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Abstract. We prove the existence of weak T-periodic solutions for a nonlinear mathe
matical model associated with suspension bridges. Under further assumptions a regularity 
result is also given. 
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1. INTRODUCTION 

The purpose of this paper is the investigation of a nonlinear mathematical model 
associated with suspension bridges. 

In the following we consider the model of a one-dimensional suspension bridge 
which consists of a vibrating beam (the roadbed) with hinged ends, coupled with a 
vibrating string (the main cable) by the stays treated as nonlinear springs. 

The beam is subject to three separate forces: the one due to the stays, which hold 
it up as nonlinear springs, the weight per unit length of the beam which pushes it 
down, and the external forcing term which we will assume to be periodic. The main 
cable is subject to the action of the stays which pull it down as nonlinear springs, to 
the weight per unit length of the cable which pushes it down, and to some oscillatory 
forcing term which might be due to the wind or to motions in the towers or side-spans 
(see Fig. 1). 

We do not take into account the other two dimensions because the proportions of 
the bridge in these dimensions are very small in comparison with its length and so 
can be omitted. 
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(a) 

The main cable represented by a vibrating string 

(Ь) 

Noninear springs 
(cable stays) 

The roadbed represented by a vixatjng beam with hinged ends 

Figure 1. (a) The main ingredients in a one-dimensional suspension bridge 
(b) A model of the one-dimensional bridge represented by the coupling of the cable 
(a vibrating string) and the roadbed (a vibrating beam) by the stays, treated as 
nonlinear springs. 

Before formulating exactly the problem we will work on, we would like to present a 

model which was introduced firstly in the work of A. C. Lazer and P. J. McKenna [6], 

but has been studied under rather restrictive assumptions. So, if v(x, t) measures 

the displacement from equilibrium of the vibrating string and u(x,t) denotes the 

displacement of the beam in the downward direction at position x and time t, then 

a damped model of a suspension bridge is given by the system of two connected 

equations in the form 

( ì . i ) 

(1.2) 

rnivtt - cь\vxx + b\vt - k(u - v)+ = Wi(x) + єfi(x, t), 

m2utt + a2uxxxx + b2щ + k(u - vү = W2(x) + єf2(x, t) 

with the boundary conditions 

(1.3) u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = v(0, t) = v(L, t)=0 

and the periodicity condition 

(1.4) v(x,t + T) = v(x,t), u(x,t + T) = u(x,t), xe(0,L), teU, T > 0. 
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The parameters used in the equations (1.1), (1.2), (1.3) are the following: 

rai = mass per unit length of the main cable; 

ra2 = mass per unit length of the roadbed; 

a\ = the tension in the main cable; 

a,2 = EI where E is Young's modulus and I is the moment of inertia of the cross 

section; 

h, 62 = damping coefficients; 

k = stiffness of the cable stays (spring constant); 

W\ = weight of the main cable per unit length; 

W2 = weight of the roadbed per unit length; 

e/i- eh — external time-periodic forcing terms; 

L = length of the center-span of the bridge. 

The mass per unit length of the main cable, rai, is much less than the mass per 
unit length of the roadbed, ra2. 

The nonlinear cable stays connecting the beam and the string can be taken as 
one-sided springs obeying Hooke's law, with a restoring force proportional to the 
displacement if they are stretched, and with no restoring force if they are compressed. 
This fact is described by the nonlinear term k(u — v) + . 

The nonlinear stays pull the cable down, hence we have the minus sign at k(u—v)+ 

in the equation (1.1), and hold the roadbed up, therefore we consider the plus sign 
at the same term in the equation (1.2). 

Using a previous result due to P. Drabek [3], G. Tajcova [10] proved the existence 
of a unique solution of the problem (1.1)—(1.4) (with T = 2TI) by using the Banach 
contraction principle. The disadvantage of this principle consists in the fact that its 
application requires a rather restrictive assumption on the parameters fc, rai, 7712, 61, 
62, E, I,T and the conditions obtained are too restrictive and are not satisfied by the 
real values of the bridge parameters. P. Drabek, H. Leinfelder and G. Tajcova [4] 
have established the existence of a unique time-periodic solution near stationary 
equilibrium under rather general assumptions on the above mentioned parameters, 
provided the external time-periodic forcing terms are small in a certain sense. 

For a good survey of the literature dedicated to various mathematical models of 
suspension bridges we mention the papers of P. J. McKenna and W. Walter [7], [8], 
Q.-H. Choi and T. Jung [2], J.M. Ball [1], N. Krylova [5]. 
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2 . PRELIMINARIES 

We now introduce some well known function spaces and some notation. 
Let Q = (0, L) x (0, T), where L > 0 is the natural length of the beam and T > 0 

is fixed. We denote ^-derivatives by primes or upper indices, e.g. 

» < ) - < ) - . £ < ) = (><«> etc. 

and for ^-derivatives we use dots 

! < > = < ' > • 

If a function / is of the type / = [/i, / 2 , . . . , / n ] * , then we denote / = (/ ,) , without 
indicating the range of j ' s if no confusion is possible. 

Constants are denoted generically by C{ (i = 1,2,...). 
For simplicity, the spaces of scalar functions defined on the interval (0, L) will be 

denoted by dropping the reference to the interval, e.g. 

L2 = L2(0,L); H%=H%(Q,L); H2 n Hr] = H2(0,L) n Hd(0,L). 

The duality in L2 will be denoted by (•,•). Let H = {u G H4; u , u " G r T 2 f l ^ } . 
Note that H2 D Ho is a Hilbert space isomorphic to L2 with the scalar product 
(/?g)//2n//1 — (/">g")L2- F° r general information on Sobolev spaces see [11]. 

Let X be a Banach space with a norm || • ||x« A function / defined a.e. on IR, with 
values in K, is called T-periodic if the following holds: if / is defined for t G IR, it is 
also defined for t + kT, k G Z, and f(t) = f(t + kT). 

In the usual way, if X and Y are Banach spaces, then let X x y be the Banach 
space with the norm | H | * x y = (IMIx + IMIy)1/2 where w = [v,ti]* and | | - | |x, ||-||y 
denote the X-norm and y-norm, respectively. 

If X and y are Hilbert spaces, then the scalar product of two elements w = [v, u]1 

and w = [v,uY in K x Y is written as (iD,iv)xxy = (v,v)x + (u,w)y where (•, -)x, 
(•, )y denote the scalar products on K and Y, respectively. 

Lemma 1. Let X and Y be Banach spaces, M: X -> Y an isomorphism and 
S: X -> y a compact mapping. If the operator L: X->Y,L = M + Sisan 
injection, then L is an isomorphism. 

P r o o f . Let us introduce the operator T: X -> X, T = M - 1 o S. Since T is 
compact and the operators L = M-\-S = Mo (I + T) and M _ 1 are injective, we 
have that J -f T is an isomorphism. • 
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3. MAIN RESULTS 

We consider a more general model of a suspension bridge 

(3.1) mivtt - a\vxx + hvt - <p(u -v) = W\(x) + efi(x,t), 

(3.2) m2utt + a2uxxxx + b2ut + <p(u -v) = W2(x) + ef2(x, t) 

with the boundary conditions 

(3.3) u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = v(0, t) = v(L, t)=0 

and the periodicity condition 

(3.4) v(x,t + T) = v(x,t), u(x,t + T) = u(x,t), xe(0,L), t e U, T > 0. 

The time T is a positive number, bearing no relation to the length of the x-interval. 
The present paper is based on the technique of L. Sanchez's work [9]. 

Under suitable hypothesis on W\, W2, f\ and f2 we can show that weak solutions 
of (3.1)-(3.4) exist, by using a combination of Galerkin's method and a compactness 
argument with a version of the Leray-Schauder principle. 

Introducing the vector functions 

W(x) 
W!(X) 

W2{x)\ 
, f(x,t) = 

h(x,t) 
/2(X,ť)J 

we consider in this section the problem (3.1)-(3.4) with the functions <p, W and / 
satisfying the following hypotheses: 

(HI) <p is a continuous function on the real line such that 

ip(u)u ^ 0 , Viz G R 

and <p has polynomial growth at infinity, i.e. there exist two numbers C > 0 
and p ^ 1 such that 

\<p(u)\^C(\u\p + l), VuG U; 

(H2) W£L2x L2; 

(H3) / G L2(T;L2) x L2(T;L2) - L2(Q) x L2(Q), Q = (0,L) x (0,T). 

R e m a r k 1. Of course, the condition (HI) is satisfied for <p: U -> R+, ip(u) = 
ku+, k>0. 
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Definition 1. A weak solution of (3.1)-(3.4) is a mapping 

w = [v,u]1 e L2(T;Hl) x L2(T;H2nH%) 

having a derivative w = [v,^]1 G L2(T;L2) x L2(T;L2) such that, for any function 
6 = [g^Y satisfying the same requirements, we have 

(3.5) - m i / (v,g)dt + ax / (v',g')dt + bi / (i),g)dt- / / tp(u - v)gdxdt 
Jo Jo Jo JJQ 

= If Wigdxdt + e ff figdxdt, 

(3.6) -m2 I (ii,ip) dt + a2 f (u'\ij)") dt + b2 [ (ii,i/>) dt + ff <p(u - v)t/>dxdt 
Jo Jo Jo JJQ 

= ff W2ipdxdt + e ff f2i/)dxdt. 

R e m a r k 2. We note that the fourth term in (3.5) makes sense because u,v € 
HX(Q) and the imbedding HX(Q) -̂> Lq(Q) is compact for all 1 -̂  q < oo. The same 
holds for the fourth term in (3.6). 

Theorem 2. Under the assumptions (HI), (H2) and (H3), the problem (3.1)-
(3.4) has a weak solution w = [v,uf e L°°(T;H£) X L°°(T;H2 n H%) such that 

w = [0,11]' e L°°(T;L2) x L°°(T;L2). 

P r o o f . Step 1. We use the Galerkin approximative procedure. Let 

. T I T Z . „ rt . 
u)n = sm —x (n = 1,2,...) 

L 

be an orthogonal basis for HQ, H2 C\HQ and L2 ([1], Lemma 2). 
We search the n-th approximation 

wn(t) = [vn(t),un(t)Y (n = l,2,...) 

which satisfies the system of equations 

(3.7) mi(vn,u)j) + ai^uj'j) + bi(vn,ujj) - (<p(un - vn),u)j), 

= (Wi,u)j) + e(fi,u)j), l^j^n, 

(3.8) m^u^ujj) + a2(un,u)") + b2(un,ujj) + (<p(un - vn),ujj) 

= (W2,ujj)+e(f2,u)j), l^j^n 
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and the periodicity conditions 

(3.9) i7n(a?,0) = vn(x,T), vn(x,0) = vn(x,T), 

(3.10) un(x,0) = un(x,T), un(x,0) = un(x,T). 

Some estimates of these approximations wn(t) enable us to establish the conver
gence (in a certain sense) of a convenient subsequence of {wn (*)}£== 1 to a weak 
solution of our problem (3.1)-(3.4). 

We define approximations wn(t) = [vn(t), un(t)Y of the form 

(3.11) vn(t)= Y^УUĄШІ, 
i=l 

n 

(3.12) u..(t)= 53Ą„(Í)W. 
І=I 

where yin(t), Zin(t) are real-valued functions. Inserting the expression (3.11) in (3.7) 
and (3.12) in (3.8), we obtain a system of ordinary differential equations 

2 

(3.13) rniyjn(t) + ai—j2yjn(t) + hyjn(t) - ((f(un - vn),uj5) 

= £ij+efij(t), l^j^n, 
4 

(3.14) m2Zjn(t) + a2—j4zjn(t) + b2zjn(t) + (<p(un - vn),Uj) 

= &j+ef2j(t), l^j^n 

where & = (WULJJ) G R and f{j(t) = (fi(t),Uj) G L2(0,T), i = 1,2. 
Next, we show that the system of nonlinear ordinary differential equations (3.13), 

(3.14) has a solution 

Xn(t) = [(yjn(t)),(zjn(t))Y 

such that 

(3-15) yiw(0) = yjn(T), yjn(0) = yjn(T), 

(3.16) z in(0) = zjn(T), zjn(0) = zjn(T) 

for all j = l , . . . , n . 

Step 2. Existence of the Galerkin approximations. 
Let H\ be the closed subspace of H2(0, T) consisting of functions / which satisfy 

the boundary conditions 

no) = nn /(o) = /(r). 
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We consider the linear and bounded mapping 

L: (Hf,)n x (HTT -> (L2(0,T))n x (L2(0,T))n 

defined by 

Lxn = 
{miyjn + aij?j2yjn + biyjn) 

. {m2zjn + a2fsj4zjn + &2iin) 

Computing the scalar product of Lxn = 0 with ,z:n, we get 

(3.17) - m ^ í ^ d í + a * W f y ^ à t - m ^ f ż) 
j=1Jo ^ j=1Jo j=1Jo 

,dt 

+ a2 

тг4 n ľ1 

A 2 „ d í = 0. 

Now, we multiply Lxn = 0 by xn and integrate over (0,T). We obtain 

rT n -71 

(3.18) & i É / y)ndt + b2jr[ i?ndí = o. 

By (3.17) and (3.18) we obtain xn = 0. 
Thus L is an injection and we conclude, by virtue of Lemma 1, that L is an 

isomorphism from (H%)n x (H%)n o n t o (L 2 (0,T)) n x (L 2 (0,T)) n because it is the 
sum of an isomorphism between (H%)n x ( H 2 ) n and (L 2 (0,T)) n x (L 2 (0,T)) n with 
a compact linear mapping. 

Next, we consider the mapping 

H: (Щ)n x (Щ)n -> (X 2(0,T))n x (L 2 (0,T)) n 

defined by 

Hxn = 
(-(<p(jL(Zin(t) -J/.n(ť))Wi),Wj)) 

( ( v ( Ž ( ^ n ( í ) - t t n ( . ) V . ) , W i ) ) 

Because the mapping <D is continuous and the imbedding H1(Q) —> Lq(Q) (1 ^ 
q < oo) is compact, H is a continuous, compact mapping from (H^)n x (Hj)n to 
( L 2 ( 0 , T ) ) n x (L 2 (0,T)) n . 

Now, writing £n = [(&,•), (&,-)]' and / n ( t ) = K/i iWMAiW)]*, the prob
lem (3.13), (3.14), (3.15), (3.16) coincides with 

(3.19) 
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By a version of the Leray-Schauder principle the existence of solutions for (3.19) 
will be a consequence of the boundedness in (Hj)n x (H^)n of all possible solutions 
of 

(3.20) Lxn + XHxn =£n + efn 

with 0 ̂  A < 1, which we now prove. 
We compute the scalar product of (3.20) with xn which yields 

n -T n *T rT 

(3.21) 6_ V / y2
jn dt + b2J2 *fr dt + A / ( ^ K - vn), iin - vn) dt 

j=l J° j=l J° J° 
n pT n -T 

= Yl &i / ^n dt + J2 6i / *i» d* 
i=i 7 o j=i Jo 

n -T n r 

Yll hjVjndt + e ^ 
3=1 J° 4=1 J° 

If we denote by G a primitive of <̂>, then we have 

rL 

M 
d Г 

un - vn), ûn - vn)) = — / G(un - vn) dя. 

Since 
.-/-

(E /̂yW ŷ̂ V?11^11 
L2(Q)> г — !^2? 

we have by (3.21): 

n ..71 n -71 

(3.22) 6 ^ / &<-* + & - £ ! ^indí 
i= i -!0 j=i -l0 

< y^ [VŤII^IU, (f_ J%)n dí)1/2 + >/ř|| wa||ia ( £ [ i|„ dt) 

+*u/iiu*(Q)(E/o y%át) +^ii/-iu-w)(Ey0 *'»dtJ 

Then, we have by (3.22): 

n rT x1/2 / n rT x1/2 
/ n ri \ i /^ / n rT x1 

(3.23, ( g / *}.*) + (g / **) 
< oi(VŤ||W||t2xi/2 + £ | | / | | t 2 ( Q ) x L 2 ( Q ) ) ) 

(3.24) ||i»||fj;»(o,D)-x(i;-(ofD)- < <?-(>l-WIU-xL- + e||/IU-(Q)xt-(Q))2-
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From (3.20) multiplied by xn we obtain 

2 n rT A n rT 

-_.»<-* (3-25) °^Ej [ ^ d ť + a 2 i í E / ťů 

+ A / (y?(wn - vn), un - vn) át 
Jo 
n rT n ~T n -T 

= rm^2 ý2jn^ + m2^2 žind* + 5 Z í i i / »i»dt 
i = 1Jo j=lJo j=1 Jo 
n ~T n -T n -T 

+ $Z& / z^át+£J2 fuvi*át+e^2 h&nát 

j=l Jo
 j=iJo j=iJo 

If we denote a = min{ai^,a2^t}, we have by (3.24) and (3.25): 

n «T n ?T 

W fy%dt + Y,l jS2»dí 
í = i •'o i = 1 -!0 

< - ^ ( ^ I I ^ I I L - X L » +e||/||L2(Q)xL2(Q))2 

^У|(VГ||W|U-XL-+ÍІI/IІL-W)XL»«И) 
n fт Ч1!2 / n ľт \^' 

g/»И +(gb2-dí) 
, n fT v 1/2 , n T \ l / 2 

(3.26, (g/ft^) + (g/^') 
^C3(VŤ||W||L2 xL2+£||/ | |L2(Q)xL2 (g )). 

In particular, 

/ n - T v 1/2 / n - T \ l / 2 

(3.27, (g/.**) + (gj[**) 
< o8(VfW|U-xL- +e||/IU-(0)xL-«j)), 

(3.28) ||a;„||2L2(0)T))nx(L2(o,r))» < ol(^II^IU-xL- + e||/IU*(Q)xL*(Q))2 

(3.29) J2fTřy%dt + J2ÍTřz%át 
i=X J° 3=1 J° 

< C4(>/5WIU-xL- +£||/IU*(Q)xL>(Q))2. 
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By (3.24) and (3.28) we have 

(3.30) \\wn\\HHQ)xHHQ) ^ <?5 (VT\\W\\L2XL2 + C||/||L»(Q)XL»(Q)) 

Computing the scalar product of (3.20) with x n , we get 

n rT n tT 

- vn) dt (3.31) miУ^ ÿ2
jndt + m2Y] ŕjnåt + \l {(f(un-vn),ün-vn 

JҐiJo J=lJo Jo 

= ̂ ţÍLľ^%àt + a,ţ± ГЃ dt + Źbi Гvjndt 
L ţҐiJo L

 j=1Jo j=1 Jo 

+ 5ľ&i / żjndt + єУ\ \ fuÿjndt + єУ^ / 
ìťi. Jo j=1Jo j=1Jo 

n ЃT 
f2jZjndt. 

Let 

$i(*) = ( v K - Vn)>Wj), l^j^n. 

Using (3.30) and the imbedding HX(Q) ^ L2(Q) we have 

| |*illL2(0,T) ^ C 6 (v / T| |PV | |L2xL2 + e | | / | | L 2 ( Q ) x L 2 ( Q ) ) P . 

Then we obtain by (3.31): 

/ n rT \ l / 2 , n T \ l / 2 

<w> (g/0«"d i) +(£/.«•*) 
^ C7(n)(V/T||KV||L2XL2 +£ | | / | |L2(Q)XL2(Q)) P 

and 

(3.33) ||xn||2L2(o,T))»x(L2(o,T))n ^ ^(^(v^lllV l lLaxL2 +£||/||L2(Q)xL2(Q))
2P 

where Cj(n) is a constant depending on n. 
The estimates (3.24), (3.28) and (3.33) show that 

\\xn\\(H*)nx(H*)n — (llXn|| (L
2(0 ,T))»x(L2(0 ,T))« + H^nH^O/T))» x(L2(0,T))" 

^n||(L
2(0,T))»x(L2(0,T))« + Pn||(L2(0,T))»xŕL2Г0,T))«) 

is bounded for all possible solutions of (3.20) and this implies that (3.19) has a 
solution. 
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Step 3. Estimates on the Galerkin approximations. 
T л4-

ьet 

wn(x,t) = 

n 

£ Уjn(t)uj 
j=l 

n 
£ Zjn(t)u)j 

-•i=l -1 

be the solution of the system (3.7)-(3.10) where the yjn(t), Zjn(t), 1 ^ j ^ n 
satisfy (3.13)-(3.16) and the estimates we have just found. 

We obtain from (3.24), (3.29): 

(3-34) ll^rx||Z,2(T;//i)xL/2(-;__f2n__/i) + | | ^ n | | L 2 ( T ; L 2 ) x L 2 ( T ; L 2 ) 

^ C 8 ( ^ | | K V | | L 2 x L 2 + £ | | / | | L 2 ( Q ) x L 2 ( Q ) ) 2 . 

From (3.34) it follows that there exists tn e [0, T], such that 

(3.35) ailK(*n)|l!/i + mtWvnitn) \\2
L2 + a 2 |K(<n) | |^ 2 n H i 2 _L ™ ||„\ (* M|2 , „ ||„, u M|2 

2e~\ u _ 

n 
+ m2||ú„(ť„)||_2 < -£. 

T 

On the other hand, as un, vn satisfy (3.7), (3.8), respectively, we have 

(3.36) 2 d t ( m i H ^ H i 2 + ailKHB0
1) + &ilKHi2 - (v(un-vn),vn) 

= (W1,vn)+e(f1,vn), 

(3.37) - ^ ( m 2 | | w n | | i 2 +a 2 | | u n | | ^ 2 n / / i ) +b 2 | |u n | l i 2 + (<p{un -vn),un) 

= (W2,un)+e(f2,un). 

Integrating the equalities (3.36) and (3.37) over any subinterval (tn,t) or (t,tn) of 
(0, T) and using (3.34) and (3.35) we get 

(3.38) mi||i>n(t)||_2 + a i | K ( í ) | | ^ i < Cio, 

(3.39) ma | |ttn(t)||_- + a2\\un{ť)\\\2nHl < Cu. 

Then, by (3.38), (3.39), we have 

(3.40) llWn||Loo(T;i/0
1)xL~(T;//2n//1) + H^nllL00(T;L2)xL00(T;L2) ^ ^12-

Step 4- Convergence of the Galerkin approximations. 
The estimates (3.40), (3.30) imply that 

{wn} is bounded in L°°(T; H1) x L°°(T; H2 n H*); 
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{wn} is bounded in L°°(T;L2) x L°°(T;L2); 

{wn} is bounded in Hl(Q) x HX(Q). 

Thus, by virtue of Lemma 4 of [1] and using the classical diagonal procedure, we 
can extract a subsequence {wm} of {wn} with the properties 

wm -> w = [v, u]T in L°°(T; Hx) x L°°(T; H2 n H&) weak*; 

wm -> w = [v,u]T in L°°(T;L2) x L°°(T;L2) weak*. 

Furthermore, the injection H1 (Q) <-+ L2(Q) is compact and as wm —> w in L2(Q) x 
L2(Q) weak*, it follows that 

wm -+ w = [v,uY in L2(Q) x L2(Q) strongly and a.e. 

Now, let 0 = [Q, if)]1 be any function of the form 

(x, t) = 
Q(X, t) 

ф(x,t) 

r IV 

E Qi(t)ui(x) 
i = i 

£ Mt)t»i(x) 
• " - = 1 

where ^i(t), i)i(t), 1 ^ i ^ N, are continous, T-periodic functions with L2(0,T)-

derivatives Qi(t), ipi(t), respectively. 

By construction, for m ^ N we have 

-mi (vm, Q) dt + ai (vm, Q') dt + bJ (t)m, Q)dt- (p(um - vm)Qdxdt 
Jo Jo Jo JJQ 

= 11 WxQdxdt + e II fxQdxdt, 

-m2 (um,ip)dt + a2 (u'^,ip")dt + b2 (um,tp)dt+(p(um-vm)^dxdt 
Jo Jo Jo JJQ 

= / / W2ipdxdt + € [J Mdxdt 

and this implies that the equations (3.5), (3.6) hold for w = [v,u]1 and 9 = [Q,^]1 as 
above. 

By a density argument the last equalities imply that the equations (3.5), (3.6) 
hold for those 0's mentioned in Definition 1 as well. • 
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Theorem 3. In addition to the assumptions of Theorem 2, assume that f has a 

derivative f e L°°(T;L2) x L°°(T;L2) and that <p G C^R, R), its derivative being 

nonnegative and bounded. Then the problem (3.1)-(3.4) has a solution 

w = [v,uY € L°°(T;H2 n Ho1) x L°°(T;H), 

with 

w = [6,4]* 6 L°°(T;H£) x L°°(T;H2 nH^), W = [«,«]* <E L°°(T;L2) x L°°(T;L?) 

and (3.1)-(3.2) hoid a.e. on Q. 

P r o o f . We use the approximations wn(t) = [vn(0? Mn(*)]* (rc = 1- 2,. . .) whose 
existence has been shown in the preceding theorem. Now we differentiate (3.7) and 
(3.8) with respect to t to obtain 

(3.41) mi(vn,ujj) + ai(i)'n,uj'j) + bi(vn,ujj) - ((f'(un - vn)(iin -vn),ujj) 

= e(Ai<<>j)> l ^ j ^ n , 

(3.42) m2(un,ujj) + a2(un,uj") + b2(un,ujj) + (ip'(un - vn)(un - vn),ujj) 

= e(f2,ujj), l^j^n 

and it follows that 

2 

(3.43) mi'yjn(t) + ai—j2yjn(t) + biyjn(t) - (<p'(un - vn)(un - vn),uj3) 

= efij(t), l^j^n, 
.4 

(3.44) m2'zjn(t) + a2—j*zjn(t) + b2zjn(t) + (<p'(un - vn)(un - vn),w3) 

= ef2j(t), l^j^n, 

where f{j(t) = (&(*),»,) e L°°(0,T), i = 1,2. 
From (3.43) and (3.44) and the hypotheses of the theorem we deduce that 

*»(*) = [(¥;»(*)),fen(t))f 6 (H3(0,T))n x (ff3(0,T))n . 

Furthermore, 

(3.45) yjn(0) = yjn(T), l^j^n, 

(3.46) zjn(0) = zjn(T), l^j^n 

because of the periodicity of / and by (3.13) and (3.14). 

52 



Multiplying (3.41) by yjn and (3.42) by zjn, adding for j = 1 , . . . , n and integrating 
over (0,T), we have 

&i / / vndxdt= / / (p'(un-vn)(un-vn)vndxdt + £ fivndxdt, 

b2 / / undxdt = - / / <p'(un-vn)(un-vn)undxdt + e / / f2undxdt. 
JJQ JJQ JJQ 

Now, (3.34) and the hypothesis on <p and / imply 

(3.47) ll^n||L2 ( T ; L2 ) x L2 ( T ; L2) ^ C13, 

where C13 denotes a constant which does not depend on n. 
Multiplying now (3.41) by yjn and (3.42) by i j n , adding for j = l , . . . , n and 

integrating over (0,T), we get 

- m i / / vndxdt + ai / / vndxdt= / / ip'(un - vn)(un - vn)vndxdt 
JJQ JJQ JJQ 

+ e fivndxdt, 

- m 2 / / iindxdt + a2 / / u'ndxdt= — ip'(un - vn)(un - vn)undxdt 
JJQ JJQ JJQ 

+ £ hundxdt. 

By the hypotheses on ip and / and the estimations (3.34) and (3.47), we deduce 
that 

(3.48) l l^n | | L 2 ( T ; H i ) x L 2 ( T .^2 n / / i ) ^ C14, 

where C i 4 denotes a constant which does not depend on n. 
Prom (3.47) and (3.48) it follows that there exists tn € [0,T] such that 

(3.49) oi||6»(«»)ll31ri + ™illM*»)llia ^ ^ , 

(3.50) a2\\un(tn)fH2nHlQ + m2 | |iin(tn)||2L2 ^ ^ . 

Multiply (3.41) by yjn and sum for j = 1 , . . . , n. It follows that 

(3.51) ^ ( m i l l ^ l ^ + a i l K l l ^ p + ^ R I ^ 

- ( v ' K - vn)(un - vn),vn) = e(fuvn). 
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Now, multiply (3.42) by zjn and sum for j = 1,... ,n . We have 

(3.52) l ^ ^ 2 " ^ ! ^ 2 + ^H^ll^n^x) +- 62||^||i2 

+ (</?'(̂ n -vn)(un -vn),un) =e(f2,un). 

Integrating the equalities (3.51) and (3.52) over any subinterval with endpoints 
tn, t e (0,T) (regardless of their order), and arguing as in the step 3 of the proof of 
Theorem 2, we obtain the estimate 

(3 .53) l l ^ | | L o o ( T ; / f i ) x L o o ( T ; H 2 n i / i ) + | |«In| |L^(r ;L
2)xL 0 0(T;L-) ^ £ l 7 -

On the other hand, the approximations wn(t) = [tIn(0>wn(0]* (n — 1»2>---) sat
isfy (3.7) and (3.8), so that 

(3.54) mivn - axv^ + hvn - Pn[<p(un(t) - vn(t))] = Pn[M7i + efx{t)], 

(3.55) m2un + a2u^ + b2iin + Pn[p(un(t) - vn(t))] = Pn[W2 + ef2(t)] 

where Pn denotes the orthogonal projection of L2 onto sp{a;i,... ,un}. 
Since by our hypotheses we have / G C([0,T];L2) x C([0,T];L2), the rela

tions (3.53), (3.54) and (3.55) imply 

(3.56) \\wn\\ - ^ C i « 
V } " n M L - ( T ; L f 2 n / / 1 ) x L - ( T ; / / ) ^ 1 8 

where C\% denotes a constant which does not depend on n. 
Now, on the basis of (3.53) and (3.56) we may extract from {wn} a subsequence 

converging to a function w as stated in the theorem. The last assertion is an imme
diate consequence of passing to the limit in (3.54) and (3.55). • 
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