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A MAXMIN PRINCIPLE FOR NONLINEAR EIGENVALUE

PROBLEMS WITH APPLICATION TO A RATIONAL SPECTRAL
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Abstract. In this paper we prove a maxmin principle for nonlinear nonoverdamped eigen-
value problems corresponding to the characterization of Courant, Fischer and Weyl for
linear eigenproblems. We apply it to locate eigenvalues of a rational spectral problem in
fluid-solid interaction.
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1. Introduction

In this paper we consider the nonlinear eigenvalue problem

(1) T (λ)x = 0

where T (λ), λ ∈ J , is a selfadjoint and bounded operator on a real Hilbert space H ,

and J is a real open interval which may be unbounded. As in the linear case T (λ) =
λI−A the parameter λ ∈ J is called an eigenvalue of problem (1) if the equation (1)
has a nontrivial solution x 6= 0.
For a wide class of linear selfadjoint operators A : H → H the eigenvalues of the

linear eigenvalue problem (1) can be characterized by three fundamental variational
principles, namely by Rayleigh’s principle [13], by Poincaré’s minmax characteriza-

tion [12], and by the maxmin principle of Courant [3], Fischer [6] and Weyl [21].

These variational principles were generalized to the nonlinear eigenvalue prob-
lem (1) where the Rayleigh quotient R(x) := 〈Ax, x〉/〈x, x〉 of a linear problem
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Ax = λx was replaced by the so called Rayleigh functional p, which is a homoge-

neous functional defined by the equation 〈T (p(x))x, x〉 = 0 for x 6= 0. Notice that in
the linear case T (λ) := λI −A, this is exactly the Rayleigh quotient.

If the Rayleigh functional p is defined on the entire space H \ {0} then the eigen-
problem (1) is called overdamped. This term is motivated by the quadratic eigenvalue
problem

(2) T (λ)x = λ2Mx + λCx + Kx = 0

governing the damped free vibrations of a system where M , C and K are symmet-
ric and positive definite matrices corresponding to the mass, the damping and the

stiffness of the system, respectively.

Assume that the damping C = αC̃ depends on a parameter α > 0. Then for α = 0
the system has purely imaginary eigenvalues corresponding to harmonic vibrations.

Increasing α the eigenvalues move into the left half plane as conjugate complex pairs
corresponding to damped vibrations. Ultimately they reach the negative real axis

as double eigenvalues where they immediately split and move in opposite directions.
When eventually all eigenvalues have become real, and all eigenvalues going right

are to the right of all eigenvalues moving to the left the system is called overdamped.
In this case the two solutions

p±(x) =
−α〈C̃x, x〉 ±

√
α2〈C̃x, x〉2 − 4〈Mx, x〉〈Kx, x〉

2〈Mx, x〉

of the quadratic equation

(3) 〈T (p(x))x, x〉 = λ2〈Mx, x〉+ λα〈C̃x, x〉+ 〈Kx, x〉 = 0

are real, and they satisfy sup
x6=0

p−(x) < inf
x6=<0

p+(x). Hence, equation (3) de-

fines two Rayleigh functionals p− and p+ corresponding to the intervals J− :=(
−∞, inf

x6=0
p+(x)

)
and J+ :=

(
sup
x6=0

p−(x), 0
)
.

For overdamped systems Hadeler [7], [8] generalized Rayleigh’s principle proving
that the eigenvectors are orthogonal with respect to the generalized scalar product

[x, y] :=





〈(T (p(x))− T (p(y)))x, y〉
p(x)− p(y)

, if p(x) 6= p(y)

〈T ′(p(x))x, y〉, if p(x) = p(y)

which is symmetric, definite and homogeneous, but in general not bilinear.
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For finite dimensional overdamped problems Duffin [4] proved Poincaré’s min-

max characterization for quadratic eigenproblems and Rogers [15] for the general
nonlinear eigenproblem. Infinite dimensional overdamped problems were treated by
Hadeler [8], [9], Langer [10], Rogers [16], Turner [17], [18], and Werner [20], who

proved generalizations of both characterizations, the minmax principle of Poincaré
and the maxmin principle of Courant, Fischer and Weyl.

Barston [1] characterized a subset of the real eigenvalues of a nonoverdamped
quadratic eigenproblem of finite dimension, and Werner and the author [19] stud-

ied the general nonoverdamped case and proved a minmax principle generalizing
the characterization of Poincaré. In this paper we add a maxmin characterization

for nonoverdamped problems. Both principles are used to locate the eigenvalues
of a rational eigenvalue problem governing the vibrations of interacting fluid-solid

structures.

2. Characterization of eigenvalues

We consider the nonlinear eigenvalue problem

(4) T (λ)x = 0

where T (λ) is a selfadjoint and bounded operator on a real Hilbert space H for
every λ in an open real interval J .

We assume that

(5) f :

{
J ×H → �
(λ, x) 7→ 〈T (λ)x, x〉

is continuously differentiable, and that for every fixed x ∈ H0 := H \ {0} the real
equation

(6) f(λ, x) = 0

has at most one solution in J . Then equation (6) implicitly defines a functional p on
some subset D of H0, which we call the Rayleigh functional.

We assume that

(7)
∂

∂λ
f(λ, x)

∣∣∣
λ=p(x)

> 0 for every x ∈ D.

Then it follows from the implicit function theorem that D is an open set and that
p is continuously differentiable on D.
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In this section we first summarize the results of [19] concerning the minmax char-

acterization of the nonlinear eigenvalue problem (4) corresponding to the Poincaré
principle and amend them by the complementary Courant-Fischer-Weyl type char-
acterizations.

We denote by Hn the set of all n-dimensional subspaces of H and by V1 :=
{v ∈ V : ‖v‖ = 1} the unit sphere of the subspace V of H .

For nonoverdamped problems the natural enumeration for which the smallest

eigenvalue is the first, the second smallest is the second, etc. is not appropriate.
This is easily seen if we consider a linear eigenvalue problem T (λ) = λI − A and

make it nonlinear by restricting it to an open interval J which does not contain
the smallest eigenvalue of A. Then inf

x∈D
p(x) 6∈ J , and the smallest eigenvalue of T ,

i.e. the smallest eigenvalue of A in J , is not the minimum of the Rayleigh functional.

For nonlinear eigenvalue problems the number of an eigenvalue λ of problem (4) is

inherited from the location of the eigenvalue 0 in the spectrum of the operator T (λ).
We use the following notation

µV (λ) := min
v∈V1

〈T (λ)v, v〉,(8)

µj(λ) := sup
V ∈Hj

µV (λ),(9)

and we assume that the following conditions hold:

(A1) if µn(λ) = 0 for some n ∈ � and λ ∈ J , then µj(λ) = max
V ∈Hj

µV (λ) for

j = 1, . . . , n (i.e. the sup is attained by some V ∈ Hj), and µ1(λ) >
µ2(λ) > . . . > µn(λ) are the n largest eigenvalues of T (λ);

(A2) if µ = 0 is an eigenvalue of T (λ), then there exists n ∈ � with µn(λ) = 0.

It is well known (cf. Rektorys [14]) from the maxmin principle of Poincaré that
(A1) and (A2) hold if for every fixed λ ∈ J there exists η(λ) > 0 such that the
linear operator T (λ) + η(λ)I is completely continuous. For more general results see
Dunford and Schwartz [5], p. 1543.

If λ ∈ J is an eigenvalue of T (·) then µ = 0 is an eigenvalue of the linear problem
T (λ)y = µy, and therefore there exists n ∈ � such that µn(λ) = 0. In this case we
call λ the n-th eigenvalue of (4). If conversely µn(λ) = 0 for some n ∈ � and λ ∈ J

then (A1) implies that λ is the n-th eigenvalue of (4).

With this enumeration the following minmax characterization of the eigenvalues
of the nonlinear eigenproblem (4) was proved in [19]:
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Theorem 1. Assume that the real equation (6) for every fixed x ∈ H \ {0}
has at most one solution λ = p(x) in J , the condition (7) is satisfied, and suppose
conditions (A1) and (A2). Then the following assertions hold:

(i) For every n ∈ � there is at most one n-th eigenvalue of problem (4) which can
be characterized by

(10) λn = min
V ∈Hn

V ∩D 6=∅

sup
v∈V ∩D

p(v).

The set of eigenvalues of (4) is at most countable.

(ii) If

(11) λn = inf
V ∈Hn

V ∩D 6=∅

sup
v∈V ∩D

p(v) ∈ J

for some n ∈ � then λn is the n-th eigenvalue of (4) and (10) holds, i.e. the
infimum is attained by some space V ∈ Hn.

(iii) If the m-th and n-th eigenvalues λm and λn exist in J and m < n then J for

every k = m, m + 1, . . . , n contains the k-th eigenvalue λk and

inf J < λm 6 λm+1 6 . . . 6 λn < sup J.

(iv) If λ1 ∈ J and λn ∈ J for some n ∈ � then every V ∈ Hj with V ∩ D 6= ∅
and λj = sup

u∈V ∩D
p(u) is contained in D, and the characterization (10) can be

replaced by

(12) λj = min
V ∈Hj
V1⊂D

max
v∈V1

p(v) j = 1, . . . , n.

The characterization of the eigenvalues in Theorem 1 is a generalization of the
minmax principle of Poincaré for linear eigenvalue problems.

In a similar way as in [19] we now generalize the maxmin characterization of
Courant, Fischer and Weyl to nonlinear and nonoverdamped eigenproblems. To this

end we need the following two lemmas.
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Lemma 2. Let

(13) νV (λ) := max
v∈V ⊥1

〈T (λ)v, v〉 = 0

where V is a finite dimensional subspace of H , and

V ⊥1 := {w ∈ H : 〈v, w〉 = 0 for every v ∈ V, ‖w‖ = 1}.

Then

(14) V ⊥ ∩D 6= ∅ and λ = min
v∈V ⊥∩D

p(v).

���������
. There exists u ∈ V ⊥1 such that

〈T (λ)v, v〉 6 〈T (λ)u, u〉 = 0 for every v ∈ V ⊥1 .

Hence u ∈ D with p(u) = λ, and it follows from assumption (7) that

p(u) 6 p(v) for every v ∈ D ∩ V ⊥.

�

Lemma 3. Let λ ∈ J and let V be a finite dimensional subspace of H such that

V ⊥ ∩D 6= ∅. Then

(15) λ





<

=
>



 inf

v∈V ⊥∩D
p(v) ⇐⇒ max

v∈V ⊥1
〈T (λ)v, v〉





<

=
>



 0.

���������
. Suppose that

λ = inf
v∈V ⊥∩D

p(v) ∈ J.

Let PV ⊥ denote the orthogonal projection ofH to V ⊥, and let S(λ) := PV ⊥T (λ)PV ⊥ .

Then S(λ) satisfies the conditions of Theorem 1 where its Rayleigh functional p̃ is
the restriction of p to V ⊥ ∩D. Hence there exists ṽ ∈ V ⊥ ∩D such that

p(ṽ) = min
v∈V ⊥∩D

p(v) = λ.

From
p(v) > p(ṽ) = λ for every v ∈ V ⊥ ∩D
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and from assumption (7) we get

(16) 〈T (λ)v, v〉 6 〈T (λ)ṽ, ṽ〉 = 0 for every v ∈ V ⊥ ∩D,

and

sup
v∈V ⊥1

〈T (λ)v, v〉 > 0.

Assume that

sup
v∈V ⊥1

〈T (λ)v, v〉 > 0.

Then there exists w ∈ V ⊥ such that 〈T (λ)w, w〉 > 0 and replacing w by −w we can

assume 〈T (λ)ṽ, w〉 > 0. Thus

〈T (λ)(ṽ + tw), ṽ + tw〉 = 2t〈T (λ)ṽ, w〉+ t2〈T (λ)w, w〉 > 0 for t > 0,

contradicting (16) and the fact that D is an open set. Hence we have proved

(17) λ = inf
v∈V ⊥∩D

p(v) ⇒ max
v∈V ⊥1

〈T (λ)v, v〉 = 0.

If conversely

〈T (λ)v, v〉 6 〈T (λ)ṽ, ṽ〉 = 0 for every v ∈ V ⊥

and some ṽ ∈ V ⊥ then it follows from Lemma 2 that V ⊥ ∩ D 6= ∅ and λ =
min

v∈V ⊥∩D
p(v). Thus

(18) λ = inf
v∈V ⊥∩D

p(v) ⇐⇒ max
v∈V ⊥1

〈T (λ)v, v〉 = 0.

If max
v∈V ⊥

〈T (λ)v, v〉 < 0 then

〈T (λ)v, v〉 < 0 for every v ∈ V ⊥.

Condition (7) implies

λ < p(v) for every v ∈ V ⊥ ∩D,

and (18) yields

λ < inf
v∈V ⊥∩D

p(v).

Finally, let
max
v∈V ⊥

〈T (λ)v, v〉 > 0.
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Then

〈T (λ)ṽ, ṽ〉 > 0 for some ṽ ∈ V ⊥.

If λ < inf
v∈V ⊥∩D

p(v) then λ < p(u) for some u ∈ V ⊥ ∩D, and 〈T (λ)u, u〉 < 0. Let

w(t) := tu + (1− t)ṽ and g(t) := 〈T (λ)w(t), w(t)〉.

Then
g(0) = 〈T (λ)ṽ, ṽ〉 > 0 > g(1) = 〈T (λ)u, u〉,

and there exists t̃ ∈ (0, 1) such that g(t̃) = 0. Hence

w(t̃) ∈ V ⊥ ∩D and p(w(t̃)) = λ,

contradicting λ < inf
v∈V ⊥∩D

p(v). �

We are now in the position to prove the generalization of the maxmin characteri-

zation of Courant, Fischer and Weyl.

Theorem 4. If the n-th eigenvalue λn ∈ J of problem (4) exists, then

(19) λn = max
V ∈Hn−1
V⊥∩D 6=∅

inf
v∈V ⊥∩D

p(v),

and the maximum is attained by W := span{u1, . . . , un−1} where uj denotes an

eigenvector corresponding to the j-largest eigenvalue µj(λn) of T (λn).
���������

. Since λn is the n-th eigenvalue of (4) the n largest eigenvalue of T (λn)
is µn(λn) = 0. By the maxmin characterization of Courant, Fischer and Weyl there
exists an (n− 1)-dimensional subspace W of H such that

µn(λn) = min
V ∈Hn−1

max
v∈V ⊥1

〈T (λn)v, v〉 = max
v∈W⊥

1

〈T (λn)v, v〉.

Hence W⊥ ∩D 6= ∅, and by Lemma 3

λn = inf
v∈W⊥∩D

p(v).

For V ∈ Hn−1 we have

max
v∈V ⊥1

〈T (λn)v, v〉 > 0

and again Lemma 3 yields

λn > inf
v∈V ⊥∩D

p(v).

That W is an invariant subspace corresponding to the n largest eigenvalues of T (λn)
is known from the linear theory. �
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3. A rational eigenvalue problem in fluid structure interaction

In this section we apply the variational characterizations to locate eigenvalues of
a rational eigenvalue problem governing free vibrations of a tube bundle immersed

in a slightly compressible fluid under the following simplifying assumptions: The
tubes are assumed to be rigid, assembled in parallel inside the fluid, and elastically

mounted in such a way that they can vibrate transversally, but they cannot move in
the direction perpendicular to their sections. The fluid is assumed to be contained

in a cavity which is infinitely long, and each tube is supported by an independent
system of springs (which simulates the specific elasticity of each tube). Due to these

assumptions, three-dimensional effects are neglected, and so the problem can be
studied in any transversal section of the cavity. Considering small vibrations of the

fluid (and the tubes) around the state of rest, it can also be assumed that the fluid
is irrotational.

Γ
Ω0

Ω3 Γ3

Ω1 Γ1 Ω2 Γ2

Ω5 Γ5Ω4 Γ4

Figure 1.

The mathematical model governing the eigenfrequencies and eigenmodes was de-
duced by Planchard, Conca and Vanninathan (cf. [11], [2]), and it reads as follows.

Let Ω ⊂ � 2 (the section of the cavity) be an open bounded set with locally Lipschitz
continuous boundary Γ. We assume that there exists a family Ωj 6= ∅, j = 1, . . . , K

(the sections of the tubes) of simply connected open sets such that Ωj ⊂ Ω for every j,
Ωj ∩ Ωi = ∅ for j 6= i, and each Ωj has a locally Lipschitz continuous boundary Γj .

With this notation we set Ω0 := Ω \
K⋃

j=1

Ωj . Then the boundary of Ω0 consists of

K + 1 connected components which are Γ and Γj , j = 1, . . . , K.

We denote by H1(Ω0) = {u ∈ L2(Ω0) : ∇u ∈ L2(Ω0)2} the standard Sobolev
space equipped with the usual scalar product. Then the eigenfrequencies and the
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eigenmodes of the fluid-solid structure are governed by the following variational

eigenvalue problem (cf. [11], [2]):

Find λ ∈ � and u ∈ H1(Ω0), u 6= 0 such that for every v ∈ H1(Ω0)

c2

∫

Ω0

∇u · ∇v dx = λ

∫

Ω0

uv dx +
K∑

j=1

λ%0

kj − λmj

∫

Γj

un ds ·
∫

Γj

vn ds.(20)

Here u is the potential of the velocity of the fluid, c denotes the speed of sound in
the fluid, %0 is the specific density of the fluid, kj represents the stiffness constant of

the spring system supporting tube j, mj is the mass per unit length of the tube j,
and n is the outward unit normal on the boundary of Ω0.

Obviously λ = 0 is an eigenvalue of (20) with an eigenfunction u = const. We
reduce the eigenproblem (20) to the space

H :=
{

u ∈ H1(Ω0) :
∫

Ω0

u(x) dx = 0
}

and consider the scalar product

〈u, v〉 :=
∫

Ω0

∇u(x) · ∇v(x) dx

on H which is known to define a norm on H which is equivalent to the norm induced
by (·, ·).
By the Lax-Milgram lemma the variational eigenvalue problem (20) is equivalent

to the nonlinear eigenvalue problem

Determine λ and u ∈ H, u 6= 0 such that

T (λ)u :=
(
−c2I + λA +

K∑

j=1

%0λ

kj − λmj
Bj

)
u = 0(21)

where the linear symmetric operators A and Bj are defined by

〈Au, v〉 :=
∫

Ω0

uv dx for every u, v ∈ H,(22)

〈Bju, v〉 :=
(∫

Γj

un ds

)
·
(∫

Γj

vn ds

)
for every u, v ∈ H.(23)

A is completely continuous by Rellich’s embedding theorem and w := Bju, j =
1, . . . , K, is the weak solution in H of the elliptic problem

∆w = 0 in Ω0,
∂

∂n
w = 0 on ∂Ω0 \ Γj ,

∂

∂n
w = n ·

∫

Γj

un ds on Γj .
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By the continuity of the trace the operator Bj is continuous, and since the range

of Bj is twodimensional spanned by the solutions wi ∈ H of

∆wi = 0 in Ω0,
∂

∂n
w = 0 on ∂Ω0 \ Γj ,

∂

∂n
w = ni on Γj , i = 1, 2,

it is even completely continuous. Hence the general conditions of Section 2 are

satisfied.

Rayleigh functionals corresponding to problem (21) are defined by the real function

f(λ, u) := 〈T (λ)u, u〉(24)

= − c2

∫

Ω0

|∇u|2 dx + λ

∫

Ω0

u2 dx +
K∑

j=1

%0λ

kj − λmj

∣∣∣∣
∫

Γj

un ds

∣∣∣∣
2

.

Since

(25)
∂

∂λ
f(λ, u) =

∫

Ω0

u2 dx +
K∑

j=1

%0kj

(kj − λmj)2

∣∣∣∣
∫

Γj

un ds

∣∣∣∣
2

> 0

there exists a Rayleigh functional corresponding to the eigenvalue problem (21) for

every interval J ⊂ � such that kj/mj 6∈ J for j = 1, . . . , K, and the results of
Section 2 apply. Hence the rational eigenproblem (21) has (at most) a countable set

of eigenvalues.

In particular, we consider the intervals

J1 :=
(
−∞, min

j=1,...,K

kj

mj

)
and J2 :=

(
max

j=1,...,K

kj

mj
,∞

)
,

and comparing the nonlinear problem with the linear eigenproblem

Determine λ and u ∈ H, u 6= 0 such that

c2

∫

Ω0

∇u · ∇v dx = µ

∫

Ω0

uv dx for every v ∈ H(26)

(which is obtained from (20) by neglecting the rational terms) we prove inclusion

results for the eigenvalues of (20) in these intervals.

We denote the Rayleigh functionals of problem (21) corresponding to J1 and J2

by p1 and p2 and their domains of definition by D1 and D2, respectively.
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Lemma 5. For u ∈ H , u 6= 0 let

R(u) := c2

∫

Ω0

|∇u|2 dx
/ ∫

Ω0

u2 dx

be the Rayleigh quotient of the linear eigenvalue problem (26). Then:

(i) If R(u) ∈ J1 then u ∈ D1 and

p1(u) 6 R(u).

(ii) If R(u) ∈ J2 then u ∈ D2 and

p2(u) > R(u).

���������
. If R(u) < min

j=1,...,K
kj/mj then

f(R(u), u) =
K∑

j=1

%0R(u)
kj −R(u)mj

∣∣∣∣
∫

Γj

un ds

∣∣∣∣
2

> 0

and

f(0, u) = −c2

∫

Ω0

|∇u|2 dx < 0.

Hence, u ∈ D1 and p1(u) 6 R(u).
Similarly for R(u) > max

j=1,...,K
kj/mj we have

f(R(u), u) =
K∑

j=1

%0R(u)
kj −R(u)mj

∣∣∣∣
∫

Γj

un ds

∣∣∣∣
2

6 0

and

lim
λ→∞

f(λ, u) = −c2

∫

Ω0

|∇u|2 dx−
K∑

j=1

%0

mj

∣∣∣∣
∫

Γj

un ds

∣∣∣∣
2

+ lim
λ→∞

(
λ

∫

Ω0

u2 dx

)
→∞,

and therefore u ∈ D2 and p2(u) > R(u). �

For the lower part of the spectrum of problem (20) we obtain the following exis-
tence result and bounds.
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Theorem 6. Let

(27) µr := min
V ∈Hr

max
u∈V0

R(u) < min
j=1...,K

kj

mj
.

Then there are (at least) r eigenvalues λ1 6 λ2 6 . . . 6 λr of the nonlinear eigenvalue

problem (21) in J1 and

(28) 0 < λj 6 µj , j = 1, . . . , r.

���������
. From p1(u) > 0 for every u ∈ D1 we get inf

u∈D1
p1(u) ∈ J1. Hence we

obtain the existence of r eigenvalues λ1 6 . . . 6 λr from Theorem 1 (iv) provided

(29) inf
dim V =r
V ∩D1 6=∅

sup
u∈V ∩D

p1(u) ∈ J1.

Let
µr = min

V ∈Hj

max
u∈V0

R(u) = max
u∈W0

R(u), dim W = r.

Then

R(u) 6 µr < min
kj

mj
for every u ∈ W0,

and Lemma 5 implies W0 ⊂ D1 and p1(u) 6 R(u) < sup J1 for every u ∈ W0. In

particular, (29) holds.
Moreover, Lemma 5 yields

λj = min
V ∈Hj
V0⊂D

max
u∈V0

p1(u) 6 min
V ∈Hj
V0⊂D

max
u∈V0

R(u) 6 min
V ∈Hj

max
u∈V0

R(u) = µj for j = 1, . . . , r.

�

The following theorem contains bounds for eigenvalues in the upper part of the

spectrum of problem (20).

Theorem 7. Let

(30) µs := min
V ∈Hs

max
u∈V0

R(u) > max
j=1...,K

kj

mj
.

Then the s-th eigenvalue λs of the nonlinear eigenvalue problem (21) exists in J2

and

(31) µs 6 λs 6 µs+2K .
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���������
. For V ∈ Hs let u ∈ V be such that R(u) = max

v∈V0
R(v). Then

R(u) > min
W∈Hs

max
w∈W0

R(w) = µs > max
j=1...,K

kj

mj
.

Hence by Lemma 5 (ii) u ∈ D2, i.e. V ∩D2 6= ∅ for every V ∈ Hs, and p2(u) > R(u)
from which we obtain

max
v∈V ∩D2

p2(v) > p2(u) > R(u) = max
v∈V0

R(v).

Thus
inf

W∈Hs

max
v∈W∩D2

p2(v) > inf
W∈Hs

max
v∈W0

R(v) = µs.

The upper bound µs+2K of λs is obtained from Theorem 4. Let u1, . . . , us−1

be eigenvectors corresponding to the s − 1 largest eigenvalues of T (λn), and
denote by v2j−1, v2j a basis of the range of Bj for j = 1, . . . , K. Let W :=
span{u1, . . . , us−1, v1, . . . , v2K} and W̃ := span{u1, . . . , us−1}. Then the Rayleigh
quotient R and the Rayleigh functional p2 coincide on W , and the maxmin charac-

terization of Courant, Fischer and Weyl yields

µs+2K = max
V ∈Hs+2K−1

min
v∈V ⊥1

R(v) > min
v∈W⊥

1

R(v) = min
v∈W⊥

1

p2(v) > min
v∈W̃⊥

1

p2(v) = λs.

�

Conca, Planchard and Vanninathan [2] proved that the nonlinear eigenvalue prob-
lem (20) has a countable set of eigenvalues using methods from linear functional

analysis. To this end they transformed the rational eigenvalue problem to a lin-
ear compact eigenproblem on a Hilbert space which is nonselfadjoint, but can be

symmetrized easily. The existence of countably many eigenvalues of problem (20)
follows from Theorem 7 as well, since the linear eigenproblem (26) clearly has count-

ably many eigenvalues.
Moreover, they proved an inclusion theorem for the eigenvalues. In addition to

the comparison problem (26) they considered the rational eigenproblem

Find θ ∈ � , θ > 0 and u ∈ H, u 6= 0 such that
∫

Ω0

∇u · ∇v dx =
K∑

j=1

%0θ

kj − θmj

∫

Γj

un ds ·
∫

Γj

vn ds for every v ∈ H(32)

which corresponds to the vibrations of the fluid-solid structure when the fluid is
assumed to be incompressible. This problem was studied by Planchard [11] who

proved that there exist 2K eigenvalues θj satisfying 0 < θj < max
j

kj/mj .
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Theorem 8 (Conca, Planchard, Vanninathan [2]). Let 0 < σ1 6 σ2 6 . . . denote

the union of eigenvalues µj of problem (26) and θj of problem (32) ordered by
magnitude and regarding their multiplicity, and let 0 < λ′1 6 λ′2 6 . . . be the

eigenvalues of the rational eigenproblem (20) ordered in the natural way. Then the

following interlacing inequalities hold:

λ′j 6 σj+2K for j = 1, . . . , 2K,(33)

σj−2K 6 λ′j 6 σj+2K for j > 2K + 1.(34)

Since the enumerations of the eigenvalues in Theorems 6 and 7 on the one hand

and in Theorem 8 on the other hand are different the bounds do not compare directly.

However, since problem (32) has exactly 2K eigenvalues, it is obvious that µj 6
σj+2K , and therefore the upper bounds given in Theorem 6 for λ1, . . . , λr are tighter

than those given in Theorem 8. Moreover, it follows from θj < k/m := max
j

kj/mj

for j = 1, . . . , 2K that no eigenvalue of problem (32) appears in
(
k/m,∞

)
. Hence,

although counted in different ways, the upper bounds in Theorem 7 and in (34) are
identical, but the lower bounds µj improve the ones in (34).
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