C).

The assumption A) yields

(F ε
i v, v) 6 Kf‖v‖L(Ω)n +Kf‖v‖2

H 6 Kf

4
volΩ + 2Kf‖v‖2

H .

Making use of uε
i−1 ∈ V , prepared from the preceding time step, we obtain

(Bεv, uε
i−1) 6 β′‖v‖H‖uε

i−1‖2
H 6 β′‖v‖2

H +
β′

4
‖uε

i−1‖2
H .

Thus, for ε and δ small enough we can conclude

〈T ε
i v, v〉 > κ1‖v‖p

V +
κ2

ε
‖v‖2

H − κ0

with some positive constants κ0, κ1 and κ2; this makes the coerciveness of T ε
i evident.

ii) We have to prove that for any sequence ûk in V the strong convergence ûk →
u ∈ V yields

lim
k→∞

〈T ε
i û

k − T ε
i u, v〉 = 0 for v ∈ V

(cf. [9, p. 270]). However, we can write

〈T ε
i û

k − T ε
i u, v〉 = ε−1(Bεûk −Bεu, v) + 〈Aεûk −Aεu, v〉

+ 〈Gε
i û

k −Gε
iu, v〉 − (F ε

i û
k − F ε

i u, v)

=
∫

Ω

b(x, x/ε)(uk(x) − u(x)) · v(x) dx

+
∫

Ω

(a(x, x/ε, uk(x),∇uk(x)) − a(x, x/ε, u(x),∇u(x))) · ∇v(x) dx

+
∫

∂Ω

(g(x, uk(x), iε)− g(x, u(x), iε)) · v(x) dσ

−
∫

Ω

(f(x, x/ε, uk(x), iε)− f(x, x/ε, u(x), iε)) · v(x) dx
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and with help of the Hölder inequality we are able to derive all the expected con-

vergence results. For k → ∞ the first integral goes to zero, as ûk → u in H ; the
same is true for the last integral where the assumption B) applied to f is available.
We have ûk → u also in X and ∇ûk → ∇u in Lp(Ω)n×3, which together with the

assumption B) applied to g and a yields identical results for the third and second
integrals, too.

iii) Let us construct estimates

〈Aεu, v〉 6 Ka‖∇v‖L(Ω)n×3 +Ka(‖∇u‖p−1
Lp(Ω)n×3 + ‖u‖p−1

Lp(Ω)n)‖∇v‖Lp(Ω)n

6 Ka((volΩ)(p−1)/p + ‖u‖p−1
V )‖v‖V ,

〈Gε
iu, v 6 Kg‖∇v‖(∂Ω)n +Kg‖u‖X‖v‖X 6 ((σ(Ω))1/2 + ‖u‖X)‖v‖X ,

(F ε
i u, v) 6 Kf‖v‖L(Ω)n +Kg‖u‖H‖v‖H 6 ((vol Ω)1/2 + ‖u‖H)‖v‖H

and by the assumption E) also

(Bεu−Bεuε
i−1, v) 6 (‖Bεu‖H + ‖Bεuε

i−1‖H)‖v‖H 6 (β′‖u‖H + ‖Bεuε
i−1‖H)‖v‖H .

The boundedness of T ε
i then comes from the assumption C) and from the fact that

a (compact) imbedding of V into H exists.
iv) Let v̂k be an arbitrary sequence in V such that v̂k ⇀ v ∈ V . Let us study the

expression

〈T ε
i v

k − T ε
i v, v

k − v〉

=
1
ε
(Bεvk −Bεv, vk − v) + 〈Aεvk −Aεv, vk − v〉

+ 〈Gε
i v

k −Gε
i v, v

k − v〉 − (F ε
i v

k − F ε
i v, v

k − v)

=
∫

Ω

b(x, x/ε)(vk(x) − v(x)) · (vk(x)− v(x)) dx

+
∫

Ω

(a(x, x/ε, vk(x),∇vk(x)) − a(x, x/ε, v(x),∇v(x))) · (vk(x) − v(x)) dx

+
∫

Ω

(g(x, vk(x), iε)− g(x, v(x), iε)) · (vk(x)− v(x)) dσ(x)

−
∫

Ω

(f(x, x/ε, vk(x), iε)− f(x, x/ε, v(x), iε)) · (vk(x)− v(x)) dx.

For k → ∞ the first and last integrals vanish (because v̂k → v in H). Using the
assumption F) as a lower estimate we obtain

lim sup
k→∞

〈T ε
i v

k − T ε
i v, v

k − v〉

> lim sup
k→∞

∫

Ω

(a(x, x/ε, vk(x),∇vk(x)) − a(x, x/ε, v(x),∇v(x))) · (vk(x) − v(x)) dx.

598



If v̂k →/ v in V then this estimate together with (5) leads according to the assump-

tion D) (whose second part has to be used here for the first time) to the contradiction
0 > 0; therefore v̂k → v in V . �

Theorem 2. Let the assumptions C), D), E), F), G), H), I) and J) be satisfied.
Then Problem 2 has a solution.
��������

. Using the brief notation from the proof of Theorem 1, we are able to

convert (4) for any i ∈ {1, . . . ,m} into the form

(6) ε−1(Bε(uε
i − uε

i−1), v) + 〈Aεuε
i , v〉+ 〈Gε

iu
ε
i , v〉 = (F ε

i u
ε
i , v)

for all v ∈ V . Thanks to the assumption G) the same holds with uε
−1 := uε

0 − εu̇ε
0

for a zero index instead of i. If, in particular, v = (uε
i − uε

i−1)/ε then the difference
between (6) and the same equation with all indices reduced by 1 gives

ε−2(Bε(uε
i − 2uε

i−1 + uε
i−2), u

ε
i − uε

i−1) + ε−1〈Aε(uε
i − uε

i−1), u
ε
i − uε

i−1〉
+ε−1〈Gε

iu
ε
i −Gε

i−1u
ε
i−1, u

ε
i − uε

i−1〉 = ε−1(F ε
i u

ε
i − F ε

i−1u
ε
i−1, u

ε
i − uε

i−1).

Since the assumption H) forces

(Bε(w − w′), w) =
1
2
(Bεw,w)− 1

2
(Bεw′, w′) +

1
2
(Bε(w −w′), w −w′) ∀w,w′ ∈ V,

the sum of all such equations for j ∈ {1, . . . , i} is

1
2
ε−2(Bε(uε

j − uε
j−1), u

ε
j − uε

j−1)

+
1
2
ε−2

j∑

i=1

(Bε(uε
i − 2uε

i−1 + uε
i−2), u

ε
i − 2uε

i−1 + uε
i−2)

+ ε−1

j∑

i−1

〈Aε(uε
i − uε

i−1), u
ε
i − uε

i−1〉+ ε−1

j∑

i=1

〈Gε
iu

ε
i −Gε

i−1u
ε
i−1, u

ε
i − uε

i−1〉

= ε−1

j∑

i=1

(F ε
i u

ε
i − F ε

i−1u
ε
i−1, u

ε
i − uε

i−1) +
1
2
(Bεu̇ε

0, u̇
ε
0).

But all left-hand-side additive terms except the first are non-negative; thus the esti-

mate

ε−2(Bε(uε
j − uε

j−1), u
ε
j − uε

j−1)

6 2ε−1

j∑

i=1

(F ε
i u

ε
i − F ε

i u
ε
i−1, u

ε
i − uε

i−1) + ε−1(Bεu̇ε
0, u̇

ε
0)
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is possible. For its particular terms the assumption E) yields

(Bε(uε
j − uε

j−1), u
ε
j − uε

j−1) > β‖uε
j − uε

j−1‖2
H , (Bεu̇ε

0, u̇
ε
0) 6 β′‖uε

0‖2
H

and similarly the assumption I) gives

(F ε
i u

ε
i − F ε

i−1u
ε
i−1, u

ε
i − uε

i−1) 6 ξ‖uε
i − uε

i−1‖2
H + ξε‖uε

i − uε
i−1‖L(∂Ω)n

6 ξ‖uε
i − uε

i−1‖2
H + ξε(volΩ)1/2‖uε

i − uε
i−1‖H

6 2ξ‖uε
i − uε

i−1‖2
H +

1
4
ξε2 volΩ.

Clearly jε 6 T ; in this way for a sufficiently small ε we obtain

‖(uε
j − uε

j−1)/ε‖H 6 c

with a positive constant c. Thus u̇ε(t) is bounded in H for any t ∈ I , which is the
second assumption of Lemma 5. Another natural consequence of this estimate is

‖uε
j‖H 6 ε

j∑

i=1

‖(uε
j − uε

j−1)/ε‖H 6 cT

(which means that uε(t) is bounded in H , too).
Repeating the same argument with a special choice v = uε

i in (6), we obtain

〈Aεuε
i , u

ε
i 〉+ 〈Gε

iu
ε
i , u

ε
i 〉 = (F ε

i u
ε
i , u

ε
i )− ε−1(Bεuε

i −Bεuε
i−1, u

ε
i ).

However, the assumption E) implies

−ε−1(Bεuε
i −Bεuε

i−1, u
ε
i ) 6 β′‖(uε

i − uε
i−1)/ε‖H‖uε

i‖H 6 β′c2T

and part i) of the proof of Theorem 1 gives

〈Aεuε
i , u

ε
i 〉 > κ′‖uε

i‖p
V ,

〈Gε
iu

ε
i , u

ε
i 〉 > − Kg

4δ
σ(∂Ω)−K ′

gδ(1 + ‖uε
i‖p

V ),

(F ε
i u

ε
i , u

ε
i ) 6 Kf

4
volΩ + 2Kf‖uε

i‖2
H 6 Kf

4
volΩ + 2Kfc

2T 2;

for δ small enough this yields

‖uε
i‖V 6 c′

with a positive constant c′, i.e. the boundedness of uε(t) in V for any t ∈ I , which is
the first assumption of Lemma 5.
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By Lemma 5 there exist a certain u ∈ C(I,H) ∩ L∞(I, V ) with a time derivative
u̇ ∈ L∞(I,H) and a certain ũ ∈ L∞(I, Lp(Ω,W 1,p

# (Y )n)) attained as limits of uε

and u̇ε in the sense of the assertions a), b), c), d) and e). It remains to prove that
these limits satisfy (3) (and consequently (2)). Let us choose an arbitrary v ∈ V

and introduce ωε(x) := b(x, x/ε)v(x) and ω(x, y) := b(x, y)v(x); evidently ωε →→ ω.
The assertion e) of Lemma 5 in accordance with Lemma 2 and with respect to the

assumption H) results in

lim
ε→0

∫

Ω

b(x, x/ε)u̇ε(x, t) · v(x) dx = lim
ε→0

∫

Ω

ωε(x) · u̇ε(x, t) dx

=
∫

Ω

∫

Y

ω(x, y) · u̇(x, t) dy dx =
∫

Ω

b̃(x)u̇(x, t) · v(x) dx;

this shows that the first integral in (1) tends to the corresponding one in (3) for

ε→ 0. The same for the last (right-hand side) integral follows from the relation

∫

Ω

∫

Y

f(x, y, u(x, t), t) · v(x) dy dx

= lim
ε→0

∫

Ω

f(x, x/ε, uε(x, t), t̄ε) · v(x) dx

+ lim
ε→0

∫

Ω

(f(x, x/ε, uε(x, t), t) − f(x, x/ε, uε(x, t), t̄ε)) · v(x) dx

+ lim
ε→0

∫

Ω

(f(x, x/ε, u(x, t), t)− f(x, x/ε, uε(x, t), t)) · v(x) dx,

and from the fact that by the assumption I) the last two limits vanish (with respect

to the assertion b) of Lemma 5), while for the third integral thus follows from the
similar relation

∫

∂Ω

g(x, u(x, t), t) · v(x) dx

= lim
ε→0

∫

∂Ω

g(x, uε(x, t), t̄ε) · v(x) dx

+ lim
ε→0

∫

∂Ω

(g(x, uε(x, t), t)− g(x, uε(x, t), (̄t)ε)) · v(x) dx

+ lim
ε→0

∫

∂Ω

(g(x, u(x, t), t) − g(x, uε(x, t), t)) · v(x) dx

and from the assumption J) (thanks to the convergence uε(t) → u(t) in X) by which
the last two limits vanish again. Since for any t ∈ I

αε(x, t) := a(x, x/ε, uε(x, t),∇uε(x, t))
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generates a bounded sequence in Lq(Ω)n×3 and consequently by Lemma 1 αε(t) ⇀⇀
α0(t) for some α0(t) ∈ Lp(Ω, C#(Y )n×3), only the last (but rather extensive) step
must be done to complete the proof: to verify that

(7) α0(x, y, t) = a(x, y, u(x), t),∇u(x, t) +∇Y ũ(x, y, t))

for almost every x ∈ Ω and y ∈ Y (independently of t ∈ I).
Let us consider

u0
O(x, y, t) := ∇u(x, t) +∇Y ϕ

k(x, y, t) + δϕ(x, y, t),

uε
O(x, t) := ∇u(x, t) +∇Y ϕ

k(x, x/ε, t) + δϕ(x, x/ε, t)

where δ ∈ � + , ϕ(t) ∈ C∞0 (Ω, C∞# (y)n×3) and ϕk(t) ∈ C∞0 (Ω, C∞# (Y )n) (for a fixed k
now—this will be specified later). Moreover, let us introduce the brief notation

aO(x, y, w(x, t)) := a(x, y, uε(x, t), w(x, t), u0
O(x, y, t))

with w = uε or w = u. From the assumption D) we have
∫

Ω

(a(x, x/ε, uε(x, t),∇uε(x, t))− a(x, x/ε, uε(x, t), uε
O(x, t)))

· (∇uε(x, t)− uε
O(x, t)) dx > 0

which with help of (1) (with v(x) = uε(x, t)) assumes the form
∫

Ω

f(x, x/ε, uε(x, t), t) · uε(x, t) dx−
∫

∂Ω

g(x, uε(x, t), t) · uε(x, t) dσ(x)

−
∫

Ω

b(x, x/ε)u̇ε(x, t) · uε(x, t) dx−
∫

Ω

aO(x, x/ε, uε(x, t)) · ∇uε(x, t) dx

+
∫

Ω

aO(x, x/ε, uε(x, t)) · uε
O(x, t) dx−

∫

Ω

αε(x, t) · uε
O(x, t) dx dτ > 0.

But we know that uε(t) → u(t) both in H and X again; thus the assumption A)
applied to f and g is sufficient to guarantee

∫

Ω

f(x, x/ε, uε(x, t), t) · uε(x, t) dx =
∫

Ω

∫

Y

f(x, y, u(x, t), t) · u(x, t) dy dx,
∫

∂Ω

g(x, uε(x, t), t) · uε(x, t) dσ(x) =
∫

∂Ω

g(x, u(x, t), t) · u(x, t) dσ(x).

The assertion e) of Lemma 5 with respect to Lemma 2 (the assumption H) has to be
applied again) gives also

∫

Ω

b(x, x/ε)u̇ε(x, t) · uε(x, t) dx =
∫

Ω

b̃(x)u̇(x, t) · u(x, t) dy dx.
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In this way we obtain

∫

Ω

∫

Y

f(x, y, u(x, t), t) · u(x, t) dy dx−
∫

∂Ω

g(x, u(x, t), t) · u(x, t) dσ(x)

−
∫

Ω

b̃(x)u̇(x, t) · u(x, t) dx−
∫

Ω

∫

Y

aO(x, y, u(x, t)) · (∇u(x, t) +∇Y uO(x, y, t)) dy dx

+
∫

Ω

∫

Y

(aO(x, y, u(x, t))− α0(x, y, t)) · u0
O(x, y, t) dy dx > 0

and in another order (using δ, ϕ and ϕk)

∫

Ω

∫

Y

f(x, y, u(x, t)) · u(x, t) dy dx−
∫

∂Ω

g(x, u(x, t), t) · u(x, t) dσ(x)

−
∫

Ω

b̃(x)u̇(x, t) · u(x, t) dx−
∫

Ω

∫

Y

α0(x, y, t) · ∇u(x, t) dy dx

−
∫

Ω

∫

Y

α0(x, y, t) · ∇ϕk(x, y, t) dy dx

+
∫

Ω

∫

Y

aO(x, y, u(x, t)) · ∇Y (ϕk(x, y, t)− ũ(x, y, t)) dy dx

+ δ

∫

Ω

∫

Y

(aO(x, y, u(x, t))− α0(x, y, t)) · ϕ(x, y, t) dy dx > 0.

However, repeating the above mentioned convergence arguments we have by (1)

∫

Ω

∫

Y

f(x, y, u(x, t)) · u(x, t) dy dx−
∫

∂Ω

g(x, u(x, t), t) · u(x, t) dσ(x)

−
∫

Ω

b̃(x)u̇(x, t) · u(x, t) dx−
∫

Ω

∫

Y

α0(x, y, t) · ∇u(x, t) dy dx

= lim
ε→0

∫

Ω

f(x, x/ε, uε(x, t)) · u(x, t) dx− lim
ε→0

∫

∂Ω

g(x, uε(x, t)) · u(x, t) dσ(x)

− lim
ε→0

∫

Ω

b(x, x/ε)u̇ε(x, t) · u(x, t) dx− lim
ε→0

∫

Ω

αε(x, t) · ∇u(x, t) dx = 0

and the first four integrals in the previous inequality vanish. Also the fifth can be
removed: we have

∫

Ω

∫

Y

α0(x, y, t) · ∇Y ϕ
k(x, y, t) dy dx = lim

ε→0

∫

Ω

αε(x, t) · ∇Y ϕ
k(x, x/ε, t) dx

= lim
ε→0

ε

∫

Ω

αε(x, t) · (∇ϕk(x, x/ε, t)−∇Ωϕ
k(x, x/ε, t)) = 0.

In particular, it is always possible to choose ϕ̂k(t) → ũ(t) in Lp(Ω × Y )n; the limit
passage k → ∞ then removes the sixth integral. Finally, divided by δ, the result
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reduces to

lim
k→∞

∫

Ω

∫

Y

(a(x, y, u(x, t),∇u(x, t) +∇Y ϕ
k(x, y, t) + δϕ(x, y, t)) − α0(x, y, t))

· ϕ(x, y, t) dy dx > 0;

this can be rewritten (thanks to the assumption A) applied to a) as

(8)
∫

Ω

∫

Y

η(x, y, t) · ϕ(x, y, t) dy dx > 0

with η(x, y, t) := a(x, y, u(x, t) +∇Y ũ(x, y, t)) − α0(x, y, t); to derive this result, we
have put δ = 1/k. In Lp(Ω × Y )n×3 let us study a sequence η̂k(t) of elements
from C∞0 (Ω, C∞# (Y )n) with the strong limit η. If the norm of each element of such
sequence in Lp(Ω × Y )n×3 is zero then the norm of η must be zero, too, and (7) is

satisfied for almost every x ∈ Ω and y ∈ Y . But the well-known Minty trick (cf. [10,
p. 261]) ϕ(x, y, t) = %|ηk(x, y, t)|q−1 sgn ηk(x, y, t) with % ∈ {−1, 1}, applied to (8),
gives

%

∫

Ω

∫

Y

|ηk(x, y, t)|q dy dx > 0;

this forces ηk(t) to be a zero point of Lp(Ω× Y )n. �

4. Conclusions and generalizations

In Theorem 1 (handling the time-discretized formulation) and Theorem 2 (study-
ing its limit behavior) we have demonstrated how the coupling of the method of Rothe

and of the two-scale convergence technique can be useful in the analysis of a certain
class of strongly nonlinear problems of evolution, occurring in continuum mechanics

and engineering applications in many situations when the proper information about
the periodic material structure is available and should not be lost. Most assumed

properties, identified by letters from A) to J), can be verified in practical cases with-
out great difficulties (both those on the geometrical configurations and those on the

choice of prescribed functions, i.e. “loads” and “material characteristics”). Neverthe-
less, some of them could be weakened; the main reason for ignoring such possibilities

was the effort, proclaimed in the introduction, to keep this text readable and user-
friendly for more people than for a rather exclusive society (as classified by numerous

physicists and engineers) of specialists in mathematical homogenization and similar
techniques. Let us also remark that no Gronwall arguments (cf. [13, p. 29]) or other

special tricks from the theory of difference equations were needed in proofs explic-
itly, but, regardless of this fact, the asymptotic behavior of solution for T → ∞ is
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not evident and would require a proper additional analysis. Another disadvantage

is that only special parabolic problems were taken into considerations; therefore the
presented theory covers e.g. the conduction of heat of solids as a very special case
with n = 1 (with exactly one unknown field of temperature—see [5, p. 172]), but
not directly the classical wave or telegraph equations and (in more practical cases)
the problems of dynamical viscoelasticity or elastoplasticity where the second time

derivatives cannot be removed. Thus, there are many occasions and themes for the
research in near future.

Let us close this paper with a short reference to what can happen if some

of the assumed properties is violated. The first candidate for this may be the
very strict assumption H); more generally, we would prefer to have something like

b(x, x/ε, uε(x, t)) instead of b(x, x/ε)uε(x, t) in (1). But such formulation (with some
physically reasonable requirements on b) enlarges both the extent of proofs and the

amount of theoretical preliminaries rapidly even in all “classical” considerations
with no proper microstructural arguments (as a basis for their generalization like

Theorem 1): probably the best example is the problem of the simultaneous heat
and moisture transport in porous media (for the separate moisture transport see the

mathematical analysis [12], the complete physical background is discussed in [8]),
involving (apart from the seemingly effective numerical solvers) many open existence

and convergence questions yet.
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