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Abstract. Two-scale convergence is a special weak convergence used in homogenization 
theory. Besides the original definition by Nguetseng and Allaire two alternative definitions 
are introduced and compared. They enable us to weaken requirements on the admissibility 
of test functions t/)(x,y). Properties and examples are added. 
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1 . INTRODUCTION 

The aim of the paper is to survey two-scale convergence and introduce some al
ternative approaches to it. 

Two-scale convergence is a special kind of the weak convergence. It was developed 
for the homogenization theory in order to simplify the proofs. It overcomes difficulties 
resulting from properties of weakly converging sequences of periodic functions. In 
such sequences the weak limit does not keep the "information on oscillations" of 
the original functions. In some cases, the two-scale limit is able to conserve this 
information and thus, it makes limit procedures possible. It stands between the 
usual strong and weak convergences. 

The concept was first introduced by Nguetseng [18] and then developed by 
Allaire [1] in early 90's. In the definition of two-scale convergence, the special so-
called admissible test function is used. The widest set of these functions is not clear 
and thus it motivates alternative approaches. One of them is based on a two-scale 

* This work was supported by grant No. 201/03/0570 of the Grant Agency of the Czech 
Republic. 
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transform, which changes a sequence of one variable functions into a sequence of 

two-variable functions. This transform was used by authors in homogenization of 

some problems in porous media [5] and it is suitable for an alternative definition of 

the two-scale convergence, see also [12], [16], [10]. Another one is based on the so-

called inverse two-scale transform which defines a sequence of one-variable functions 

from the test function ip(x,y). This approach seems to be new. 

The paper is organized as follows. Section 2 contains a survey of the definitions 

used, while Section 3 compares them. In the two-scale transform approach, we men

tion the case of boundary cubes exceeding Q, which is usually neglected. Section 4 is 

devoted to the compactness property. Section 5 contains examples and some prop

erties of two-scale convergence. Section 6 refers to some generalizations. 

2 . DEFINITIONS 

Throughout the paper let Q be a bounded domain in UN with Lipschitz boundary 

and y = (0,1)N the unit cube (a basic period). We will use periodic functions: 

a function v is said to be y-periodic if v(y + k) = v(y), y G R^, k G 1N. If the 

function v has more variables, we say that it is y-periodic in y. Lebesgue spaces Lp 

are used with p G (l,oo) . The dual exponent is denoted by q = p/(p — 1). The 

symbol # is used for y-periodic functions, e.g. C#(Y) is the space of y-periodic 

functions v such that V\Y+VQ G C(Y + y0), Vr/0 G UN. Further, we will consider a 

sequence of positive parameters {£n} such that en -» 0 for n —> oo. As usual, the 

subscript n will be omitted. 

Let us begin with the classical definition by Nguetseng and Allaire which was 

introduced for the case of L2: 

Definition 2.1. We say that a sequence of functions {u£(x)} C LP(Q) two-scale 

converges to a limit u0(x,y) e LP(Q xY), if the relation 

(2.1) lim / uE(x)ip(x, -)dx = / / u0(x,y)ip(x,y) dxdy 
e^°Jn \ e/ JQJY 

holds for each ip(x, y) G Co°[^j C^(Y)] (the space of compactly supported infinitely 
differentiable functions with y-periodic values in C°°(UN)). If, in addition, 

lim 
є->0І 

uє(x) -u0(x, -) = 0, 
Lp(Q) 

we say that {u£} two-scale converges strongly to u0(x,y). 
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R e m a r k 2.2. In the vocabulary of homogenization the strong two-scale conver
gence is also called a corrector type result. Assumptions making two-scale conver
gence strong are discussed in Section 3 . Although {u£} is a sequence of N variables 
X\,..., xN , the limit is a function of 2N variables x\,..., XN , y\, • • •, 2//v • It enables 
us to describe the periodic behavior of u€ better. Usually it is not emphasized, but 
the definition is connected with a fixed sequence of periods en, i.e. for an extracted 
subsequence {u£>} we should consider the same extracted subsequence {e'} of periods 
in the test function, see examples in Section 5. 

Let us introduce an alternative definition. In [5], the authors dealt with a ho
mogenization technique which was used for the description of a porous media. It 
is suitable for an alternative approach to the two-scale convergence. The idea is 
based on the so-called two-scale transform which changes a sequence of one-variable 
functions {u£(x)} into a sequence of two-variable functions {u£(x,y)}. 

For each e let us consider small non-overlapping cubes C£ = eY + ek, k G IN. 
Here, for sake of simplicity, we restrict ourselves to the domains 0, that can be 
decomposed into these cubes, i.e. ft = \JC^. The sequence {u£(x,y)} is defined by 

k 
the relation 

(2.2) u£(x, y) = u£ (e [-] + ey) x e n, y eY, 

where [x] = k is the vector of the greatest integers k{ less than or equal to x\. On 
each cube C* x Y the function u£ is constant in the variable x and as a function of y 
it is the function u£(x) on CJ? transformed onto the unit cube Y. The alternative 
definition reads: 

Definition 2.3. We say that a sequence {u£} C LP(Q) two-scale converges to a 
function uo(x,y) G LP(Q x Y), if 

(2.3) lim / [u£(x,y)-uo(x,y)]*/j(x,y)dxdy = 0 

for every test function xjj G CQ°[U;C^>(Y)]. Moreover, if u£ -> u0 in LP(Q. x Y) 
strongly, we say that {u£} two-scale converges strongly. 

Let us refer here to the recent paper [12], where the above mentioned approach is 
also used and is called periodic unfolding. Authors apply this approach to the case 
of periodic multi-scale problems. 

The other alternative approach is based on the so-called inverse two-scale trans
form which makes a sequence {tjj£(x)} from a two-variable function ip(x,y). The 
functions tp£ are constructed as follows. Similarly, as in the previous transform, we 
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consider non-overlapping cubes C* that cover the domain Q, (here the domain Q, need 

not be the union of the cubes C*, i.e. Q C \JC^). Outside the domain Q we put 
k 

^p{x,y) = 0. Let us average the extended function ^p{x,y) with respect to the first 
variable: 

(2-4) Mx) = -pтfы1>{çĄ)àÇ, zЄC-; 

Definition 2.4. Let {u£} be a sequence in Lp{ft). We say that {u£} two-scale 
converges to a function u0 G LP{Q x Y), if 

lim / u£{x)$£{x)dx = I I u0{x,yty{x,y)dxdy 
£-+° JQ JQ JY 

for each test function ^{x,y) £ CQ°[H;C^>{Y)]. Moreover, if 

lim \\u£{x) - Mo(x)||Lp(n) = 0, 

we say that {u£} two-scale converges strongly. 

R e m a r k 2.5. The two-scale transform used in Definition 2,3 enables us to de

fine two-scale and strong two-scale convergence more naturally with help of weak 

convergence with smooth test functions. On the other hand, Definition 2.4 is similar 

to the classical definition by Nguetseng and Allaire, but it differs from (2.1) by the 

choice of the test function on the left-hand side. 

Why do we look for alternative approaches to the original one? In the definition 

we want to test the convergence with functions from a space as small as possible, 

thus, smooth functions are convenient. On the other hand, in applications the largest 

class is desirable. In Definition 2.1 we can not take the test function ^{x,y) from 

the whole space Lq{ft x Y), since it is not defined correctly on the zero-measure set 

{[x>2/]: V — x/e} a n ( ^ t n u s t n e measurability of the composed function ij){x,x/e) is 

not guaranteed. Moreover, the test functions must satisfy some convergence, which 

is not always obvious. The class of suitable test functions is discussed at the top of 

the following section. Such functions are called admissible. Further, we will see that 

the two mentioned alternative definitions avoid described problems. 
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3 . COMPARISON OF THE DEFINITIONS 

The main goal of this section is to prove equivalence of the definitions. It means 
that each of the definitions yields the same two-scale limits. 

First of all we proceed with the notion of admissible test function mentioned 
above. Since the widest set of suitable test functions V -s not clear (we do not 
know the minimal conditions making these functions regular enough), the following 
characterization is useful: 

Definition 3.1. A Y-periodic (in y) test function ^p(x,y) £ Lq(tt x Y) is said 
to be admissible, if 

(3-1) llSoIkO*' l ) LHW = \Mx'y^L9V*xY) 

and for a separable subspace X C Lq(Q xY) 

(3.2) IK**f)L(n)<|Mar' t f ) l |x' 
Let us emphasize that there exist y-periodic functions in y which do not satisfy the 
convergence (3.1) even if the measurability of the composed function ^(x,x/e) is 
guaranteed, see [1]. Allaire also showed (for p = 2) that spaces, e.g. C[il;C#(Y)], 
L2[tt; C#(Y)] or -^#[^5 C(Fl)], are made up from the admissible functions. All these 
spaces are separable and their elements are functions continuous at least in one 
variable. Such functions are Caratheodory, which is the sufficient condition for mea
surability of the composed function ^l)(x,x/e), and moreover, they satisfy (3.1) and 
(3.2). These two properties are needful in the proof of the compactness property, see 
Section 4. If \j) belongs to these spaces, we also have 

(3.3) lim ^p(x,—)dx= / ^p(x,y)dxdy; 
£^°Jn \ e/ JQJY 

for details, see [1]. This relation is natural: taking the stationary sequence {u£ = 1}, 
(2.1) and (3.3) yield the two-scale limit uo(x,y) = 1. 

In the alternative Definition 2.3 the situation is simplified. Due to the density of 
smooth functions in Lq, the convergence (2.3) implies also the weak convergence in 
LP(Q x Y), i.e. the space of test functions can be enlarged to the whole Lq(Q x Y). 

The special choice of the test function in Definition 2.4 is also motivated by the 
effort to enlarge the class of test functions. This choice is convenient due to the 
following lemma: 
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Lemma 3.2. Let xf) G Lq(Q xY) be a Y-periodic function and let i^£ be defined 

by (2.4). Then we have 

(3.4) ll^(aOIU«(n) < \\^(x,y)\\L<i(QxY), 

(3.5) lim \\$e(x)\\Li(n) = \\^(x,y)\\L^-xYy 

P r o o f . For e fixed, let us consider the minimal number of the cubes C* that 

cover the domain tt. For these cubes we denote $7 = \JCk. The transform in the 
k 

Lebesgue integral and the Fubini theorem yield 

/ / \tl>(x,y)\«dxdy= f f W(x,y)\«dxdy = y2 f \f m^y)\"dA dy 
JSIJY JQJY ^ JYUC* J 

=E/cj^/j^f)r^]^=E/cj^^^ 
= f\^(x)\"dx^ f \A(x)\«dx. 

Jn Jo 

Thus, (3.4) is verified. Moreover, we have 

/ |V>e(*)|*d^ W tóe(>)|«<L- = W kh\f 1>(*,v)dV 
Jň\n I~r Jcžb -jr Jcžb UY 

dx, 
k " ^ k 

where C^b are cubes in the boundary layer. Since their number is proportional to 
Mel~N (M is the constant following from the surface integral), we have 

m e a s ( ( J C ^ 6 ) ^ Me1-NeN = Me. 
k 

The absolute continuity of the Lebesgue integral yields 

V1cř'6 ìþ(x,y)dy 
ү 

dx -> 0 for є -> 0, 

which implies (3.5). • 

R e m a r k 3.3. If the union of the cubes gives the whole domain ffc, i.e. Q, = (J Ck
£, 

k 
then we have 

H$e(aOIU«(n) = lk(^2/)IU*(ftxy). 

Lemma 3.2 says that every test function ip G Lq(Q x Y) can be called admissible 

(compare with properties in the Definition 3.1). Thus, the space of the test functions 

can be enlarged to the whole Lq(Q, x Y). 

The following lemma specifies functions ue used in the two-scale transform ap

proach (have on mind that ffc is considered to be a union of the cubes C*). 
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Lemma 3.4. Let u£(x) G Lp(ft) and let u£ be defined by (2.2). Then u£(x,y) G 

Lp(ft x Y) and 

IKHLP(Q) = ||we(x,J/)||LP(nxy). 

P r o o f . Similarly to the previous proof, we compute 

f \ue(x)\»dx=T f \ue(x)\*6x = Yie
N I \ue(x,y)\pdy 

Jn kJcc k
 JY 

= Yl / dx / M z , y ) l p d y = / / |u£(x,y)|pda;dt/. 
t •!c* ./y ^n ./y fc " W 

R e m a r k 3.5. The situation is more complicated in the case of cubes exceeding 

the domain ft. The two-scale transform defined by (2.2) works well on the cubes C*, 

i.e. a function u£ defined on C^ is transformed into a function u£ defined on C* x Y. 

Near the boundary, where C^ fl ft ?- C^, it can cause difficulties. As in the proof of 

Lemma 3.2, let us consider the minimal number of the cubes C* covering ft. The 

union S£ = ({J C£) \ft is of a positive measure. In case of a "good" boundary we have 
k 

meas;v S£ -> 0 (as e —•> 0), but ||iie|| cannot be estimated by \\u£\\ as the following 
example shows: 

Let us take ft = (0,a), a G R, and a sequence of periods e such that the interval 

(0,a) cannot be expressed as the union of the small intervals J* = (ek,e(k -f 1)), 

k G I. We define a sequence {u£} C L 1 ^ ) by 

Í 0 , xe(0,а-є2), 
uє(x) = < 

[ є , a; Є (a — є ,a). 

Thus, the intervals I* exceed the interval (0, a) by e — e2 (on this small part we put 

u£ = 0). Obviously, the Lx(ft) norm ||wf?(-c)||L1(«) = *> w h i l e \\ue(x,y)\\Li(QxY) = s2, 

i.e. ||ue|| 56 \\u£\\ (we have ||uf|| ^ \\u£\\ only). 

By the transform we want to conserve the norms of u£ and u£ even if the cubes 
exceed ft. It is not difficult in ID, since it is sufficient to re-scale with the actual 
length of the boundary segment C* D ft instead of e. In higher dimensions it is more 
difficult. 
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where 

Theorem 3.6. Let us assume ft = (J Ck
e and let {u£} C Lp(il) two-scale converge 

k 
(in Nguetseng-Allaire sense) to a function uo(x,y). Then {u£} two-scale converges 
to uo in the sense of Definition 2.3 and Definition 2.4, too. 

P r o o f . Let us assume {u£} two-scale converges to un, but {u£} converges 
weakly to uo> Then we have 

I£ = / u£(x)tp{x, -)dx = / txe(x)x/>fe|-j ,-Jdx + (5e, 

Se= I u£(x)ip(x,-)dx- / ^ ( x W e l - L - J d x . 

The two-scale transform yields 

= 4 dxXue(£S+*)*('£]*) *>+*> 
= ue(x,y)rl>ye\-],y)dxdy + 6e = ie+6e+6e, 

where 

Ie = l / ue(x,y)i/>(x,y)dxdy 
Jci JY 

and 

K= I / ú£(x,y^^-^,y) dxdy - / / ú£(x,y)ip(x,y)dxdy. 

Since we —-s UQ and ixe —- i2n, we have 

l i m 4 = / / u0(x,y)il)(x,y)dxdy- I I u0(x,y)ip(x,y) dxdy = 0, 
£->° Jc* JY JC* JY 

limr5e= / / u0(x,y)^(x,y)dxdy- / / u0(x,y)ip(x,y)dxdy = 0. 
£-+° Jc* JY Jcj Jy 

Thus, 

\im(I£-I£)= / / (uo(x,y)-uo(x,y))xl)(x,y)dxdy = 0, 
£-+° Jc* JY 

which implies Uo = Uo a.e. in Lp(fi, x Y). A similar argument can be used in the case 
of the inverse two-scale transform definition. • 
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R e m a r k 3.7. We can establish even a stronger property. Under the assumption 
in Theorem 3.6, we have 

/ u£(x)ip(x, -)dx= / / ue(x,y)il)(x,y)dxdy. 
JQ \ e/ JQJY 

Let us deal with the strong two-scale convergence. The weak convergence ue - - u 
equipped with the additional condition ||ue|| —> ||u|| is also strong, i.e. \\ue — u\\ -> 0. 
The following theorem introduces similar additional assumptions that strengthen 
two-scale convergence into the strong one (in the case of Nguetseng-Allaire defini
tion). 

Theorem 3.8. A sequence {ue} C LP(Q) two-scale converges strongly to a 

limit u0, if and only if {ue} two-scale converges to u0 and the relations 

Kx'i) 
IMILP(ÍI ) -» ||wo(-c-y)||Lp(íixy), 

-* ||ixo(x,y)||Lp(ííxy) 
lLP(Q) 

hold. 

P r o o f . More details and the proof can be found in [15], [1]. • 

R e m a r k 3.9. In the two-scale transform approach, the weak convergence of the 
sequence {u£} plays the role of the two-scale convergence. Hence, {uE} two-scale 
converges strongly, if and only if {u£} converges weakly to u0 and \\u£\\LP(QXY) ~> 

\\UO\\LP(QXY)-

A similar result holds for the inverse two-scale transform approach. As in The

orem 3.8, the additional assumptions ||t*c||LP(n) -> ||tio||Lp(nxy)» H*-5llLp(n) - • 

ll^oIILP(QXY) strengthen two-scale convergence into the strong one. But due to 

Lemma 3.2, each function u0 G LP(Q x Y) satisfies the convergence ||iIollLp(n) -> 

l.ttollLP(nxy)- Thus, we have 

Lemma 3.10. A sequence {u£} two-scale converges strongly (in the sense of Def

inition 2 A), if and only if it two-scale converges to u0 and \\U£\\LP(Q) —• ||txo II LP(QXY)-

Theorem 3.11. Let Q = \JC^ and let a sequence {u£} C LP(Q) two-scale con
ic 

verge strongly to a limit u0 according to Nguetseng-Allaire's definition. Then {u£} 

also two-scale converges strongly to u0 in the sense of Definition 2.1 and Defini
tion 2.3. 

P r o o f . The result is a direct consequence of Theorem 3.6, Theorem 3.8, 
Lemma 3.4, Lemma 3.2 and Remark 3.9. • 
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R e m a r k 3.12. Theorems 3.6, 3.11 together show the equivalence of the defini
tions used, i.e., all of them yield the same limits. 

4 . COMPACTNESS 

The two-scale convergence can be used in applications due to the following com
pactness property. 

Theorem 4.1. A bounded sequence {ue} in LP(Q) is compact with respect to 
the two-scale convergence, i.e. there exists an extracted subsequence {u£>} two-scale 
converging to a function UQ G Lp(ft xY). 

Allaire's proof in [1] is carried out for the test functions from L2[$};C#(Y)]. It 
is based on the properties of the dual space to L2[Q;C#(Y)]. This space is not so 
transparent, since it is represented by L2[ft; M#(Y)], where M#(Y) is the space of 
^-periodic Radon measures. 

In the alternative approach based on the two-scale transform, the situation is more 
simplified, since the two-scale compactness follows directly from the weak compact
ness of bounded sequences in LP(U x Y) (a closed ball is compact with respect to 
the weak convergence). 

Let us prove a modification of the theorem for the case of two-scale convergence 
based on the inverse two-scale transform. 

P r o o f . The boundedness, Holder's inequality and Lemma 3.2 yield 

(4.1) / u£(x)ý£(x)dx 
\JQ 

^ C\\il)£(x)\\Lq{Q) ^ C\\íp(x,y)\\Lq{QxY)-

In view of (4.1), ue represents a bounded linear functional U€ on Lq(il x Y) defined 

by 

(4.2) (Ue,1>)= ( u£(x)$£(x)dx. 
JQ 

Since Lq(Q x Y) is separable, there exists Uo such that an extracted subsequence Ue> 
converges *-weakly to Uo, i.e. 

U£> ^-U0 in [Lq(QxY)]*. 

This relation and Lemma 3.2 yield 

|(Uo,V>}| = lim / ue'(x)$e'{x)dx^Clun\\$e'{x)\\L*(a) =C\\ip(x,y)\\Lq(QxY)-
e~>° JQ £~*° 
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Thus, Uo is also a bounded linear functional. By the Riesz representation theorem 

there exists a function u0 G LP(Q x Y) such that 

(4.3) (U0,ip)= / / u0(x,y)\l)(x,y)dxdy. 
JQ JY 

Combining (4.2) and (4.3) we obtain 

lim / u£'(x);ip£f(x)dx = / / u0(x,y)\j)(x,y)dxdy, 
£,-+°Jn JQJY 

which is the desired result. • 

5 . EXAMPLES AND PROPERTIES 

Let us introduce a few typical examples of two-scale convergent sequences. 

E x a m p l e 5.1. (i) Let a(y) be a F-periodic bounded function with zero mean 
value fYa(y)dy = 0 and let b\(x),b2(x) € Lp(ft). Then the sequence {u£} defined 
by ue(x) = bi(x)a(x/e) + b2(x) converges weakly to b2(x) and it two-scale converges 
(strongly) to b\(x)a(y) + b2(x). We see that the weak limit is the function b2 only. 
It says nothing on the periodic behaviour of the functions ue. On the other hand, in 
the two scale limit the information on "oscillations" is kept. This loss of information 
in the weak limit causes some "unpleasant" properties mentioned in Introduction, 
e.g. taking two weakly converging sequences u£ —- u, ve —- v does not imply u£v£ —-
uv, etc. The example shows that the weak limit is the average of the two-scale limit 
with respect to y. This is a direct consequence of the definition, if we take a test 
function ip depending on the variable x only. 

(ii) Let us consider the same functions a(y), b\(x), b2(x), but another sequence 
{v£} defined by v£(x) = b\(x)a(x/e2) -f- b2(x). Then the two-scale and weak limits 
coincide, which means that the two-scale limit is constant in the variable y. In this 
case, the information on oscillations is not kept. Similarly, taking a sequence given 
by w£(x) = bi(x)a(cxe) -f b2 with c irrational, the two-scale limit equals to b2 only. 
It is the consequence of the fact that diminishing of the periods in sequences is not 
in the resonance with the periods in the test function. 

The sequences from the previous two examples point to an interesting fact. An 
extracted subsequence of weakly converging sequence converges to the same limit. 
In the case of two-scale convergence we must consider convergence also with respect 
to subsequences of periods. Otherwise the limits may differ (e.g. the sequence {v£} 
from the example above can be considered an extracted subsequence from {u£}). 
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E x a m p l e 5.2. Let {ue} C Lp(il) be a sequence satisfying convergence 
IWILP(Q) ->• ||^o(^,y)||Lp(fixy). Then u£ need not two-scale converge to u0. Let 
u(y) be a F-periodic function. Let us consider functions u0(x,y) = u(y) and 
60 = u(y - 1/2). Since u(y) is periodic, we have ||u0||Lp(fixy) = ||^o||Lp(Qxy)- Let 
{ue} be the sequence defined by ue(x) = u0(x/e). Then ||t4e||Lp(n) -» ||wo||Lp(nxy)» 
but {u£} two-scale converges to u0. 

Theorem 5.3. Let {u£} C LP(Q) two-scale converge to u0(x,y) e Lp(Tt x Y) and 

let it converge weakly to u(x). Then 

(5.1) linnnf ||W£||LP(C2) ^ ||t*)||Lp(nxy) ^ IMILP(O). 

P r o o f . The first inequality (5.1) can be proved with help of Young's inequality 
and the definition of the two-scale convergence. The second inequality follows from 
Holder's inequality and can be interpreted as follows: two-scale limit conserves more 
information on a periodic behaviour of {u£} than the usual weak limit. • 

E x a m p l e 5.4. Let us consider the sequences {u£} and {v£} from Example 5.L 
Denoting the two-scale limit by u0 and the weak limit by u, we have lim ||ite||LP(n) = 
IKHLp(Qxy) > IMILp(ft), lim|K||LP(C2) > |K||Lp(C2xy) = IMILp(n) and finally the 
sum u£ + ve satisfies sharp inequalities. 

Theorem 5.3 also implies: every sequence {u£} strongly convergent to a func
tion u two-scale converges to u0(x,y) =u(x), too. The following theorem on a limit 
procedure is useful in applications: 

Theorem 5.5. Let {u\} C LPl(tt), ..., {u™} C Lp™(tt) be sequences two-scale 

converging strongly to limits u0(x,y),... ,u0
n(x,y), P i , . . . ,Pm, r G (l,oo) and let 

/ ( i , ( i , . . . , y be a Caratheodory function satisfying a growth condition 

i/(z,6,---,6n)K3(*)+o£i&r/r, 
i= i 

where g G Lr(Q.) and C is a positive constant. Then 

f(x,u\(x),...,u™(x))^ J f(x,u1
0(x,y),...,u0

n(x,y))dy in Lr(tt). 

P r o o f . This relation can be obtained by use of the alternative approach. 
Since the assumptions of the theorem on Nemytskij operators are satisfied, we have 
f(x,ul,...,u™) -> f(x,u\,...,u0) (this mapping is continuous). On the other 
hand, we know that the weak and here also the strong Lp limit is the average of the 
two-scale limit (with respect to y). • 
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R e m a r k 5.6. The relation 

«i. LЫ...W 
is a special case of this theorem. This situation often occurs in proofs. The conver

gence changes into weak as one of {ul

e} two-scale converges (not strongly) only. 

6. CONCLUDING REMARKS 

We have surveyed some phenomena in the two-scale convergence. Two alterna

tive definitions to the usual one were discussed. They make it possible weaken the 

requirements making test functions admissible. The definition based on the two-

scale transform is more straightforward in the case of the two-scale compactness 

property or strong two-scale convergence, while the definition based on the inverse 

two-scale transform is closer to the original one, but it differs by the construction of 

the left-hand side test function. 

In the text above we have considered the basic period to be the unit cube. It can 

be replaced by an arbitrary block Y C IRN, but in the appropriate relations, the 

term l/\Y\ would appear. 

The theory for time depending sequences used in evolution equations is completed 

in [15]. Considering problems in some porous media is popular in many papers, 

see e.g. [2], [10], [13]. For this analysis it is useful to define two-scale convergence 

more generally with respect to measures [7], [21], [4], [19]. The extension from the 

periodic case to the almost periodic one can be found in [9] and to the stochastic case 

in [8], [19]. Further, the two-scale convergence can be generalized to the so-called 

multiscale convergence, where multiple separated scales of oscillations are considered, 

see e.g. [3], [6], [11]. 

Two-scale convergence has been applied in many other papers, see e.g. [13], [10], 

[11], [16], [14]. Many other references can be found in the survey paper on two-scale 

convergence [17]. 
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Abstract. Two-scale convergence is a special weak convergence used in homogenization
theory. Besides the original definition by Nguetseng and Allaire two alternative definitions
are introduced and compared. They enable us to weaken requirements on the admissibility
of test functions ψ(x, y). Properties and examples are added.

Keywords: two-scale convergence, weak convergence, homogenization
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1. Introduction

The aim of the paper is to survey two-scale convergence and introduce some al-

ternative approaches to it.

Two-scale convergence is a special kind of the weak convergence. It was developed

for the homogenization theory in order to simplify the proofs. It overcomes difficulties
resulting from properties of weakly converging sequences of periodic functions. In

such sequences the weak limit does not keep the “information on oscillations” of
the original functions. In some cases, the two-scale limit is able to conserve this

information and thus, it makes limit procedures possible. It stands between the
usual strong and weak convergences.

The concept was first introduced by Nguetseng [18] and then developed by
Allaire [1] in early 90’s. In the definition of two-scale convergence, the special so-

called admissible test function is used. The widest set of these functions is not clear
and thus it motivates alternative approaches. One of them is based on a two-scale

*This work was supported by grant No. 201/03/0570 of the Grant Agency of the Czech
Republic.
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transform, which changes a sequence of one variable functions into a sequence of

two-variable functions. This transform was used by authors in homogenization of
some problems in porous media [5] and it is suitable for an alternative definition of
the two-scale convergence, see also [12], [16], [10]. Another one is based on the so-

called inverse two-scale transform which defines a sequence of one-variable functions
from the test function ψ(x, y). This approach seems to be new.
The paper is organized as follows. Section 2 contains a survey of the definitions

used, while Section 3 compares them. In the two-scale transform approach, we men-
tion the case of boundary cubes exceeding Ω, which is usually neglected. Section 4 is
devoted to the compactness property. Section 5 contains examples and some prop-
erties of two-scale convergence. Section 6 refers to some generalizations.

2. Definitions

Throughout the paper let Ω be a bounded domain in � N with Lipschitz boundary

and Y = (0, 1)N the unit cube (a basic period). We will use periodic functions:
a function v is said to be Y -periodic if v(y + k) = v(y), y ∈ � N , k ∈ � N. If the

function v has more variables, we say that it is Y -periodic in y. Lebesgue spaces Lp

are used with p ∈ (1,∞). The dual exponent is denoted by q = p/(p − 1). The
symbol # is used for Y -periodic functions, e.g. C#(Y ) is the space of Y -periodic
functions v such that v|Y +y0 ∈ C(Y + y0), ∀y0 ∈ � N . Further, we will consider a

sequence of positive parameters {εn} such that εn → 0 for n → ∞. As usual, the
subscript n will be omitted.

Let us begin with the classical definition by Nguetseng and Allaire which was

introduced for the case of L2:

Definition 2.1. We say that a sequence of functions {uε(x)} ⊂ Lp(Ω) two-scale
converges to a limit u0(x, y) ∈ Lp(Ω× Y ), if the relation

(2.1) lim
ε→0

∫

Ω

uε(x)ψ
(
x,
x

ε

)
dx =

∫

Ω

∫

Y

u0(x, y)ψ(x, y) dx dy

holds for each ψ(x, y) ∈ C∞0 [Ω;C∞# (Y )] (the space of compactly supported infinitely
differentiable functions with Y -periodic values in C∞( � N )). If, in addition,

lim
ε→0

∥∥∥uε(x)− u0

(
x,
x

ε

)∥∥∥
Lp(Ω)

= 0,

we say that {uε} two-scale converges strongly to u0(x, y).
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2.2. In the vocabulary of homogenization the strong two-scale conver-

gence is also called a corrector type result. Assumptions making two-scale conver-
gence strong are discussed in Section 3. Although {uε} is a sequence of N variables
x1, . . . , xN , the limit is a function of 2N variables x1, . . . , xN , y1, . . . , yN . It enables

us to describe the periodic behavior of uε better. Usually it is not emphasized, but
the definition is connected with a fixed sequence of periods εn, i.e. for an extracted

subsequence {uε′} we should consider the same extracted subsequence {ε′} of periods
in the test function, see examples in Section 5.

Let us introduce an alternative definition. In [5], the authors dealt with a ho-

mogenization technique which was used for the description of a porous media. It
is suitable for an alternative approach to the two-scale convergence. The idea is

based on the so-called two-scale transform which changes a sequence of one-variable
functions {uε(x)} into a sequence of two-variable functions {ûε(x, y)}.
For each ε let us consider small non-overlapping cubes Ck

ε = εY + εk, k ∈ � N.

Here, for sake of simplicity, we restrict ourselves to the domains Ω that can be
decomposed into these cubes, i.e. Ω =

⋃
k

Ck
ε . The sequence {ûε(x, y)} is defined by

the relation

(2.2) ûε(x, y) = uε

(
ε
[x
ε

]
+ εy

)
x ∈ Ω, y ∈ Y,

where [x] = k is the vector of the greatest integers ki less than or equal to xi. On

each cube Ck
ε ×Y the function ûε is constant in the variable x and as a function of y

it is the function uε(x) on Ck
ε transformed onto the unit cube Y . The alternative

definition reads:

Definition 2.3. We say that a sequence {uε} ⊂ Lp(Ω) two-scale converges to a
function u0(x, y) ∈ Lp(Ω× Y ), if

(2.3) lim
ε→0

∫

Ω

∫

Y

[ûε(x, y)− u0(x, y)]ψ(x, y) dx dy = 0

for every test function ψ ∈ C∞0 [Ω;C∞# (Y )]. Moreover, if ûε → u0 in Lp(Ω × Y )
strongly, we say that {uε} two-scale converges strongly.

Let us refer here to the recent paper [12], where the above mentioned approach is

also used and is called periodic unfolding. Authors apply this approach to the case
of periodic multi-scale problems.

The other alternative approach is based on the so-called inverse two-scale trans-

form which makes a sequence {ψε(x)} from a two-variable function ψ(x, y). The
functions ψε are constructed as follows. Similarly, as in the previous transform, we
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consider non-overlapping cubes Ck
ε that cover the domain Ω (here the domain Ω need

not be the union of the cubes Ck
ε , i.e. Ω ⊆ ⋃

k

Ck
ε ). Outside the domain Ω we put

ψ(x, y) = 0. Let us average the extended function ψ(x, y) with respect to the first
variable:

(2.4) ψε(x) =
1
εN

∫

Ck
ε

ψ
(
ξ,
x

ε

)
dξ, x ∈ Ck

ε .

Definition 2.4. Let {uε} be a sequence in Lp(Ω). We say that {uε} two-scale
converges to a function u0 ∈ Lp(Ω× Y ), if

lim
ε→0

∫

Ω

uε(x)ψε(x) dx =
∫

Ω

∫

Y

u0(x, y)ψ(x, y) dx dy

for each test function ψ(x, y) ∈ C∞0 [Ω;C∞# (Y )]. Moreover, if

lim
ε→0

‖uε(x) − uε
0(x)‖Lp(Ω) = 0,

we say that {uε} two-scale converges strongly.
�����������

2.5. The two-scale transform used in Definition 2.3 enables us to de-
fine two-scale and strong two-scale convergence more naturally with help of weak

convergence with smooth test functions. On the other hand, Definition 2.4 is similar
to the classical definition by Nguetseng and Allaire, but it differs from (2.1) by the

choice of the test function on the left-hand side.

Why do we look for alternative approaches to the original one? In the definition

we want to test the convergence with functions from a space as small as possible,
thus, smooth functions are convenient. On the other hand, in applications the largest

class is desirable. In Definition 2.1 we can not take the test function ψ(x, y) from
the whole space Lq(Ω× Y ), since it is not defined correctly on the zero-measure set
{[x, y] : y = x/ε} and thus the measurability of the composed function ψ(x, x/ε) is
not guaranteed. Moreover, the test functions must satisfy some convergence, which

is not always obvious. The class of suitable test functions is discussed at the top of
the following section. Such functions are called admissible. Further, we will see that

the two mentioned alternative definitions avoid described problems.
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3. Comparison of the definitions

The main goal of this section is to prove equivalence of the definitions. It means
that each of the definitions yields the same two-scale limits.
First of all we proceed with the notion of admissible test function mentioned

above. Since the widest set of suitable test functions ψ is not clear (we do not
know the minimal conditions making these functions regular enough), the following

characterization is useful:

Definition 3.1. A Y -periodic (in y) test function ψ(x, y) ∈ Lq(Ω × Y ) is said
to be admissible, if

(3.1) lim
ε→0

∥∥∥ψ
(
x,
x

ε

)∥∥∥
Lq(Ω)

= ‖ψ(x, y)‖Lq(Ω×Y )

and for a separable subspace X ⊆ Lq(Ω× Y )

(3.2)
∥∥∥ψ

(
x,
x

ε

)∥∥∥
Lq(Ω)

6 ‖ψ(x, y)‖X .

Let us emphasize that there exist Y -periodic functions in y which do not satisfy the

convergence (3.1) even if the measurability of the composed function ψ(x, x/ε) is
guaranteed, see [1]. Allaire also showed (for p = 2) that spaces, e.g. C[Ω;C#(Y )],
L2[Ω;C#(Y )] or L2

#[Y ;C(Ω)], are made up from the admissible functions. All these
spaces are separable and their elements are functions continuous at least in one

variable. Such functions are Carathéodory, which is the sufficient condition for mea-
surability of the composed function ψ(x, x/ε), and moreover, they satisfy (3.1) and
(3.2). These two properties are needful in the proof of the compactness property, see
Section 4. If ψ belongs to these spaces, we also have

(3.3) lim
ε→0

∫

Ω

ψ
(
x,
x

ε

)
dx =

∫

Ω

∫

Y

ψ(x, y) dx dy;

for details, see [1]. This relation is natural: taking the stationary sequence {uε = 1},
(2.1) and (3.3) yield the two-scale limit u0(x, y) = 1.

In the alternative Definition 2.3 the situation is simplified. Due to the density of
smooth functions in Lq, the convergence (2.3) implies also the weak convergence in

Lp(Ω× Y ), i.e. the space of test functions can be enlarged to the whole Lq(Ω× Y ).
The special choice of the test function in Definition 2.4 is also motivated by the

effort to enlarge the class of test functions. This choice is convenient due to the
following lemma:
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Lemma 3.2. Let ψ ∈ Lq(Ω× Y ) be a Y -periodic function and let ψε be defined

by (2.4). Then we have

‖ψε(x)‖Lq(Ω) 6 ‖ψ(x, y)‖Lq(Ω×Y ),(3.4)

lim
ε→0

‖ψε(x)‖Lq(Ω) = ‖ψ(x, y)‖Lq(Ω×Y ).(3.5)

���� ! #"
. For ε fixed, let us consider the minimal number of the cubes Ck

ε that
cover the domain Ω. For these cubes we denote Ω̃ =

⋃
k

Ck
ε . The transform in the

Lebesgue integral and the Fubini theorem yield
∫

Ω

∫

Y

|ψ(x, y)|q dx dy =
∫

Ω̃

∫

Y

|ψ(x, y)|q dx dy =
∑

k

∫

Y

[∫

Ck
ε

|ψ(ξ, y)|q dξ
]

dy

=
∑

k

∫

Ck
ε

[
1
εN

∫

Ck
ε

∣∣∣ψ
(
ξ,
x

ε

)∣∣∣
q

dξ
]
dx =

∑

k

∫

Ck
ε

|ψε(x)|q dx

=
∫

Ω̃

|ψε(x)|q dx >
∫

Ω

|ψε(x)|q dx.

Thus, (3.4) is verified. Moreover, we have
∫

Ω̃\Ω
|ψε(x)|q dx 6

∑

k

∫

Ck,b
ε

|ψε(x)|q dx =
∑

k

∫

Ck,b
ε

[∫

Y

ψ(x, y) dy
]

dx,

where Ck,b
ε are cubes in the boundary layer. Since their number is proportional to

Mε1−N (M is the constant following from the surface integral), we have

meas
N

(⋃

k

Ck,b
ε

)
6 Mε1−NεN = Mε.

The absolute continuity of the Lebesgue integral yields

∑

k

∫

Ck,b
ε

[∫

Y

ψ(x, y) dy
]

dx→ 0 for ε→ 0,

which implies (3.5). �
�����������

3.3. If the union of the cubes gives the whole domain Ω, i.e. Ω =
⋃
k

Ck
ε ,

then we have
‖ψε(x)‖Lq(Ω) = ‖ψ(x, y)‖Lq(Ω×Y ).

Lemma 3.2 says that every test function ψ ∈ Lq(Ω × Y ) can be called admissible
(compare with properties in the Definition 3.1). Thus, the space of the test functions

can be enlarged to the whole Lq(Ω× Y ).

The following lemma specifies functions ûε used in the two-scale transform ap-
proach (have on mind that Ω is considered to be a union of the cubes Ck

ε ).
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Lemma 3.4. Let uε(x) ∈ Lp(Ω) and let ûε be defined by (2.2). Then ûε(x, y) ∈
Lp(Ω× Y ) and

‖uε‖Lp(Ω) = ‖ûε(x, y)‖Lp(Ω×Y ).

���� ! #"
. Similarly to the previous proof, we compute

∫

Ω

|uε(x)|p dx =
∑

k

∫

Ck
ε

|uε(x)|p dx =
∑

k

εN

∫

Y

|ûε(x, y)|p dy

=
∑

k

∫

Ck
ε

dx
∫

Y

|ûε(x, y)|p dy =
∫

Ω

∫

Y

|ûε(x, y)|p dx dy.

�
�����������

3.5. The situation is more complicated in the case of cubes exceeding
the domain Ω. The two-scale transform defined by (2.2) works well on the cubes Ck

ε ,

i.e. a function uε defined on Ck
ε is transformed into a function ûε defined on Ck

ε ×Y .
Near the boundary, where Ck

ε ∩ Ω 6= Ck
ε , it can cause difficulties. As in the proof of

Lemma 3.2, let us consider the minimal number of the cubes Ck
ε covering Ω. The

union Sε =
(⋃

k

Ck
ε

)
\Ω is of a positive measure. In case of a “good” boundary we have

measN Sε → 0 (as ε → 0), but ‖ûε‖ cannot be estimated by ‖uε‖ as the following
example shows:

Let us take Ω = (0, a), a ∈ � , and a sequence of periods ε such that the interval
(0, a) cannot be expressed as the union of the small intervals Ik

ε = (εk, ε(k + 1)),
k ∈ � . We define a sequence {uε} ⊂ L1(Ω) by

uε(x) =

{
0, x ∈ (0, a− ε2),

ε−2, x ∈ (a− ε2, a).

Thus, the intervals Ik
ε exceed the interval (0, a) by ε− ε2 (on this small part we put

uε = 0). Obviously, the L1(Ω) norm ‖uε(x)‖L1(Ω) = 1, while ‖ûε(x, y)‖L1(Ω×Y ) = ε2,

i.e. ‖uε‖ 6≈ ‖ûε‖ (we have ‖uε‖ > ‖ûε‖ only).
By the transform we want to conserve the norms of uε and ûε even if the cubes

exceed Ω. It is not difficult in 1D, since it is sufficient to re-scale with the actual
length of the boundary segment Ck

ε ∩Ω instead of ε. In higher dimensions it is more
difficult.
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Theorem 3.6. Let us assume Ω =
⋃
k

Ck
ε and let {uε} ⊂ Lp(Ω) two-scale converge

(in Nguetseng-Allaire sense) to a function u0(x, y). Then {uε} two-scale converges
to u0 in the sense of Definition 2.3 and Definition 2.4, too.
���� ! #"

. Let us assume {uε} two-scale converges to u0, but {ûε} converges
weakly to ũ0. Then we have

Iε ≡
∫

Ck
ε

uε(x)ψ
(
x,
x

ε

)
dx =

∫

Ck
ε

uε(x)ψ
(
ε
[x
ε

]
,
x

ε

)
dx+ δε,

where

δε =
∫

Ck
ε

uε(x)ψ
(
x,
x

ε

)
dx−

∫

Ck
ε

uε(x)ψ
(
ε
[x
ε

]
,
x

ε

)
dx.

The two-scale transform yields

Iε = εN

∫

Y

uε

(
ε
[x
ε

]
+ εy

)
ψ

(
ε
[x
ε

]
,
[x
ε

]
+ y

)
dy + δε

=
∫

Ck
ε

dx
∫

Y

uε

(
ε
[x
ε

]
+ εy

)
ψ

(
ε
[x
ε

]
, y

)
dy + δε

=
∫

Ck
ε

∫

Y

ûε(x, y)ψ
(
ε
[x
ε

]
, y

)
dx dy + δε = Îε + δε + δ̂ε,

where
Îε ≡

∫

Ck
ε

∫

Y

ûε(x, y)ψ(x, y) dx dy

and

δ̂ε =
∫

Ck
ε

∫

Y

ûε(x, y)ψ
(
ε
[x
ε

]
, y

)
dx dy −

∫

Ω

∫

Y

ûε(x, y)ψ(x, y) dx dy.

Since uε
2−s
⇀ u0 and ûε ⇀ ũ0, we have

lim
ε→0

δε =
∫

Ck
ε

∫

Y

u0(x, y)ψ(x, y) dx dy −
∫

Ck
ε

∫

Y

u0(x, y)ψ(x, y) dx dy = 0,

lim
ε→0

δ̂ε =
∫

Ck
ε

∫

Y

ũ0(x, y)ψ(x, y) dx dy −
∫

Ck
ε

∫

Y

ũ0(x, y)ψ(x, y) dx dy = 0.

Thus,

lim
ε→0

(Iε − Îε) =
∫

Ck
ε

∫

Y

(u0(x, y)− ũ0(x, y))ψ(x, y) dx dy = 0,

which implies u0 = ũ0 a.e. in Lp(Ω×Y ). A similar argument can be used in the case
of the inverse two-scale transform definition. �
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3.7. We can establish even a stronger property. Under the assumption

in Theorem 3.6, we have
∫

Ω

uε(x)ψ
(
x,
x

ε

)
dx =

∫

Ω

∫

Y

ûε(x, y)ψ(x, y) dx dy.

Let us deal with the strong two-scale convergence. The weak convergence uε ⇀ u

equipped with the additional condition ‖uε‖ → ‖u‖ is also strong, i.e. ‖uε−u‖ → 0.
The following theorem introduces similar additional assumptions that strengthen

two-scale convergence into the strong one (in the case of Nguetseng-Allaire defini-
tion).

Theorem 3.8. A sequence {uε} ⊂ Lp(Ω) two-scale converges strongly to a
limit u0, if and only if {uε} two-scale converges to u0 and the relations

‖uε‖Lp(Ω) → ‖u0(x, y)‖Lp(Ω×Y ),∥∥∥u0

(
x,
x

ε

)∥∥∥
Lp(Ω)

→ ‖u0(x, y)‖Lp(Ω×Y )

hold.
���� ! #"

. More details and the proof can be found in [15], [1]. �
�����������

3.9. In the two-scale transform approach, the weak convergence of the
sequence {ûε} plays the role of the two-scale convergence. Hence, {uε} two-scale
converges strongly, if and only if {ûε} converges weakly to u0 and ‖ûε‖Lp(Ω×Y ) →
‖u0‖Lp(Ω×Y ).

A similar result holds for the inverse two-scale transform approach. As in The-
orem 3.8, the additional assumptions ‖uε‖Lp(Ω) → ‖u0‖Lp(Ω×Y ), ‖uε

0‖Lp(Ω) →
‖u0‖Lp(Ω×Y ) strengthen two-scale convergence into the strong one. But due to
Lemma 3.2, each function u0 ∈ Lp(Ω × Y ) satisfies the convergence ‖uε

0‖Lp(Ω) →
‖u0‖Lp(Ω×Y ). Thus, we have

Lemma 3.10. A sequence {uε} two-scale converges strongly (in the sense of Def-
inition 2.4), if and only if it two-scale converges to u0 and ‖uε‖Lp(Ω) → ‖u0‖Lp(Ω×Y ).

Theorem 3.11. Let Ω =
⋃
k

Ck
ε and let a sequence {uε} ⊂ Lp(Ω) two-scale con-

verge strongly to a limit u0 according to Nguetseng-Allaire’s definition. Then {uε}
also two-scale converges strongly to u0 in the sense of Definition 2.1 and Defini-
tion 2.3.
���� ! #"

. The result is a direct consequence of Theorem 3.6, Theorem 3.8,
Lemma 3.4, Lemma 3.2 and Remark 3.9. �
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3.12. Theorems 3.6, 3.11 together show the equivalence of the defini-

tions used, i.e., all of them yield the same limits.

4. Compactness

The two-scale convergence can be used in applications due to the following com-

pactness property.

Theorem 4.1. A bounded sequence {uε} in Lp(Ω) is compact with respect to
the two-scale convergence, i.e. there exists an extracted subsequence {uε′} two-scale
converging to a function u0 ∈ Lp(Ω× Y ).

Allaire’s proof in [1] is carried out for the test functions from L2[Ω;C#(Y )]. It
is based on the properties of the dual space to L2[Ω;C#(Y )]. This space is not so
transparent, since it is represented by L2[Ω;M#(Y )], where M#(Y ) is the space of
Y -periodic Radon measures.
In the alternative approach based on the two-scale transform, the situation is more

simplified, since the two-scale compactness follows directly from the weak compact-
ness of bounded sequences in Lp(Ω × Y ) (a closed ball is compact with respect to
the weak convergence).
Let us prove a modification of the theorem for the case of two-scale convergence

based on the inverse two-scale transform.
���� ! #"

. The boundedness, Hölder’s inequality and Lemma 3.2 yield

(4.1)

∣∣∣∣
∫

Ω

uε(x)ψε(x) dx
∣∣∣∣ 6 C‖ψε(x)‖Lq(Ω) 6 C‖ψ(x, y)‖Lq(Ω×Y ).

In view of (4.1), uε represents a bounded linear functional Uε on Lq(Ω× Y ) defined
by

(4.2) 〈Uε, ψ〉 =
∫

Ω

uε(x)ψε(x) dx.

Since Lq(Ω×Y ) is separable, there exists U0 such that an extracted subsequence Uε′

converges ∗-weakly to U0, i.e.

Uε′
∗
⇀ U0 in [Lq(Ω× Y )]∗.

This relation and Lemma 3.2 yield

| 〈U0, ψ〉 | = lim
ε→0

∫

Ω

uε′(x)ψε′(x) dx 6 C lim
ε→0

‖ψε′(x)‖Lq(Ω) = C‖ψ(x, y)‖Lq(Ω×Y ).
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Thus, U0 is also a bounded linear functional. By the Riesz representation theorem

there exists a function u0 ∈ Lp(Ω× Y ) such that

(4.3) 〈U0, ψ〉 =
∫

Ω

∫

Y

u0(x, y)ψ(x, y) dx dy.

Combining (4.2) and (4.3) we obtain

lim
ε′→0

∫

Ω

uε′(x)ψε′(x) dx =
∫

Ω

∫

Y

u0(x, y)ψ(x, y) dx dy,

which is the desired result. �

5. Examples and properties

Let us introduce a few typical examples of two-scale convergent sequences.
$ %&���('*)+�

5.1. (i) Let a(y) be a Y -periodic bounded function with zero mean
value

∫
Y a(y) dy = 0 and let b1(x), b2(x) ∈ Lp(Ω). Then the sequence {uε} defined

by uε(x) = b1(x)a(x/ε) + b2(x) converges weakly to b2(x) and it two-scale converges
(strongly) to b1(x)a(y) + b2(x). We see that the weak limit is the function b2 only.
It says nothing on the periodic behaviour of the functions uε. On the other hand, in

the two scale limit the information on “oscillations” is kept. This loss of information
in the weak limit causes some “unpleasant” properties mentioned in Introduction,

e.g. taking two weakly converging sequences uε ⇀ u, vε ⇀ v does not imply uεvε ⇀

uv, etc. The example shows that the weak limit is the average of the two-scale limit

with respect to y. This is a direct consequence of the definition, if we take a test
function ψ depending on the variable x only.

(ii) Let us consider the same functions a(y), b1(x), b2(x), but another sequence
{vε} defined by vε(x) = b1(x)a(x/ε2) + b2(x). Then the two-scale and weak limits
coincide, which means that the two-scale limit is constant in the variable y. In this
case, the information on oscillations is not kept. Similarly, taking a sequence given

by wε(x) = b1(x)a(cxε) + b2 with c irrational, the two-scale limit equals to b2 only.
It is the consequence of the fact that diminishing of the periods in sequences is not

in the resonance with the periods in the test function.
The sequences from the previous two examples point to an interesting fact. An

extracted subsequence of weakly converging sequence converges to the same limit.
In the case of two-scale convergence we must consider convergence also with respect

to subsequences of periods. Otherwise the limits may differ (e.g. the sequence {vε}
from the example above can be considered an extracted subsequence from {uε}).
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5.2. Let {uε} ⊂ Lp(Ω) be a sequence satisfying convergence

‖uε‖Lp(Ω) → ‖u0(x, y)‖Lp(Ω×Y ). Then uε need not two-scale converge to u0. Let
u(y) be a Y -periodic function. Let us consider functions u0(x, y) = u(y) and
ũ0 = u(y − 1/2). Since u(y) is periodic, we have ‖u0‖Lp(Ω×Y ) = ‖ũ0‖Lp(Ω×Y ). Let

{uε} be the sequence defined by uε(x) = ũ0(x/ε). Then ‖uε‖Lp(Ω) → ‖u0‖Lp(Ω×Y ),
but {uε} two-scale converges to ũ0.

Theorem 5.3. Let {uε} ⊂ Lp(Ω) two-scale converge to u0(x, y) ∈ Lp(Ω×Y ) and
let it converge weakly to u(x). Then

(5.1) lim inf
ε→0

‖uε‖Lp(Ω) > ‖u0‖Lp(Ω×Y ) > ‖u‖Lp(Ω).

���� ! #"
. The first inequality (5.1) can be proved with help of Young’s inequality

and the definition of the two-scale convergence. The second inequality follows from

Hölder’s inequality and can be interpreted as follows: two-scale limit conserves more
information on a periodic behaviour of {uε} than the usual weak limit. �
$ %&���('*)+�

5.4. Let us consider the sequences {uε} and {vε} from Example 5.1.
Denoting the two-scale limit by u0 and the weak limit by u, we have lim ‖uε‖Lp(Ω) =
‖u0‖Lp(Ω×Y ) > ‖u‖Lp(Ω), lim ‖vε‖Lp(Ω) > ‖u0‖Lp(Ω×Y ) = ‖u‖Lp(Ω) and finally the
sum uε + vε satisfies sharp inequalities.

Theorem 5.3 also implies: every sequence {uε} strongly convergent to a func-
tion u two-scale converges to u0(x, y) = u(x), too. The following theorem on a limit
procedure is useful in applications:

Theorem 5.5. Let {u1
ε} ⊂ Lp1(Ω), . . ., {um

ε } ⊂ Lpm(Ω) be sequences two-scale
converging strongly to limits u1

0(x, y), . . . , u
m
0 (x, y), p1, . . . , pm, r ∈ 〈1,∞) and let

f(x, ξ1, . . . , ξm) be a Carathéodory function satisfying a growth condition

|f(x, ξ1, . . . , ξm)| 6 g(x) + C

m∑

i=1

|ξi|pi/r,

where g ∈ Lr(Ω) and C is a positive constant. Then

f(x, u1
ε(x), . . . , u

m
ε (x)) →

∫

Y

f(x, u1
0(x, y), . . . , u

m
0 (x, y)) dy in Lr(Ω).

���� ! #"
. This relation can be obtained by use of the alternative approach.

Since the assumptions of the theorem on Nemytskij operators are satisfied, we have
f(x, û1

ε, . . . , û
m
ε ) → f(x, u1

0, . . . , u
m
0 ) (this mapping is continuous). On the other

hand, we know that the weak and here also the strong Lp limit is the average of the
two-scale limit (with respect to y). �
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5.6. The relation

u1
ε . . . u

m
ε →

∫

Y

u1
0(x, y) . . . u

m
0 (x, y) dy

is a special case of this theorem. This situation often occurs in proofs. The conver-

gence changes into weak as one of {ui
ε} two-scale converges (not strongly) only.

6. Concluding remarks

We have surveyed some phenomena in the two-scale convergence. Two alterna-
tive definitions to the usual one were discussed. They make it possible weaken the

requirements making test functions admissible. The definition based on the two-
scale transform is more straightforward in the case of the two-scale compactness

property or strong two-scale convergence, while the definition based on the inverse
two-scale transform is closer to the original one, but it differs by the construction of

the left-hand side test function.

In the text above we have considered the basic period to be the unit cube. It can

be replaced by an arbitrary block Y ⊂ � N , but in the appropriate relations, the
term 1/|Y | would appear.
The theory for time depending sequences used in evolution equations is completed

in [15]. Considering problems in some porous media is popular in many papers,
see e.g. [2], [10], [13]. For this analysis it is useful to define two-scale convergence

more generally with respect to measures [7], [21], [4], [19]. The extension from the
periodic case to the almost periodic one can be found in [9] and to the stochastic case

in [8], [19]. Further, the two-scale convergence can be generalized to the so-called
multiscale convergence, where multiple separated scales of oscillations are considered,

see e.g. [3], [6], [11].

Two-scale convergence has been applied in many other papers, see e.g. [13], [10],

[11], [16], [14]. Many other references can be found in the survey paper on two-scale
convergence [17].
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