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Abstract. We consider electromagnetic waves propagating in a periodic medium charac
terized by two small scales. We perform the corresponding homogenization process, relying 
on the modelling by Maxwell partial differential equations. 
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1. Introduction 

Homogenization results for Maxwell equations, by the classical method of asymp
totic expansions or more recently by two-scale convergence, are well known, see for 
instance [1], [3], [4], [5], [6], [19]. Let us first recall Maxwell equations framework, 
see [7], [8], [9]. Let Q C R3 be a physical domain. Then the electromagnetic prop
agation of waves in U is described by four (R3) vector valued functions D, E, B, 
H of (x, t) € it x R. Here D is the electric induction, E the electric field, B the 
magnetic induction and H the magnetic field. Introducing furthermore the charge 
density Q = Q(t,x) and the current density J = J(£,x) of charges inside fi, one has 
Maxwell equations in the form 

(1.1) (i) — — + rot H = J Ampere law, 
at 
dB 

(ii) --r- + rot E = 0 Faraday law, 
at 

(iii) div D = Q Gauss electrical law, 

(iv) div B = 0 Gauss magnetic law. 
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Note that the current and charge densities satisfy the continuity relation or charge 
conservation 

(1-2) g + d i v J = 0, 

as in fact follows also from (1.1). 
Herein, we assume linear behavior laws, that is proportionality of fields and in

ductions, 

(1.3) D = aE, B = nH. 

Here // and a are the magnetic permeability and electric permittivity respectively 
and these are assumed constant to simplify our exposition. Recall that in general, 
this linear behavior is not true for usual electromagnetic media and we hope to get 
back to this non linear aspect (in this direction see however [9]). 

Moreover, we simplify Maxwell equations by considering the very special harmonic 
case (note that J should satisfy some kind of Ohmic law). However, let us mention 
that most if not all of our results below could be extended easily to cover the time 
dependent case. 

Let us recall quickly these facts, referring for much more details to standard books 
such as [7], [8], [9]. 

Since we are interested in time-periodic solutions only, we look for solutions in the 
form 

(1.4) D(x, t) = &(exp(iujt)D(x)), H(x, t) = ?R(exp(iut)H(x)), 

(1.5) J(x, t) = $l(exp(iu;t)J(x)) 

and 

(1.6) B(x, t) = 9l(exp(iut)B(x)), E(x, t) = ft(exp(iut)E(x)). 

We denote the new complex-valued functions of a variable x with the same capital 
letters as the original real-valued functions of variables x,t. Then equation (1.1(h)), 
divided by exp(iu;£), becomes (with i2 = — 1) 

(1.7) -iuD(x) + rotx H(x) = J(x) 

and equation (l.l(ii)) becomes 

(1.8) iu)B(x) + rot- E(x) = 0, 

202 



which by applying the rot operator leads to 

(1.9) kjrotx B(x) + rotx(rotx E(x)) = 0. 

From (1.3), one has rotx B(x) = /irotx H(x), and thus it follows that 

(1.10) iu;/irotx H (x) + rotx(rotx E(x)) = 0. 

Using (1.7), one gets 

(1.11) iu;/z( J(x) + iuD(x)) + rotx(rotx E(x)) = 0. 

Using (1.3), one has 

(1.12) iojfi(J(x) + iuaE(x)) + rotx(rotx E(x)) = 0. 

Hence 

rotx(rotx .E(.z)) + i2u2fiaE(x) = -iu^J(x). 

Usually J = oE + J' (where a is the conductivity), so that 

rotx(rotx E(x)) + (i2a;2/xa + i^uj<r)E(x) = —iujfiJ'(x). 

Let 

(1.13) F(x) = -iuiiJ'(x), 7 = iiu(-ua + ia). 

To avoid any mathematical problems, we will always assume that 8 (̂7) > 0. In this 
direction, we refer to known standard difficulties associated with Maxwell equations 
in [9]. 

Then, we are finally led to the standard harmonic Maxwell equation 

(P) rot (rot E(x)) + -yE(x) = F(x). 

Let 10 be a bounded regular open set in R3. Let e > 0 be a small parameter and Qe 

a bounded open set ile C H C R3, to be specified below. 
We consider for 7 € C, 9ft(7) > 0, the homogenization of problem (P) in il€ with 

different boundary conditions on dQe. That is, electromagnetic waves are propagat
ing in Q,e and we prescribe the interactions with boundary dil€. 
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More precisely, we consider the following two problems (P c) and (Qe), with 
2/r»c\3. F*(x) Є L2(fte) 

(P e) 

and 

Í
rot(rotEe(x))+7l 

J F ( i ) A E £ ( i ) = 0 , 

fE£(x) = F£(x), x € f t e , 

x edfte 

{ rot (rot EE (x)) + 7 ^ (x) =Fe(x), xeQe, 

rF(x) A rot E€(x) =0, xe dile. 

The boundary condition in problem (Pe) describes the physical fact that the com
plementary set to Q€ behaves as a perfect conductor, while the boundary condition 
in problem (Q£) could be interpreted as the absence of magnetic charges within the 
complementary set to ile . 

A natural question arises in this electromagnetic setting as to investigate closely 
related problems such as 

(Re) 

or 

(Se) 

{ rot(rot.Ee(x))-gr, 

*P(z) A E£(x) = 0, 

- grad(div Eє(x)) + -үEє(x) = Fє(x), x Є Sìє, 

xЄ дӣє 

{ rot(rot Eє(x))-g 

nє(x)Eє(x)=0, 

- grad(div E£(x)) + -yEe(x) = Fe(x), x£íle, 

xedfí*. 

Similarly, the last boundary condition reflects the absence of electric charges within 
the complementary set to fte. 

Such problems will not be studied herein in order to limit the length of the paper, 
and most importantly because test functions to be used are rather different. These 
important problems will be discussed in a forthcoming paper. 

Let e > 0 and re > 0 be two small parameters such that re < \e and consider the 
covering of R3 by cells 

r 1 l l 3 

^ = £ h ' + 2 - ] +£k> 
where k 6 Z3. In each cell P* we remove the ball 

Tj* = reBi + ek, 

where Bi denotes the unit ball in R3. We let 

ne = ft - Te 
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where T€ = (J T£ denotes the union of balls strictly included within fl. As a matter 

of fact, note that these balls do not intersect the boundary fi. 
We will study the above problems under one of the scaling assumptions 

(HYP)i lim — = 0 

or 

(HYP)2 r€=cs 

where 0 < c < 1/4 is a strictly positive fixed constant. 
Finally, we will always assume (at least) that 

(HYP)s F* -> F weakly in L2(Q)3 

as e —y 0. Above and throughout the paper the tilde over a symbol denotes the 
extension by zero in the holes. 

We will be concerned with the asymptotic behavior as e -> 0 of problems (Pe) and 

(Qe)-
Before stating the corresponding mathematical results, let us explain our moti

vation. The periodic perforated medium Q£ may be considered as one having two 
distinct di-electric constants or even holes that may be considered as charged parti
cles. 

However, let us remark that problems (Pc) or (Q€) studied herein do not really fit 
with a clear (or true) physical modeling of propagation of electromagnetic waves in 
such non homogeneous media. 

There are at least two points from the physical theory of Maxwell equations which 
are not really accounted for. 

On the one hand, there is definitively a scaling problem between frequency and 
spatial scales which is not considered here. Prom mathematical viewpoint, this ques
tion leads to very deep technics, in progress actually. To be short, we are assuming 
that spatial variations are small compared to wavelenghts. 

On the other hand, and this is surely one main point, if one views to the holes as 
charged particles, the modeling by problems (Pc) or (Qe) is of course not true. One 
should for instance get back to Maxwell equations, say in harmonic form, and take 
care of the correct scaling and boundary conditions, involving scattering operators, 
see for instance [9]. 

Last but not least, in view of all these facts, one should note that actually the 
right-hand member data given are surely first order distributions, and so some if not 
all of our constructions in this paper would have to be modified. 
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Having such ideas in mind, the above problems must therefore be considered a 
first step in order to tackle real physical problems, maybe as a background to test 
mathematical tools available at present. 

Even in these simple and academic problems, some constructions displayed in this 
paper have to be adapted to more complex situations, and this is why we have started 
studying them. 

Some of the defects mentioned above are actually worked out. 
Our results show in particular that the homogenized problems display a different 

output frequency with respect to UJ. More precisely, they are the following, see the 
notation below. 

In section 2 we refer the following as regards to the homogenization of prob
lem (Pe). 

Theorem 1. Homogenization of problem (Pe). 

(a) With assumptions (HYP)1 and (HYP)3 for (Pe), one has (up to a subsequence) 

EE -±E weakly in H0(rot, ft), 

where E is the variational solution of problem (P), with the condition nAE = 0 

on dil. 

(b) Under assumptions (HYP)2 and (HYP)3 for (Pe), one has (up to a subsequence) 

E* - - £ weakly in H0(rot, ft), 

where E is the (variational) solution in H0(rot, ft) of 

I 77rotx E(x) • rotx ip(x) dx + 7< / E(x) • tp(x) dx = C / F(x)%l)(x) dx 
JQ Jn Jn 

for alltp £ /f0(rot, ft), where r/ > 0, C are two constants (given in Section 2). 

Section 3 is devoted to problem (Qe). We prove 

Theorem 2. Homogenization of problem (Q£). 
(a) Under assumptions (HYP)X and (HYP)3 for (Qe) one has (up to a subsequence) 

& - - E weakly in L2(ft)3, 

where E is the variational solution of problem (P) with the condition ft A rot E = 

0 on an. 
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(b) With assumptions (HYP)2 and (HYP)3 for (Q£) one has 

JE£ -* E weakly in L2(0)3, 

where E is the variational solution, for alii/) € H(rot,fl), of 

/ 7/1 rotx E(x) • rotx ij)(x) dx + 7 / £(x) • -0(x) dx = I F(x)rp(x) dx, 
Jn Jo JQ 

where r}\ > 0 is a constant (given in Section 3) . 

Proofs of these results are done in Sections 2 and 3 for (P£) and (Qe) respectively. 
One can also find therein some remarks about the behavior of global electromagnetic 
energy. It is an interesting question to ask about the corresponding behavior of the 
local energy, which seems much more crucial for physical problems. 

Also, the same type of results holds if we assume r€/e -> c > 0 instead of assuming 
exactly that r€ = ce. However, we skip the proofs of this fact. 

We end this introductory section by recalling standard materials on mathematics 
related to problem (P). 

We introduce the following standard notation, see for instance [7], [9], [13]: 

He = L2(ne)3, 

H(rot,Q€) = {Ee L2(fte)3; rotE G L2(fi£)3}, 

with the usual norm ||.E||#(rot,n«) = ||-E|| 1,2(^)3 + ||rot^||L2(ftc)3. 
if (rot, fl£) is a well known Hilbert space. In order to tackle the first boundary 

condition, that is problem (P£) with a perfect conductor type boundary condition, 
we also introduce 

V0
e = #0(rot, ft*) = {Ee H(rot, ft*), n€(x) A E(x) = 0 on dtf}. 

Of course, Vfi is a closed space in H(rot, ft5). The corresponding variational formu
lation for problem (P£) is then naturally given for all (p € /Zn(rot, fte) by 

(1.14) a€(E£,<p) = I rotE£ • rot^dx + 7 / Ee • 0dx = f Fe • $dx. 
Jne JQ£ Joe 

We recall that the sesquilinear form a(u,v) is coercive on Vjf: there exists 0 > 0 
such that %la(u,u) ^ /?|M|vy, Vu G V£. 
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By virtue of the above facts and the Green formula, the corresponding operator Ae 

is characterized by 

AeE = Tot(rotE)+-yE 

and 

D(Ae) = {E G Ve; rot(rot.E) € H€}. 

Since (V£)' is a space of distributions and since the sesquilinear form a given above 
is coercive on VJf with the constant /3 = inf (1,7), there is a unique solution Ee in VJf 
of (P€) thanks to the Lax-Milgram Lemma. 

For problem (Qe) we put V£ = H(rot,tt€), and this defines the same operator A€ 

but with 

D(A£) = {Ee Ve; rot(rot£) G He, ne(x) ArotE(x) = 0 on dtf}. 

2. PROOF OF THEOREM 1 

2.1. Proof of Theorem 1(a) 

We divide the proof in several steps. 

First step: Variational formulation and uniform estimates 

The corresponding variational formulation, according to the previous section, is 
given for all $? G H0(rot, ft£) by 

(2.1) / totEe rot^dx + i I E* • &dx = / F€ ^dx. 
Jn* JQ£ Jne 

One gets easily uniform estimates for Ee and rotEe from (2.1) by taking <p := Ee, 
hence one obtains 

(2.2) \\E£\\V< < c , 

where c is a constant independent of e. 

We recall that if Ee G HQ(xot, ST) and 

tf0(rot,n) = {C1 G (L2(fi))3, rotx U G (£2(ft))3, n A U(x) = 0 o n 9 f t } 
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then E€ satisfies E£ e Ho (rot, ft) and rot Ee = rot Ee. Hence we deduce that Ee be
longs to a bounded subset of .Hio(rot, SI). All in all, one has (up to a subsequence) 

(2.3) E* -±E weakly in L2(ft)3, 

(2.4) roT^-- -rotE weakly in L2(il)3 

and, for all 0* € Ho(rot,tle), one has 

(2.5) / rot &(x) • rot0s(x) dx + 7 / JE?(X) • ^ ( x ) dx = / F*(x) • <^(x) dx. 
J« Jfi Jn 

Following the classical method introduced by L. Tartar, see [17], we are going to take 
a test function of the form 

(2.6) £-(*) = W*(x)[^(x)], 

where x 1—> xj)(x) G (C%°(Q))3 and x 1—•> W*(x) is a 3 x 3 matrix valued function 
given by 

We(x) = (W!(x),WZ(x),W§(x)), 

that is, Wi (x) is the ith column of the matrix We(x). 
To simplify the exposition, we introduce some matrix operations. We set f j 3 for 

the set of matrix of order 3. 

Second step: Definitions and formulas 
a) Let x 1—> U(x) and x 1—> V(x) be two n3" v a u i e c - functions 

V(x) = (Ul(x),U2(x),U3(x)) 

and 

y(x) = (Vl(x),V2(x),V3(x)). 

Then we define an (R3) vector-valued function x 1—•> (U A V)(x) by 

3 

(2.7) (U A V)(x) = £ Ui(x) A Vi(x). 
i= l 

b) With the same notation, if x 1—•> U(x) is a n3~ v a m e d function, one defines a 
n3-valued function x 1—•> rot U(x) by 

(2.8) rot U(x) = (rot Ux (x), rot U2(x), rot U3(x)). 
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c) Note that, for x \—> U(x) and x i—> V(x) two fls-valued functions, we get 

3 

(2.9) (rot U) A y(x) = X)(rot U{(x)) A V{(x). 
І=I 

d) Let x i—> n(x) be an (IR3) vector-valued function. Then we define a fJs-vahied 

function x i—> (U A n)(x) by 

(2.10) (U An)(x) = (Ui(x) An(x),U2(x) An(x),U3(x) An(x)) 

and similarly for n A U. 

Next, we state some lemmas which will be useful for the proof of Theorem 1. 

Lemma 1. Let U and V be as in a) and smooth. Then 

(2.11) div(U A y)(x) = y(x) • rot V(x) - U(x) • rot V(x), 

where "•" means the scalar product of (R3) vectors. 

P r o o f . We use definition a), and compute 

/ 3 \ 3 

div(U A y)(x) = div f ] £ Ut(x) A Vi(x) J = ^ div(Ut(x) A V{(x)) 
^ Z = l ' 1 = 1 

3 

= ^{Vifr)'rotUi(x) - Ui(x) • rotVi(x)) 
i=l 

3 

= 1 ] Я(з) • rot ŮІ(X) - J ] ÜІ(X) • rot U(x) 
ś = l i=l 

= У(x) • rot U(x) - U(x) • rot V(x). 

Lemma 2 (Green Formula). Let U and V be as in a) and smooth, Q, C R3 a 

regular bounded open set in R3. Then 

(2.12) / (UAV)(x)-n(x)dr= / V(x) • rot U(x)dx - / U(x)-rotV(x)dx 
Jan Jfi Jn 

where "•" denotes the scalar product of 3 x 3 matrices on the right-hand side. 

Proof . Using integration by parts in (2.11), one has 

/ div(U A V)(x) dx = / V(x) • rot U(x) dx - / U(x). rot V(x) dx 
JQ JQ Jn 

and thus (2.12) follows. • 
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Lemma 3. Let U be as in a) and xl)(x) = (xfri (x),\j)2(x),xl)3(x)) a vector-valued 

function rp e (C™(n))3. Then 

(2.13) rot(U(x) • $(x)]) = (rot V(x))[xf(x)] + U(x) A V(tf i (x) ,^(z) ,^>(x)) . 

P r o o f . Using definition b), one computes 

rot(U(s) • ${x)]) = vot(^2Ui(x)tPi(x)) 
M=I ' 

3 3 

= £ ( r o t Ut(x))^t(x) + £ Ui(x) A V ^ ( x ) 
t= i t=i 

= (rot Ui (x), rot U2(x), rot C/3(x))[^(x)] 

+ (Ui(x),U2(x),U3(x)) A (V^i(x), V ^ ( x ) , V ^ W ) 

= vot(V(x))[xjj(x)] + U A V^(x) 

with Vtp(x) = (V^i(x), Vip2(x), Vip3(x)). D 

77n*rrf step: Oscillating function 

We are going to construct a {^-valued function x i—> We(x), appearing in (2.6), 
as follows. 

For each cell P£ included in ft, we construct We in one typical cell and repeat the 
process by e periodicity. In the cells not strictly included in 0 , we simply set W5 as 
equal to Id (Identity matrix of order 3). 

Let P% be a cell strictly included in il. Recall that dT% denotes the boundary 
of the hole and has radius r€. We consider the hole centered at ek and radius 2re, 
denoted by B\. 

CéйҢ 
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Therefore, we have divided the cell Pk in three subregions: the ball Tk centered 
at ek and radius re, the circular annulus Ck of small radius r€ and large radius 2re 

and the exterior region P% - (T£ U CjQ. In T£, we set W = 0 (null matrix). In 
pk ~ (Tk UCfc

e)we set W = Id. 

It remains to specify Wc in C£ and we look (for reasons to be explained below) 
for W such that 

{ r o t x W e = 0 , xeC£
k, 

n£ A W = 0, x G dT£, 

nE AWe =n£ Aid, rr G 3££. 

Since C£ has exactly a scale of re units, it is enough to look for W = W(y) (matrix-

valued) defined for y G C = {y G R3, 1 ^ |y| ^ 2}, and satisfying 

( roty W = 0, yeC, 

nAW = 0, |y| = l, 
n A W = n A Id, \y\ = 2, 

and then in each C| define We by We(.z) = W(x -ek/r£), which clearly satis

fies (2.14) if W satisfies (2.15). In fact, we shall display explicitly W. First, note 

that rot Id = 0. 

On the other hand, let y = (t/i,t/2,y3) G R3 and |y|2 = y\ + y\ + y| . Then 

/ 5 A (\y\2 0 0 \ l 0 -2y 3 2y2 

rot(|y|2Id)= % ] A 0 |y|2 0 = 2y3 0 - 2 y i 

\ a 3 / V 0 0 |y|2/ \ -2y2 2»i 0 

and as (n(y) 0 n(y)) A n(y) = 0, where n(y) = y/|y|, we find adjusting coefficients 

that 

(2.16) W(y) = ^(|y|2 - 1) Id+|t?(v) ® n(y) 
З м " ' ' 3 

does the job. 
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Fourth step: Properties of We 

First, let us show that We —> Id strongly in L2(fi) as e —• 0. Indeed, Ce being 
the union of the CjTs and T£ the union of the Tf., one has 

||W£ - Id ||La(n) = ||W£ - Id \\LHTt) + | |W - Id | | t a ( c . , 

= l|w|U-(7*) + l|wv-w|U9(C.) 

< a mes(Te) + / |We(x) - Id |2 dx 
Jc 

< C l ( r £ ) 3 ^ ^ + J^ |W£(x) - Id | 2 dx 

Setting x/re = y, thus dx = (re)
3 dy, one has 

IIWe - Id ||La(fl) ^ c2 ( ^ ) 3 + c3 ( ^ ) 3 J |W(y) - Id |2 dy ^ c ( ^ ) 3 . 

As e -•> 0, we get lim ||We - Id | |L2 ( n ) = 0. 

Next, we wish to show that rotx W
e is bounded uniformly in L2(fi). In fact, we 

shall show that rotx W
e(x) = 0. Note that there are no discontinuities for rotx We(x) 

across the various boundaries. 
Clearly 

ro t x W e (x )=0 , xeT£ 

and 

rotx W
e(x) = 0 , x e PI - (Tf, U Ce

k), 

and we recall that in Ck, 

We(x) = w ( - ^ - ^ ) . 

Then rotx W
e(x) = 0 follows from roty W(y) = 0 which is the case as 

rot„ W(y) = rots i ( |y | 2 - 1) I d + | n ( y ) ® tt(y) = 0 

since 
rot„(^(|y|2Id)) = - | l d and | rotv (n(y) ® r.*(y)) = | Id. 

Thus rotx W
e being null is of course bounded uniformly in L2(Q). 
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Fifth step: Passing to the limit 

We return to the variational formulation (2.5) and replace (pF by 

<pe(x) = W(x)$(x)] 

for all but fixed %j) G (C^°(Q))3. After extending Ee by zero in the holes, and using 
the matrix formulas and convergence properties given above, one obtains 

(2.17) / rot & • rot W(x)$(x)] dx 
JQ 

+ / rotWe(x) • w(x) A (a0i(x),a^(x),a^(x)) 
JQ 

+ 7 / &(x) • W e (x)[#r)] dx = / F*(x) • W*(x)[^(x)] dx. 
JQ JQ 

As e -> 0, we get 

- / rotE(x) • Id Atffa(x),dip2(x),dfo(x)) dx + 7 / £(x) • 0(x) dx 
JQ JQ 

= / F(x).fj>(x)dx, 
JQ 

thus 

/ rot E(x) - rot^p(x) dx + 7 / E(x) • ^(x) dx = F(x) • $ x ) dx 
JQ JQ JQ 

for all tj) 6 (C£°(^))3> ^ d t Q i s i s exactly the conclusion of Theorem 1(a). 

2.2. Proof of Theorem 1(b) 

First step: Uniform estimates 

As in the proof of Theorem 1(a) above, one has \\E£\\ye < c. 

Second step: Two-Scale convergence 

We use standard notation and set Y = [ - | » + | ] (identified with the periodic 

cell), and Y* = Y -T where T = cBx. Since (EE) and (xotEe) are bounded 

in L?(Q)3, see [1], [12], [14], up to a subsequence, they two-scale converge respectively 

to E°(x,y) and V(x,y) belonging to (L2(Q x Y))3. That is, for any ^(x,y) € 
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D(n,C™(Y))3 we have 

(2.18) E£ -* E weakly in (L2(fi))3, 

(2.19) rot_E* -* rotE weakly in (L2(ft))3, 

(2.20) lim / E£ • $(x, -) dx = f [ E°(x, y) • $(x, y) dx dy, £-+°Jn \ e/ JQJY 

J E°(x,y)dy = E(x), 

(2.21) lim / rot E£ • $(x, -) dx = f f V(x, y) • $(x, y) dx dy, 
£-+°Jn v eJ JQJY* 

with 

(2.22) J V(x,y)dy = TotE. 

We note that E£ and rotE£ are equal to zero in Q — tt£. 
Therefore, their two-scale limits E°(x,y) and V(x,y) are equal to zero if y G 

Y-Y*. 
Next, let ty = ty(x, y) be a smooth function with support in Y* with respect to 

the variable y. It follows that 

/ TOtEe ^(x,-jdx= I £ e • frotx^fx,-J-f-roty^fx,-J dx, 

thus 

e / rot E€ • $(x, — J dx = I Ee • \e rotx $(x, -j+ roty $(x, - J dx, 

and extending by zero in the holes we obtain 

el TotEE $(x, -J dx = I E£.\erotx^i}(x,—J+Toty^p(x,-J\dx. 

Sending e —•> 0 and using two-scale convergence, one has 

0 = / / EP(x,y)Toty$(x,y)dxdy. 
JQJY* 

Hence 
roty E°(x, y)=0 in D'(il x Y*) 

and one finally gets 
frotyE°(x,2/)=0, y£Y*, 

1 n(y)AE°(x,y)=0, yedY*. 
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From the results of [2], [3], [4], [5], [9], [13] one deduces that (\Y* being the charac
teristic function of Y*) 

(2-23) E?(x,y) = XY-(yMv)[E{x)}, 

where OJ is the T/l3_va-lue<i function defined for y € Y* by 

(2-24) U(y) = (vi(y),t!2(y),o3(y)) 

and 

(2.25) Ui(y) = (V*t)(y), 

each $t- being a solution in Hl(Y*) of 

( $>{ = yi — 0 t , 0t- y-periodic, 

(2.26) A$. = 0 in Y*, 

l *,|ar = 0. 

Note that roty U = 0 and fi(y) A U = 0. 
We make the first passage to the limit in the variational formulation still given 

by (2.5) 

/ rotx &(x) • rotx <jF(x) dx + 7 / &(x) • <?(x) dx = / Fi(x).0£(x) dx 
JQ JQ JQ 

for all 0s G Ho(vot, il€), by making the precise choice 

(2.27) ^ = u(f )[£(*)], 

where U is defined by (2.24) for any tp G (C^°(U))3 and we obtain 

(2.28) / rotx &(x) • rotx{U*(x)[^(x)]}dx + 7 / 2F(x) • V£(x)$(x)]dx 
JQ JQ 

= f F£(x)*V€(x)$(x)]dx. 
JQ 

For the first term on the left hand side and the term on the right-hand side of (2.28) 
we use two-scale convergence, noticing that 

votx{V
€(x)$(x)]} = (rotx V

€(x))[$(x)] + V£(x) A V${x) 

= -(voty V)€[rjJ] + Ue A Vt/> = Ve A V^ 

and that the two-scale limit associated with rotx E
£ is V(x,y). 
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Let us deal with the second term on the left hand side of (2.28). For this purpose 
we use simply the div-rot lemma of L. Tartar, F. Murat, see for instance [18], since 
rotx E

£ as well as div(VE(x)[tp(x)]) are (uniformly) bounded in (L2(il))3 since 

div(U£(x)[^(x)]) = div ( £ UeV<) = £ div(U")V. + £ Uei • Vi>i(x) 
^ i ' i i 

= 0 + YJV
ei-Vx\>i(x). 

i 

Therefore one obtains, for all $ € (C~(ft))3, 

/ / V(x,y)V(y)t\V$(x)dxdy + -) [ E(x)dx [ V(y)$]dy 
JQ JY* JQ JY* 

= [ F(x)dx [ V(y)$]dy. 
JQ JY* 

Setting fym V(y) dy = CId, where C € R is a fixed constant, one obtains 

(2.29) / / V(x, y) -V(y)A V^(x) dx dy + Cl [ E(x) • xpdx = C / F(x) • $dx. 
JQ JY* JQ JQ 

It remains to analyze the first term on the left hand side of expression (2.29). 
By definition, for all smooth ^(x,y) we have 

/ rotE£(x) ^p(x,—)dx—•> / / V(x,y) ^(x,y)dxdy. 
JQ \ e/ JQJY* 

Choose any V> such that roty rf = 0 and suppy $ C Y*. Then the left-hand side can 
also be written as 

/ EE • (rotx $) (x, -\dx= [ & • rotx Uf(x, - ) 1 dx. 

We can again use the div-rot lemma. As rot Ee is bounded and since obviously 

div|rotx Up(x, - J I I = 0 and rot* Up(x, - J I = (rotx $) (x, - J 

are bounded uniformly in (L2(Q))3, 

I Ee • (rotx $) (x, - J dx —> / E(x) dx / rotx $(x, y) dy. 
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Alltogether we have obtained that for all ^p(x,y), supp .^ C Y*, Toty^p(x,y) = 0, 
one has 

/ / V(x, y) • ^p(x, y) dxdy= / E(x) dx / rotx ^p(x, y) dy 
JQ JY* JQ JY* 

= dx rotxE(x)ij>(x,y)dy, 
JQ JY* 

thus 

/ / [V(x,y)-rotxE(x)] $(x,y)dxdy = 0. 
JQJY* 

Prom [2], [3], [4], [9], [5], [13] we deduce that there exists Vi = Vi(x,y) such that 

(2.30) V(x, y) = rotx E(x) + roty Vx (x, y). 

Therefore (2.29) becomes, for all ^ € (C£°(ft))3, 

(2.31) / / {rotxE(x)^rotyV1(x,y)}'\}(y)r\V^(x)dxdy 
JQ JY* 

+ C7 / E(x) • $dx = C / F(x) • $(x, y) dx. 
JQ JQ 

In the second step, we precise further the term rotj, V\(x,y). For this purpose, we 
get back again to the variational formulation (2.5), take 0s = ^p(x,x/e), multiply 
by e and send it to zero. In this way we obtain 

/ / V(x,y) 
JQJY* 

roty ^ = 0 

for all ^|) such that suppy ^p C Y* with ft A ̂ ^)\^T = 0. On the other hand, one has 
also easily div^ V(x,y) = 0 in D'(Sl x Y*). We obtain in particular from the facts 
already mentioned, that V is given by 

(2.32) V(x,y) = V(y)[rotxE(x)). 

Therefore (2.31) becomes 

(2.33) / / V(y)[rotx E(x)] • (V(y) A Vj(x)) + C7 / E(x) - $(x) dx 
JQ JY* JQ 

= C f F(x) <$(x)dx. 
JQ 
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Next, one has 

U(y)[rot, E(x)] • (U(y) A Vxj(x)) 

= £ U(y)[rot, E(x)] • Ui A V x ^ ( x ) 
t 

= " £ ( # A U(y)[rot, E(x)]) • V ^ . ( x ) 
t 

= " E J2^i(y) A U;-(y)(rots ^(x)),) • V,&(*)-
* i 

Define n G R such that 

/ (tfiAtf2)dy = ije5, / (U2Af73)dy = r7el, / (U* AUx)dy = t1e2. 
JY* JY* JY* 

Then, one obtains that 

/ U(y)[rotxE(x)]-(U(y)AVj(x))dy 
Jy* 

= rj{(rotx E)2 • ^ ^ i - (rotx E)M2} 

+ r/{(rotx E)z • d^2 - (rotx E)2d^z} 

+ rj{(rotx £?)i • 0 ^ 3 - (rotx E)^x) 

= n(rotx -E)i@aife - 3^2) + rf(rotx E)2(^x - d^3) 

+ r / ( r o t x . E ) 3 ( a i ^ 2 - ^ i ) 
= rj rotx E • rotx ^-

Consequently, for all ^ 6 (C~(fl))3 we obtain 

n I rotx E(x) • rotx $(x) dx + 7C / -E(«c) • ^(x) dx = C I E(x) • $(x) dx, 
Jn Jn Jn 

where .7, £ are constants, which is the claim of Theorem 1(b). 

R e m a r k 1. If we replace the boundary condition 

rT(x)AE€(x)=0 

by the non homogeneous condition 

rT(x)AEe(x)=tT Ag(x), 

written also as 
TTA(E*-g(x))=0, 
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where g is a given (smooth) vector field, we have the same type of result by setting 

E£-g(x) = V£(x). 

R e m a r k 2. Under the assumption (HYP^ and if we suppose furthermore the 
strong convergence of the sequence F£ in L2(fi), it is not difficult to check that the 
global electromagnetic "energy" 

/ | r o t£ ; e | 2 +7 I \E* 
Jn Jíl 

converges towards the corresponding homogenized one (involving E). 
Under the case of assumption (HYP)2, corrector results can eventually give a clue. 

3. PROOF OF THEOREMS 2 

3.1. Proof of Theorem 2(a) 
First step: Variational formulation and uniform estimates 
Problem (Q£) has the variational formulation 

(3.1) / rot E£ • rot 0(x) dx + / Ee • 0(x) dx = f F€ • 0(x) dx 
JQ* JQ* JQ* 

for all 0 e if(rot, O eJ^^ 
Let us note that rot E6 / rot EE in general. Extending by zero, we now get 

(3.2) / rotE£(x) • rot0(x)dx+ f We(x) • 0(x)dx= / F*(x) • 0(x)dx. 
JQ JQ JQ 

Letting 0 := E£, one has 

/ | ro t^ | 2 dx+ / \E€\2dx^l f \Fe\2dx+± f \E£\2dx, 
Jnc

 JQ*
 2

 JQ*
 2

 JQ* 

thus 

ll^llW.n-) < / \™tE£\2dx+ f |^|2dx 
JQ* JQ* 

^ f | rot£ e |2dx+i / \E6\2dx^C 
JQ*

 2
 JQ* 

and consequently 
\\E£\\H(rot,Q*) < C. 
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Second step: Passing to the limit 
Up to a subsequence we can assume 

(3.3) E*(x) -^E(x) weakly in (L2(ft))3, 

(3.4) roT^-^V (x) weakly in (L2(Q))3. 

Then from (3.2) one has, for all 0 G (C°°(n))3
y 

f V(x) • Tot0(x) dx + / E(x) • <p(x) dx= f F(x) • <p(x) dx. 
Jn Jn Jn 

It remains to identify V. Let rj) G (C£°(n))3. Then of course 

/ rot£*(x) • ip(x) dx —•> / V(x) • tf(x) dx. 
Jn Jn 

On the other hand, 

/ rot£*(x) • $(x)dx = f rot£*(x) • $(x) - We[$(x)]dx 
Jn Jn 

+ / rot£*(x) • W$](x) dx, 
Jn 

where We is the test (matrix-valued) function given in Section 2. 
Since ip-Wty) —> 0 strongly in (L2(ft))3, one has 

/ V(x) • *p(x)dx = lim / rotr^(x) • W$](x)dx. 
Jn e_*° Jn 

Further, 

/ r o ^ ( x ) . W e [ ^ ] ( x ) d x = / rot.E c(x)-W e[$(x)dx 
Jn Jn* 

= / ££(x)-rot{W*[$(x)}dx, 
Jn* 

since n £ AW E -=0on dSl£. 
As 

/ .Ee(x)-rot{We[^](x)}dx 
Jn* 

= / Ee(x) • (rot W)$](x) dx + / E£(x) • Wc A V*p(x) dx 
Jn* Jn* 

= 0 + / .£^(x)-W cAV^(x)dx—> f E(x)-Tottp(x)dx, 
Jn* Jn 
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we have finally obtained that 

/ V(x) • tp(x) dx = J E(x) • rot tf(x) dx, 
Jn Jn 

and thus 

V = rotE. 

This concludes the proof of Theorem 2(a). 

3.2. Proof of Theorem 2(b) 
First step: Uniform estimates in H(rot, Q) 
Repeating the same lines of calculus, we get again similar uniform estimates, and 

thus we can assume that weak convergences (3.3) and (3.4) hold true. 

Second step: Two-scale convergence 
Since (Ee) as well as (rotEe) are bounded in (L2(Q))3, there exist two two-

scale limits, E° e (L2(Q x Y))3, V e (L2(Q x r ) ) 3 such that for any $(x,y) £ 
(D(Sl,C™(Y)))3 one has 

(3.5) lim / E* • i£(x, -) dx = f [ E?(x, y) • xf(x, y) dx dy 
£-+°Jn v eJ JQJY* 

and 

(3.6) lim / rotEe • $(x, -) dx = [ / V(x,y) • t£(x,y)dxdy. 
e^oJn v eJ JQJY* 

By integration by parts, we obtain for all ip(x,y) € (D(Q,C™(Y*)))3 with compact 
support (in y) in Y* 

e I rotE£ • tf(x, -j dx = / Ee • erotx tp(x, -) + roty tft(x, - j dx. 

Passing to the limit in both terms with the help of two-scale convergence leads to 

(3.7) / / EJ°(x,y)rotytp(x,y)dxdy = 0, 
JQJY* 

that is 

(3.8) roty E°(x,y) = 0 in (D'(Sl x Y*))3. 

Now, to the assumption on ip(x,y) we add the condition rotytp(x,y) = 0 with com
pact support in x as well as in y in Y*. Since 

/ rotZ^(x) • t£(x, -) dx = / E*(x) rotx $(x, - ) dx, 
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using the two-scale convergence we are led to 

/ / V{x,y) \jJ{x,y)dxdy= / / E°{x,y) TOtxtp{x,y)dxdy, 
Jn JY* JQ JY* 

and thus integrating by parts in fi we get 

/ / J f ^ (x ,y ) ro t x ^ (x ,y )dxdy = / / rotxE°{x,y) tf{x,y)dxdy. 
JQ JY* JQ JY* 

Hence 

(3.9) / / [V(x ,y ) - ro t x £° (x ,y ) ] $ x , y) dx dy = 0. 
JQJY* 

We will use all these facts to identify E° and V. 

According to [2], [3], [4], [9] there exist unique if G HX{Y*) and hx G Hi{Y*) with 

Hl{Y*) = {ueL2{Y*)3, Totyu = 0, divyu = 0, n{y) *u{y) = 0} 

such that 

(3.10) E?{x,y) = Vy<p{x,y) + fti(x,y), 

and finally, one can write 

(3.11) E°(x,y) = XY'(y)G(y)[E(x)] 

and 

(3.12) V{x, y) = XY* (y)G(y) x G(y)[rot E{x)], 

where G is the f[3"v a-u ed function defined for y G Y* by 

(3.13) G(j/) = ((?1(y),(?2(y),o3(y)) 

and 

<?«(») = (V*,)(»), 

each &i being solution in Hl{Y*) of 

• i = y{ — Tt-, Ti y-periodic, 

(3.14) A # ť = 0 in y*, 

dn lar 
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Note that roty G = 0 and n(y) • G(y) = 0. 
Prom the variational formulation (3.2), one gets V^ G (C°°(Q))3 

f f V(x, y) • rot $(x) dxdy-r f E(x) • $(x) dx = f F(x) • tj>(x) dx, 
JQ JY* JQ JQ 

which by virtue of (3.12) yields 

/ XY-(y)G(y)xG(y)[nAxE(x)]'Totx^(x)dx+ f E(x)^(x)dx = f F(x)4(x)dx. 
JQ JQ JQ 

Since we can set fym G(y) x G(y) dy = rjil, this concludes the proof of Theorem 2(b). 

Acknowledgments. We would like to thank Prof. M. Artola and M. Cessenat 
for having kindly provided preprints [5]. 

References 

[1] G. Allaire: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992), 
1482-2518. 

[2] M. Artola, M. Cessenat: Sur un problème raide en homogénéisation elliptique. C R. 
Acad. Sci., Paris, Sér. I 309 (1989), 761-766. 

[3] M. Artola, M. Cessenat: Un problème raide avec homogénéisation en électromagnétisme. 
C R. Acad. Sci., Paris, Sér. I 8I0 (1990), 9-14. 

[4] M. Artola, M. Cessenat: Sur la propagation des ondes électromagnétiques dans un milieu 
composite (diélectrique-conducteur). C R. Acad. Sci., Paris, Sér. I 810 (1990), 375-380. 

[5] M. Artola, M. Cessenat: Problèmes d'homogénéisation diélectrique conducteur dans les 
composites en structure périodique. Rapport CE A-DAM. Limeil-Valenton, 1990. 

[6] A. Bensoussan, J.-L. Lions, and G. Papanicolaou: Asymptotic Analysis for Periodic 
Structures. North-Holland, Amsterdam-New York-Oxford, 1978. 

[7] A. Bossavit: Electromagnétisme, en vue de la modélisation. Springer-Verlag, Paris, 1991. 
[8] M. Bouiar. Les discontinuités du rayonnement électromagnétique. Dunod, Paris, 1965. 
[9] M. Cessenat: Mathematical Methods in Electromagnet ism. Linear Theory and Appli

cations. World Scientific Publishers, River Edge, 1996. 
[10] D. Cioranescu, F. Murât: Un terme étrange venu d'ailleurs. In: Nonlinear Partial Dif

ferential Equations and Their Applications. Collège de France seminar, Vol. III. Re
search Notes in Mathematics (H. Brezis, and J. L. Lions, éd.). Pitman, London, 1982, 
pp. 98-138. 

[11] D. Cioranescu, F. Murât: Un terme étrange venu d'ailleurs II. Nonlinear Partial Dif
ferential Equations and Their Applications. Coll. de France semin., Vol. IL Research 
Notes in Mathematics (H. Brezis, J. L. Lions, éd.). Pitman, London, 1982, pp. 154-178. 

[12] D. Cioranescu, P. Donato: An Introduction to Homogenization. Oxford Lecture Series 
in Mathematics and its Applications 17. Oxford University Press, New York-Paris, 1999, 

[13] R. Dautray, J. L. Lions: Analyse mathématique et calcul numérique pour les sciences 
et les techniques, Vol. 2. Masson, Paris, 1985. 

[14] G. Nguetseng: A general convergence result for a functional related to the theory of 
homogenization. SIAM J. Math. Anal. 20 (1989), 608-623. 

224 



[15] J.-S. Hubert, E. Sanchez-Palencia: Introduction aux Méthodes asymptotiques et à 
l'homogénéisation. Application à la mécaniques des milieux continus. Masson, 1992. 

[16] E. Sanchez-Palencia: Non-Homogeneous Media and Vibration Theory. Lectures Notes 
in Physics 127. Springer-Verlag, Berlin-Heidelberg-New York, 1980, 

[17] L. Tartar. Cours Peccot. Collège de France, 1977. 
[18] L. Tartar. Compensated compactness and applications to partial differential equations. 

Nonlinear Analysis and Mechanics, Vol. IV. Pitman, Boston-London, 1979, pp. 136-212. 
[19] N. Wellander. Homogenization of Maxwell equations, Case I. Linear Theory. Appl. 

Math. 46 (2001), 29-51. 

Authors7 address: R. Alexandre, H. Taha, MAPMO-UMR 6628, BP 6759, Université 
d'Orléans, 45067 Orleans Cedex, France, e-mail: alexandr01abomath.univ-orleans.fr; 
hassan.tahaClabomath.univ-orleans.fr. 

225 



49 (2004) APPLICATIONS OF MATHEMATICS No. 3, 201–225

PROPAGATION OF ELECTROMAGNETIC WAVES

IN NON-HOMOGENEOUS MEDIA

� ��� � � � ��� 	 � 
 � � ������ 
 � 	 �
, � � ��� � 
�� � � � , Orleans Cedex

(Received February 5, 2002)

Abstract. We consider electromagnetic waves propagating in a periodic medium charac-
terized by two small scales. We perform the corresponding homogenization process, relying
on the modelling by Maxwell partial differential equations.

Keywords: Maxwell equations, homogenization, two-scale convergence, oscillating test
functions

MSC 2000 : 35Q60, 35B27

1. Introduction

Homogenization results for Maxwell equations, by the classical method of asymp-

totic expansions or more recently by two-scale convergence, are well known, see for
instance [1], [3], [4], [5], [6], [19]. Let us first recall Maxwell equations framework,

see [7], [8], [9]. Let Ω ⊂ � 3 be a physical domain. Then the electromagnetic prop-
agation of waves in Ω is described by four ( � 3 ) vector valued functions D, E, B,

H of (x, t) ∈ Ω × � . Here D is the electric induction, E the electric field, B the
magnetic induction and H the magnetic field. Introducing furthermore the charge

density % = %(t, x) and the current density J = J(t, x) of charges inside Ω, one has
Maxwell equations in the form

(i) − ∂D

∂t
+ rotH = J Ampere law,(1.1)

(ii)
∂B

∂t
+ rotE = 0 Faraday law,

(iii) divD = % Gauss electrical law,

(iv) divB = 0 Gauss magnetic law.
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Note that the current and charge densities satisfy the continuity relation or charge

conservation

(1.2)
∂%

∂t
+ divJ = 0,

as in fact follows also from (1.1).
Herein, we assume linear behavior laws, that is proportionality of fields and in-

ductions,

(1.3) D = αE, B = µH.

Here µ and α are the magnetic permeability and electric permittivity respectively

and these are assumed constant to simplify our exposition. Recall that in general,
this linear behavior is not true for usual electromagnetic media and we hope to get

back to this non linear aspect (in this direction see however [9]).
Moreover, we simplify Maxwell equations by considering the very special harmonic

case (note that J should satisfy some kind of Ohmic law). However, let us mention

that most if not all of our results below could be extended easily to cover the time
dependent case.

Let us recall quickly these facts, referring for much more details to standard books
such as [7], [8], [9].

Since we are interested in time-periodic solutions only, we look for solutions in the
form

D(x, t) = <(exp(iωt)D(x)), H(x, t) = <(exp(iωt)H(x)),(1.4)

J(x, t) = <(exp(iωt)J(x))(1.5)

and

(1.6) B(x, t) = <(exp(iωt)B(x)), E(x, t) = <(exp(iωt)E(x)).

We denote the new complex-valued functions of a variable x with the same capital

letters as the original real-valued functions of variables x, t. Then equation (1.1(ii)),
divided by exp(iωt), becomes (with i2 = −1)

(1.7) −iωD(x) + rotxH(x) = J(x)

and equation (1.1(ii)) becomes

(1.8) iωB(x) + rotxE(x) = 0,
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which by applying the rot operator leads to

(1.9) iω rotxB(x) + rotx(rotxE(x)) = 0.

From (1.3), one has rotxB(x) = µ rotxH(x), and thus it follows that

(1.10) iωµ rotxH(x) + rotx(rotxE(x)) = 0.

Using (1.7), one gets

(1.11) iωµ(J(x) + iωD(x)) + rotx(rotxE(x)) = 0.

Using (1.3), one has

(1.12) iωµ(J(x) + iωαE(x)) + rotx(rotxE(x)) = 0.

Hence

rotx(rotxE(x)) + i2ω2µαE(x) = −iωµJ(x).

Usually J = σE + J ′ (where σ is the conductivity), so that

rotx(rotxE(x)) + (i2ω2µα+ iµωσ)E(x) = −iωµJ ′(x).

Let

(1.13) F (x) = −iωµJ ′(x), γ = µω(−ωα+ iσ).

To avoid any mathematical problems, we will always assume that <(γ) > 0. In this
direction, we refer to known standard difficulties associated with Maxwell equations

in [9].

Then, we are finally led to the standard harmonic Maxwell equation

(P) rot(rotE(x)) + γE(x) = F (x).

Let Ω be a bounded regular open set in � 3 . Let ε > 0 be a small parameter and Ωε

a bounded open set Ωε ⊆ Ω ⊆ � 3 , to be specified below.

We consider for γ ∈ � , <(γ) > 0, the homogenization of problem (P) in Ωε with

different boundary conditions on ∂Ωε. That is, electromagnetic waves are propagat-
ing in Ωε and we prescribe the interactions with boundary ∂Ωε.
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More precisely, we consider the following two problems (Pε) and (Qε), with

F ε(x) ∈ L2(Ωε)3:

(Pε)

{
rot(rotEε(x)) + γEε(x) = F ε(x), x ∈ Ωε,

~nε(x) ∧Eε(x) = 0, x ∈ ∂Ωε

and

(Qε)

{
rot(rotEε(x)) + γEε(x) = F ε(x), x ∈ Ωε,

~nε(x) ∧ rotEε(x) = 0, x ∈ ∂Ωε.

The boundary condition in problem (Pε) describes the physical fact that the com-
plementary set to Ωε behaves as a perfect conductor, while the boundary condition

in problem (Qε) could be interpreted as the absence of magnetic charges within the
complementary set to Ωε .

A natural question arises in this electromagnetic setting as to investigate closely
related problems such as

(Rε)

{
rot(rotEε(x)) − grad(divEε(x)) + γEε(x) = F ε(x), x ∈ Ωε,

~nε(x) ∧ Eε(x) = 0, x ∈ ∂Ωε

or

(Sε)

{
rot(rotEε(x)) − grad(divEε(x)) + γEε(x) = F ε(x), x ∈ Ωε,

~nε(x) · Eε(x) = 0, x ∈ ∂Ωε.

Similarly, the last boundary condition reflects the absence of electric charges within

the complementary set to Ωε.
Such problems will not be studied herein in order to limit the length of the paper,

and most importantly because test functions to be used are rather different. These
important problems will be discussed in a forthcoming paper.

Let ε > 0 and rε > 0 be two small parameters such that rε <
1
2ε and consider the

covering of � 3 by cells

P ε
k = ε

[
−1

2
,+

1
2

]3

+ εk,

where k ∈ � 3. In each cell P ε
k we remove the ball

T ε
k = rεB1 + εk,

where B1 denotes the unit ball in � 3 . We let

Ωε = Ω− T ε
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where T ε =
N(ε)⋃
k=1

T ε
k denotes the union of balls strictly included within Ω. As a matter

of fact, note that these balls do not intersect the boundary Ω.
We will study the above problems under one of the scaling assumptions

lim
ε→0

rε
ε

= 0(HYP 1)

or

rε = cε(HYP 2)

where 0 < c < 1/4 is a strictly positive fixed constant.
Finally, we will always assume (at least) that

(HYP 3) F̃ ε ⇀ F weakly in L2(Ω)3

as ε → 0. Above and throughout the paper the tilde over a symbol denotes the
extension by zero in the holes.

We will be concerned with the asymptotic behavior as ε→ 0 of problems (Pε) and
(Qε).

Before stating the corresponding mathematical results, let us explain our moti-
vation. The periodic perforated medium Ωε may be considered as one having two

distinct di-electric constants or even holes that may be considered as charged parti-
cles.
However, let us remark that problems (Pε) or (Qε) studied herein do not really fit

with a clear (or true) physical modeling of propagation of electromagnetic waves in
such non homogeneous media.

There are at least two points from the physical theory of Maxwell equations which
are not really accounted for.

On the one hand, there is definitively a scaling problem between frequency and
spatial scales which is not considered here. From mathematical viewpoint, this ques-

tion leads to very deep technics, in progress actually. To be short, we are assuming
that spatial variations are small compared to wavelenghts.

On the other hand, and this is surely one main point, if one views to the holes as
charged particles, the modeling by problems (Pε) or (Qε) is of course not true. One

should for instance get back to Maxwell equations, say in harmonic form, and take
care of the correct scaling and boundary conditions, involving scattering operators,

see for instance [9].
Last but not least, in view of all these facts, one should note that actually the

right-hand member data given are surely first order distributions, and so some if not
all of our constructions in this paper would have to be modified.
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Having such ideas in mind, the above problems must therefore be considered a

first step in order to tackle real physical problems, maybe as a background to test
mathematical tools available at present.

Even in these simple and academic problems, some constructions displayed in this
paper have to be adapted to more complex situations, and this is why we have started

studying them.

Some of the defects mentioned above are actually worked out.

Our results show in particular that the homogenized problems display a different
output frequency with respect to ω. More precisely, they are the following, see the

notation below.

In section 2 we refer the following as regards to the homogenization of prob-

lem (Pε).

Theorem 1. Homogenization of problem (Pε).
(a) With assumptions (HYP)1 and (HYP)3 for (Pε), one has (up to a subsequence)

Ẽε ⇀ E weakly in H0(rot,Ω),

where E is the variational solution of problem (P), with the condition ~n∧E = 0
on ∂Ω.

(b) Under assumptions (HYP)2 and (HYP)3 for (P
ε), one has (up to a subsequence)

Ẽε ⇀ E weakly in H0(rot,Ω),

where E is the (variational) solution in H0(rot,Ω) of

∫

Ω

η rotxE(x) · rotx ψ(x) dx+ γζ

∫

Ω

E(x) · ψ(x) dx = ζ

∫

Ω

F (x)ψ(x) dx

for all ψ ∈ H0(rot,Ω), where η > 0, ζ are two constants (given in Section 2).

Section 3 is devoted to problem (Qε). We prove

Theorem 2. Homogenization of problem (Qε).
(a) Under assumptions (HYP)1 and (HYP)3 for (Q

ε) one has (up to a subsequence)

Ẽε ⇀ E weakly in L2(Ω)3,

where E is the variational solution of problem (P) with the condition ~n∧rotE =
0 on ∂Ω.
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(b) With assumptions (HYP)2 and (HYP)3 for (Qε) one has

Ẽε ⇀ E weakly in L2(Ω)3,

where E is the variational solution, for all ψ ∈ H(rot,Ω), of

∫

Ω

η1 rotxE(x) · rotx ψ(x) dx+ γ

∫

Ω

E(x) · ψ(x) dx =
∫

Ω

F (x)ψ(x) dx,

where η1 > 0 is a constant (given in Section 3) .

Proofs of these results are done in Sections 2 and 3 for (Pε) and (Qε) respectively.
One can also find therein some remarks about the behavior of global electromagnetic

energy. It is an interesting question to ask about the corresponding behavior of the
local energy, which seems much more crucial for physical problems.

Also, the same type of results holds if we assume rε/ε→ c > 0 instead of assuming
exactly that rε = cε. However, we skip the proofs of this fact.

We end this introductory section by recalling standard materials on mathematics

related to problem (P).

We introduce the following standard notation, see for instance [7], [9], [13]:

Hε = L2(Ωε)3,

H(rot,Ωε) = {E ∈ L2(Ωε)3; rotE ∈ L2(Ωε)3},

with the usual norm ‖E‖H(rot,Ωε) = ‖E‖L2(Ωε)3 + ‖rotE‖L2(Ωε)3 .

H(rot,Ωε) is a well known Hilbert space. In order to tackle the first boundary
condition, that is problem (Pε) with a perfect conductor type boundary condition,
we also introduce

V ε
0 ≡ H0(rot,Ωε) = {E ∈ H(rot,Ωε), nε(x) ∧ E(x) = 0 on ∂Ωε}.

Of course, V ε
0 is a closed space in H(rot,Ωε). The corresponding variational formu-

lation for problem (Pε) is then naturally given for all ~ϕ ∈ H0(rot,Ωε) by

(1.14) aε(Eε, ~ϕ) ≡
∫

Ωε

rotEε · rot ~ϕ dx+ γ

∫

Ωε

Eε · ~ϕ dx =
∫

Ωε

F ε · ~ϕ dx.

We recall that the sesquilinear form a(u, v) is coercive on V ε
0 : there exists β > 0

such that <a(u, u) > β‖u‖V ε
0
, ∀u ∈ V ε

0 .
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By virtue of the above facts and the Green formula, the corresponding operator Aε

is characterized by

AεE = rot(rotE) + γE

and

D(Aε) = {E ∈ V ε; rot(rotE) ∈ Hε}.

Since (V ε
0 )′ is a space of distributions and since the sesquilinear form a given above

is coercive on V ε
0 with the constant β = inf(1, γ), there is a unique solution Eε in V ε

0

of (Pε) thanks to the Lax-Milgram Lemma.
For problem (Qε) we put V ε = H(rot,Ωε), and this defines the same operator Aε

but with

D(Aε) = {E ∈ V ε; rot(rotE) ∈ Hε, nε(x) ∧ rotE(x) = 0 on ∂Ωε}.

2. Proof of Theorem 1

2.1. Proof of Theorem 1(a)

We divide the proof in several steps.

First step: Variational formulation and uniform estimates

The corresponding variational formulation, according to the previous section, is

given for all ~ϕε ∈ H0(rot,Ωε) by

(2.1)
∫

Ωε

rotEε · rot ~ϕε dx+ γ

∫

Ωε

Eε · ~ϕε dx =
∫

Ωε

F ε · ~ϕε dx.

One gets easily uniform estimates for Eε and rotEε from (2.1) by taking ~ϕ := Eε,
hence one obtains

(2.2) ‖Eε‖V ε 6 c,

where c is a constant independent of ε.

We recall that if Eε ∈ H0(rot,Ωε) and

H0(rot,Ω) = {U ∈ (L2(Ω))3, rotx U ∈ (L2(Ω))3, ~n ∧ ~U(x) = 0 on ∂Ω}
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then Eε satisfies Ẽε ∈ H0(rot,Ω) and rot Ẽε =
�
rotEε. Hence we deduce that Ẽε be-

longs to a bounded subset of H0(rot,Ω). All in all, one has (up to a subsequence)

Ẽε ⇀E weakly in L2(Ω)3,(2.3) �
rotEε ⇀ rotE weakly in L2(Ω)3(2.4)

and, for all ~ϕε ∈ H0(rot,Ωε), one has

(2.5)
∫

Ω

rot Ẽε(x) · rot ~ϕε(x) dx+ γ

∫

Ω

Ẽε(x) · ~ϕε(x) dx =
∫

Ω

F̃ ε(x) · ~ϕε(x) dx.

Following the classical method introduced by L. Tartar, see [17], we are going to take

a test function of the form

(2.6) ~ϕε(x) = � ε (x)[~ψ(x)],

where x 7−→ ~ψ(x) ∈ (C∞c (Ω))3 and x 7−→ � ε (x) is a 3 × 3 matrix valued function
given by

� ε (x) = ( ~W ε
1 (x), ~W ε

2 (x), ~W ε
3 (x)),

that is, ~Wi
ε
(x) is the ith column of the matrix � ε (x).

To simplify the exposition, we introduce some matrix operations. We set
∏

3 for
the set of matrix of order 3.

Second step: Definitions and formulas

a) Let x 7−→ � (x) and x 7−→ � (x) be two
∏

3-valued functions

� (x) = (~U1(x), ~U2(x), ~U3(x))

and

� (x) = (~V1(x), ~V2(x), ~V3(x)).

Then we define an ( � 3 ) vector-valued function x 7−→ ( � ∧∧ � )(x) by

(2.7) ( � ∧∧ � )(x) =
3∑

i=1

~Ui(x) ∧ ~Vi(x).

b) With the same notation, if x 7−→ � (x) is a
∏

3-valued function, one defines a∏
3-valued function x 7−→ rot � (x) by

(2.8) rot � (x) = (rot ~U1(x), rot ~U2(x), rot ~U3(x)).
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c) Note that, for x 7−→ � (x) and x 7−→ � (x) two
∏

3-valued functions, we get

(2.9) (rot � ) ∧∧ � (x) =
3∑

i=1

(rot ~Ui(x)) ∧ ~Vi(x).

d) Let x 7−→ ~n(x) be an ( � 3 ) vector-valued function. Then we define a
∏

3-valued

function x 7−→ ( � ∧ ~n)(x) by

(2.10) ( � ∧ ~n)(x) = (~U1(x) ∧ ~n(x), ~U2(x) ∧ ~n(x), ~U3(x) ∧ ~n(x))

and similarly for ~n ∧ � .
Next, we state some lemmas which will be useful for the proof of Theorem 1.

Lemma 1. Let � and � be as in a) and smooth. Then

(2.11) div( � ∧∧ � )(x) = � (x) · rot � (x) − � (x) · rot � (x),

where “·” means the scalar product of ( � 3 ) vectors.
���! " $#

. We use definition a), and compute

div( � ∧∧ � )(x) = div
( 3∑

i=1

~Ui(x) ∧ ~Vi(x)
)

=
3∑

i=1

div(~Ui(x) ∧ ~Vi(x))

=
3∑

i=1

(~Vi(x) · rot ~Ui(x) − ~Ui(x) · rot ~Vi(x))

=
3∑

i=1

~Vi(x) · rot ~Ui(x)−
3∑

i=1

~Ui(x) · rot ~Vi(x)

= � (x) · rot � (x) − � (x) · rot � (x).

�

Lemma 2 (Green Formula). Let � and � be as in a) and smooth, Ω ⊆ � 3 a

regular bounded open set in � 3 . Then

(2.12)
∫

∂Ω

( � ∧∧ � )(x) · ~n(x) dΓ =
∫

Ω

� (x) · rot � (x) dx−
∫

Ω

� (x) · rot � (x) dx

where “·” denotes the scalar product of 3× 3 matrices on the right-hand side.
���! " $#

. Using integration by parts in (2.11), one has
∫

Ω

div( � ∧∧ � )(x) dx =
∫

Ω

� (x) · rot � (x) dx−
∫

Ω

� (x). rot � (x) dx

and thus (2.12) follows. �
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Lemma 3. Let � be as in a) and ~ψ(x) = (ψ1(x), ψ2(x), ψ3(x)) a vector-valued
function ~ψ ∈ (C∞c (Ω))3. Then

(2.13) rot( � (x) · [~ψ(x)]) = (rot � (x))[~ψ(x)] + � (x) ∧∧ ∇(ψ1(x), ψ2(x), ψ3(x)).

���! " $#
. Using definition b), one computes

rot( � (x) · [~ψ(x)]) = rot
( 3∑

i=1

~Ui(x)ψi(x)
)

=
3∑

i=1

(rot ~Ui(x))ψi(x) +
3∑

i=1

~Ui(x) ∧ ∇ψi(x)

= (rotU1(x), rotU2(x), rotU3(x))[~ψ(x)]

+ (~U1(x), ~U2(x), ~U3(x)) ∧∧ (∇ψ1(x),∇ψ2(x),∇ψ3(x))

= rot( � (x))[~ψ(x)] + � ∧∧ ∇~ψ(x)

with ∇~ψ(x) = (∇ψ1(x),∇ψ2(x),∇ψ3(x)). �

Third step: Oscillating function

We are going to construct a
∏

3-valued function x 7−→ � ε (x), appearing in (2.6),
as follows.

For each cell P ε
k included in Ω, we construct � ε in one typical cell and repeat the

process by ε periodicity. In the cells not strictly included in Ω, we simply set � ε as

equal to Id (Identity matrix of order 3).
Let P ε

k be a cell strictly included in Ω. Recall that ∂T ε
k denotes the boundary

of the hole and has radius rε. We consider the hole centered at εk and radius 2rε,
denoted by Bε

k.

rε

2rε

Cε
k

T ε
k

Cell P ε
k

Bε
k
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Therefore, we have divided the cell P ε
k in three subregions: the ball T

ε
k centered

at εk and radius rε, the circular annulus Cε
k of small radius rε and large radius 2rε

and the exterior region P ε
k − (T ε

k ∪ Cε
k). In T ε

k , we set � ε = 0 (null matrix). In
P ε

k − (T ε
k ∪ Cε

k) we set � ε = Id.

It remains to specify � ε in Cε
k and we look (for reasons to be explained below)

for � ε such that

(2.14)





rotx � ε = 0, x ∈ Cε
k ,

nε ∧ � ε = 0, x ∈ ∂T ε
k ,

nε ∧ � ε = nε ∧ Id, x ∈ ∂Bε
k.

Since Cε
k has exactly a scale of rε units, it is enough to look for � = � (y) (matrix-

valued) defined for y ∈ C = {y ∈ � 3 , 1 6 |y| 6 2}, and satisfying

(2.15)





roty � = 0, y ∈ C,
n ∧ � = 0, |y| = 1,

n ∧ � = n ∧ Id, |y| = 2,

and then in each Cε
k define � ε by � ε (x) = � (x − εk/rε), which clearly satis-

fies (2.14) if � satisfies (2.15). In fact, we shall display explicitly � . First, note
that rot Id = 0.

On the other hand, let y = (y1, y2, y3) ∈ � 3 and |y|2 = y2
1 + y2

2 + y2
3 . Then

rot(|y|2 Id) =



∂1

∂2

∂3


 ∧



|y|2 0 0
0 |y|2 0
0 0 |y|2


 =




0 −2y3 2y2
2y3 0 −2y1
−2y2 2y1 0




and as (~n(y) ⊗ ~n(y)) ∧ ~n(y) = 0, where ~n(y) = y/|y|, we find adjusting coefficients
that

(2.16) � (y) =
1
3
(|y|2 − 1) Id+

2
3
~n(y)⊗ ~n(y)

does the job.
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Fourth step: Properties of � ε

First, let us show that � ε −→ Id strongly in L2(Ω) as ε −→ 0. Indeed, Cε being
the union of the Cε

k ’s and T
ε the union of the T ε

k , one has

‖ � ε − Id ‖L2(Ω) = ‖ � ε − Id ‖L2(T ε) + ‖ � ε − Id ‖L2(Cε)

= ‖ Id ‖L2(T ε) + ‖ � ε − Id ‖L2(Cε)

6 c1 mes(T ε) +
∫

Cε

| � ε (x) − Id |2 dx

6 c1(rε)3
mes(Ω)ε

ε3
+

∫

Cε

| � ε (x)− Id |2 dx

6 c2

(rε
ε

)3

+
c3
ε3

∫

Cε
0

∣∣∣ �
( x

rε

)
− Id

∣∣∣
2

dx.

Setting x/rε = y, thus dx = (rε)3 dy, one has

‖ � ε − Id ‖L2(Ω) 6 c2

(rε
ε

)3

+ c3

(rε
ε

)3
∫

C

| � (y) − Id |2 dy 6 c
(rε
ε

)3

.

As ε→ 0, we get lim
ε→0

‖ � ε − Id ‖L2(Ω) = 0.

Next, we wish to show that rotx � ε is bounded uniformly in L2(Ω). In fact, we
shall show that rotx � ε (x) = 0. Note that there are no discontinuities for rotx � ε (x)
across the various boundaries.
Clearly

rotx � ε (x) = 0, x ∈ T ε
k

and

rotx � ε (x) = 0, x ∈ P ε
k − (T ε

k ∪ Cε
k),

and we recall that in Cε
k ,

� ε (x) = �
( x− εk

rε

)
.

Then rotx � ε (x) = 0 follows from roty � (y) = 0 which is the case as

roty � (y) = roty
1
3
(|y|2 − 1) Id+

2
3
~n(y)⊗ ~n(y) = 0

since

roty

(1
3
(|y|2 Id)

)
= −2

3
Id and

2
3

roty(~n(y)⊗ ~n(y)) =
2
3

Id .

Thus rotx � ε being null is of course bounded uniformly in L2(Ω).
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Fifth step: Passing to the limit

We return to the variational formulation (2.5) and replace ~ϕε by

~ϕε(x) = � ε (x)[~ψ(x)]

for all but fixed ~ψ ∈ (C∞c (Ω))3. After extending Eε by zero in the holes, and using

the matrix formulas and convergence properties given above, one obtains

∫

Ω

rot Ẽε · rot � ε (x)[~ψ(x)] dx(2.17)

+
∫

Ω

rot Ẽε(x) · � ε (x) ∧∧ (∂ψ1(x), ∂ψ2(x), ∂ψ3(x))

+ γ

∫

Ω

Ẽε(x) · � ε (x)[~ψ(x)] dx =
∫

Ω

F̃ ε(x) · � ε (x)[~ψ(x)] dx.

As ε→ 0, we get

−
∫

Ω

rotE(x) · Id∧∧(∂ψ1(x), ∂ψ2(x), ∂ψ3(x)) dx+ γ

∫

Ω

E(x) · ~ψ(x) dx

=
∫

Ω

F̃ (x). ~ψ(x) dx,

thus ∫

Ω

rotE(x) · rot ~ψ(x) dx+ γ

∫

Ω

E(x) · ~ψ(x) dx =
∫

Ω

F (x) · ~ψ(x) dx

for all ~ψ ∈ (C∞c (Ω))3, and this is exactly the conclusion of Theorem 1(a).

2.2. Proof of Theorem 1(b)

First step: Uniform estimates

As in the proof of Theorem 1(a) above, one has ‖Eε‖V ε 6 c.

Second step: Two-Scale convergence

We use standard notation and set Y =
[
− 1

2 ,+
1
2

]3
(identified with the periodic

cell), and Y ∗ = Y − T where T = cB1. Since (Ẽε) and (
�
rotEε) are bounded

in L2(Ω)3, see [1], [12], [14], up to a subsequence, they two-scale converge respectively
to E0(x, y) and V (x, y) belonging to (L2(Ω × Y ))3. That is, for any ~ψ(x, y) ∈
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D(Ω;C∞p (Y ))3 we have

Ẽε ⇀ E weakly in (L2(Ω))3,(2.18)

rot Ẽε ⇀ rotE weakly in (L2(Ω))3,(2.19)

lim
ε→0

∫

Ω

Ẽε · ~ψ
(
x,
x

ε

)
dx =

∫

Ω

∫

Y

E0(x, y) · ~ψ(x, y) dx dy,(2.20)
∫

Y

E0(x, y) dy = E(x),

lim
ε→0

∫

Ω

rot Ẽε · ~ψ
(
x,
x

ε

)
dx =

∫

Ω

∫

Y ∗
V (x, y) · ~ψ(x, y) dx dy,(2.21)

with
∫

Y ∗
V (x, y) dy = rotE.(2.22)

We note that Ẽε and
�
rotEε are equal to zero in Ω− Ωε.

Therefore, their two-scale limits E0(x, y) and V (x, y) are equal to zero if y ∈
Y − Y ∗.

Next, let ~ψ = ~ψ(x, y) be a smooth function with support in Y ∗ with respect to
the variable y. It follows that

∫

Ωε

rotEε · ~ψ
(
x,
x

ε

)
dx =

∫

Ωε

Eε ·
[
rotx

~ψ
(
x,
x

ε

)
+

1
ε

roty
~ψ
(
x,
x

ε

)]
dx,

thus

ε

∫

Ωε

rotEε · ~ψ
(
x,
x

ε

)
dx =

∫

Ωε

Eε ·
[
ε rotx

~ψ
(
x,
x

ε

)
+ roty

~ψ
(
x,
x

ε

)]
dx,

and extending by zero in the holes we obtain

ε

∫

Ω

�
rotEε · ~ψ

(
x,
x

ε

)
dx =

∫

Ω

Ẽε.
[
ε rotx

~ψ
(
x,
x

ε

)
+ roty

~ψ
(
x,
x

ε

)]
dx.

Sending ε −→ 0 and using two-scale convergence, one has

0 =
∫

Ω

∫

Y ∗
E0(x, y) roty

~ψ(x, y) dx dy.

Hence

roty E
0(x, y) = 0 in D′(Ω× Y ∗)

and one finally gets {
roty E

0(x, y) = 0, y ∈ Y ∗,
~n(y) ∧ E0(x, y) = 0, y ∈ ∂Y ∗.
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From the results of [2], [3], [4], [5], [9], [13] one deduces that (χY ∗ being the charac-

teristic function of Y ∗)

(2.23) E0(x, y) = χY ∗(y) � (y)[E(x)],

where � is the ∏
3-valued function defined for y ∈ Y ∗ by

� (y) = (~U1(y), ~U2(y), ~U3(y))(2.24)

and

~Ui(y) = (∇Φi)(y),(2.25)

each Φi being a solution in H1(Y ∗) of

(2.26)





Φi = yi −Θi, Θi Y -periodic,

∆Φi = 0 in Y ∗,

Φi|∂T = 0.

Note that roty � = 0 and ~n(y) ∧ � = 0.
We make the first passage to the limit in the variational formulation still given

by (2.5)
∫

Ω

rotx Ẽε(x) · rotx ~ϕ
ε(x) dx+ γ

∫

Ω

Ẽε(x) · ~ϕε(x) dx =
∫

Ω

F̃ ε(x).~ϕε(x) dx

for all ~ϕε ∈ H0(rot,Ωε), by making the precise choice

(2.27) ~ϕε = �
(x
ε

)
[~ψ(x)],

where � is defined by (2.24) for any ~ψ ∈ (C∞c (Ω))3 and we obtain
∫

Ω

rotx Ẽε(x) · rotx{ � ε(x)[~ψ(x)]} dx+ γ

∫

Ω

Ẽε(x) · � ε(x)[~ψ(x)] dx(2.28)

=
∫

Ω

F̃ ε(x) · � ε(x)[~ψ(x)] dx.

For the first term on the left hand side and the term on the right-hand side of (2.28)
we use two-scale convergence, noticing that

rotx{ � ε(x)[~ψ(x)]} = (rotx � ε(x))[~ψ(x)] + � ε(x) ∧∧∇~ψ(x)

=
1
ε
(roty � )ε [~ψ] + � ε ∧∧ ∇~ψ = � ε ∧∧ ∇ψ

and that the two-scale limit associated with rotx Ẽε is V (x, y).
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Let us deal with the second term on the left hand side of (2.28). For this purpose

we use simply the div-rot lemma of L. Tartar, F. Murat, see for instance [18], since
rotx Ẽε as well as div( � ε(x)[~ψ(x)]) are (uniformly) bounded in (L2(Ω))3 since

div( � ε(x)[~ψ(x)]) = div
(∑

i

~Uεiψi

)
=

∑

i

div(~Uεi)ψi +
∑

i

~Uεi · ∇ψi(x)

= 0 +
∑

i

~Uεi · ∇ψi(x).

Therefore one obtains, for all ~ψ ∈ (C∞c (Ω))3,

∫

Ω

∫

Y ∗
V (x, y) � (y) ∧∧ ∇~ψ(x) dx dy + γ

∫

Ω

E(x) dx
∫

Y ∗
� (y)[~ψ] dy

=
∫

Ω

F (x) dx
∫

Y ∗
� (y)[~ψ] dy.

Setting
∫

Y ∗ � (y) dy = ζ Id, where ζ ∈ � is a fixed constant, one obtains

(2.29)
∫

Ω

∫

Y ∗
V (x, y) · � (y) ∧∧ ∇~ψ(x) dx dy + ζγ

∫

Ω

E(x) · ~ψ dx = ζ

∫

Ω

F (x) · ~ψ dx.

It remains to analyze the first term on the left hand side of expression (2.29).

By definition, for all smooth ~ψ(x, y) we have

∫

Ω

rot Ẽε(x) · ~ψ
(
x,
x

ε

)
dx −→

∫

Ω

∫

Y ∗
V (x, y) · ~ψ(x, y) dx dy.

Choose any ~ψ such that roty
~ψ = 0 and suppy

~ψ ⊂ Y ∗. Then the left-hand side can
also be written as

∫

Ω

Ẽε · (rotx
~ψ)

(
x,
x

ε

)
dx =

∫

Ω

Ẽε · rotx

[
~ψ
(
x,
x

ε

)]
dx.

We can again use the div-rot lemma. As rot Ẽε is bounded and since obviously

div
{
rotx

[
~ψ
(
x,
x

ε

)]}
= 0 and rotx

[
~ψ
(
x,
x

ε

)]
= (rotx

~ψ)
(
x,
x

ε

)

are bounded uniformly in (L2(Ω))3,

∫

Ω

Ẽε · (rotx
~ψ)

(
x,
x

ε

)
dx −→

∫

Ω

E(x) dx
∫

Y ∗
rotx

~ψ(x, y) dy.
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Alltogether we have obtained that for all ~ψ(x, y), suppy
~ψ ⊂ Y ∗, roty

~ψ(x, y) = 0,
one has

∫

Ω

∫

Y ∗
V (x, y) · ~ψ(x, y) dx dy =

∫

Ω

E(x) dx
∫

Y ∗
rotx

~ψ(x, y) dy

=
∫

Ω

dx
∫

Y ∗
rotxE(x) · ~ψ(x, y) dy,

thus ∫

Ω

∫

Y ∗
[V (x, y)− rotxE(x)] · ~ψ(x, y) dx dy = 0.

From [2], [3], [4], [9], [5], [13] we deduce that there exists V1 ≡ V1(x, y) such that

(2.30) V (x, y) = rotxE(x) + roty V1(x, y).

Therefore (2.29) becomes, for all ~ψ ∈ (C∞c (Ω))3,

∫

Ω

∫

Y ∗
{rotxE(x) + roty V1(x, y)} · � (y) ∧∧ ∇xψ(x) dx dy(2.31)

+ ζγ

∫

Ω

E(x) · ~ψ dx = ζ

∫

Ω

F (x) · ~ψ(x, y) dx.

In the second step, we precise further the term roty V1(x, y). For this purpose, we
get back again to the variational formulation (2.5), take ~ϕε = ~ψ(x, x/ε), multiply
by ε and send it to zero. In this way we obtain

∫

Ω

∫

Y ∗
V (x, y) · roty

~ψ = 0

for all ~ψ such that suppy
~ψ ⊂ Y ∗ with ~n ∧ ~ψ|∂T = 0. On the other hand, one has

also easily divy V (x, y) = 0 in D′(Ω × Y ∗). We obtain in particular from the facts
already mentioned, that V is given by

(2.32) V (x, y) = � (y)[rotxE(x)].

Therefore (2.31) becomes

∫

Ω

∫

Y ∗
� (y)[rotxE(x)] · ( � (y) ∧∧ ∇x

~ψ(x)) + ζγ

∫

Ω

E(x) · ~ψ(x) dx(2.33)

= ζ

∫

Ω

F (x) · ~ψ(x) dx.
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Next, one has

� (y)[rotxE(x)] · ( � (y) ∧∧ ∇x
~ψ(x))

=
∑

i

� (y)[rotxE(x)] · ~Ui ∧ ∇xψi(x)

= −
∑

i

( ~Ui ∧ � (y)[rotxE(x)]) · ∇xψi(x)

= −
∑

i

∑

j

( ~Ui(y) ∧ ~Uj(y)(rotxE(x))j) · ∇xψi(x).

Define η ∈ � such that
∫

Y ∗
( ~U1 ∧ ~U2) dy = η ~e3,

∫

Y ∗
( ~U2 ∧ ~U3) dy = η ~e1,

∫

Y ∗
( ~U3 ∧ ~U1) dy = η ~e2.

Then, one obtains that
∫

Y ∗
� (y)[rotxE(x)] · ( � (y) ∧∧ ∇x

~ψ(x)) dy

= η{(rotxE)2 · ∂3ψ1 − (rotxE)1∂3ψ2}
+ η{(rotxE)3 · ∂1ψ2 − (rotxE)2∂1ψ3}
+ η{(rotxE)1 · ∂2ψ3 − (rotxE)3∂2ψ1}

= η(rotxE)1(∂2ψ3 − ∂3ψ2) + η(rotxE)2(∂3ψ1 − ∂1ψ3)

+ η(rotxE)3(∂1ψ2 − ∂2ψ1)

= η rotxE · rotx ψ.

Consequently, for all ~ψ ∈ (C∞c (Ω))3 we obtain

η

∫

Ω

rotxE(x) · rotx
~ψ(x) dx+ γζ

∫

Ω

E(x) · ~ψ(x) dx = ζ

∫

Ω

F (x) · ~ψ(x) dx,

where η, ζ are constants, which is the claim of Theorem 1(b).
%'&)(+*,�!-

1. If we replace the boundary condition

~nε(x) ∧ ~Eε(x) = 0

by the non homogeneous condition

~nε(x) ∧ ~Eε(x) = ~nε ∧ ~g(x),

written also as
~nε ∧ ( ~Eε − ~g(x)) = 0,
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where ~g is a given (smooth) vector field, we have the same type of result by setting

~Eε − ~g(x) = ~V ε(x).

%'&)(+*,�!-
2. Under the assumption (HYP)1 and if we suppose furthermore the

strong convergence of the sequence F̃ ε in L2(Ω), it is not difficult to check that the
global electromagnetic “energy”

∫

Ω

|rot Ẽε|2 + γ

∫

Ω

|Ẽε|2

converges towards the corresponding homogenized one (involving E).
Under the case of assumption (HYP)2, corrector results can eventually give a clue.

3. Proof of Theorems 2

3.1. Proof of Theorem 2(a)
First step: Variational formulation and uniform estimates

Problem (Qε) has the variational formulation

(3.1)
∫

Ωε

rotEε · rot ~ϕ(x) dx+
∫

Ωε

Eε · ~ϕ(x) dx =
∫

Ωε

F ε · ~ϕ(x) dx

for all ~ϕ ∈ H(rot,Ωε).
Let us note that

�
rotEε 6= rot Ẽε in general. Extending by zero, we now get

(3.2)
∫

Ω

�
rotEε(x) · rot ~ϕ(x) dx+

∫

Ω

Ẽε(x) · ~ϕ(x) dx =
∫

Ω

F̃ ε(x) · ~ϕ(x) dx.

Letting ~ϕ := Eε, one has

∫

Ωε

|rotEε|2 dx+
∫

Ωε

|Eε|2 dx 6 1
2

∫

Ωε

|F ε|2 dx+
1
2

∫

Ωε

|Eε|2 dx,

thus

‖Eε‖2
H(rot,Ωε) 6

∫

Ωε

|rotEε|2 dx+
∫

Ωε

|Eε|2 dx

6
∫

Ωε

|rotEε|2 dx+
1
2

∫

Ωε

|Eε|2 dx 6 C

and consequently
‖Eε‖H(rot,Ωε) 6 C.
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Second step: Passing to the limit

Up to a subsequence we can assume

Ẽε(x) ⇀E(x) weakly in (L2(Ω))3,(3.3) �
rotEε ⇀V (x) weakly in (L2(Ω))3.(3.4)

Then from (3.2) one has, for all ~ϕ ∈ (C∞(Ω))3,
∫

Ω

V (x) · rot ~ϕ(x) dx+
∫

Ω

E(x) · ~ϕ(x) dx =
∫

Ω

F (x) · ~ϕ(x) dx.

It remains to identify V . Let ~ψ ∈ (C∞c (Ω))3. Then of course
∫

Ω

�
rotEε(x) · ~ψ(x) dx −→

∫

Ω

V (x) · ~ψ(x) dx.

On the other hand,
∫

Ω

�
rotEε(x) · ~ψ(x) dx =

∫

Ω

�
rotEε(x) · [~ψ(x)− � ε [~ψ](x)] dx

+
∫

Ω

�
rotEε(x) · � ε [~ψ](x) dx,

where � ε is the test (matrix-valued) function given in Section 2.

Since ~ψ − � ε (~ψ) −→ 0 strongly in (L2(Ω))3, one has
∫

Ω

V (x) · ~ψ(x) dx = lim
ε→0

∫

Ω

�
rotEε(x) · � ε [~ψ](x) dx.

Further,
∫

Ω

�
rotEε(x) · � ε [~ψ](x) dx =

∫

Ωε

rotEε(x) · � ε [~ψ](x) dx

=
∫

Ωε

Eε(x) · rot{ � ε [~ψ](x)} dx,

since ~nε ∧ � ε = 0 on ∂Ωε.

As
∫

Ωε

Eε(x) · rot{ � ε [~ψ](x)} dx

=
∫

Ωε

Eε(x) · (rot � ε )[~ψ](x) dx+
∫

Ωε

Eε(x) · � ε ∧∧ ∇~ψ(x) dx

= 0 +
∫

Ωε

Eε(x) · � ε ∧∧ ∇~ψ(x) dx −→
∫

Ω

E(x) · rot ~ψ(x) dx,
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we have finally obtained that
∫

Ω

V (x) · ~ψ(x) dx =
∫

Ω

E(x) · rot ~ψ(x) dx,

and thus

V = rotE.

This concludes the proof of Theorem 2(a).

3.2. Proof of Theorem 2(b)
First step: Uniform estimates in H(rot,Ω)
Repeating the same lines of calculus, we get again similar uniform estimates, and

thus we can assume that weak convergences (3.3) and (3.4) hold true.

Second step: Two-scale convergence

Since (Ẽε) as well as (
�
rotEε) are bounded in (L2(Ω))3, there exist two two-

scale limits, E0 ∈ (L2(Ω × Y ))3, V ∈ (L2(Ω × Y ))3 such that for any ~ψ(x, y) ∈
(D(Ω, C∞p (Y )))3 one has

lim
ε→0

∫

Ω

Ẽε · ~ψ
(
x,
x

ε

)
dx =

∫

Ω

∫

Y ∗
E0(x, y) · ~ψ(x, y) dx dy(3.5)

and

lim
ε→0

∫

Ω

�
rotEε · ~ψ

(
x,
x

ε

)
dx =

∫

Ω

∫

Y ∗
V (x, y) · ~ψ(x, y) dx dy.(3.6)

By integration by parts, we obtain for all ~ψ(x, y) ∈ (D(Ω, C∞p (Y ∗)))3 with compact
support (in y) in Y ∗

ε

∫

Ω

�
rotEε · ~ψ

(
x,
x

ε

)
dx =

∫

Ω

Ẽε ·
[
ε rotx

~ψ
(
x,
x

ε

)
+ roty

~ψ
(
x,
x

ε

)]
dx.

Passing to the limit in both terms with the help of two-scale convergence leads to

(3.7)
∫

Ω

∫

Y ∗
E0(x, y) roty

~ψ(x, y) dx dy = 0,

that is

(3.8) roty E
0(x, y) = 0 in (D′(Ω× Y ∗))3.

Now, to the assumption on ~ψ(x, y) we add the condition roty
~ψ(x, y) = 0 with com-

pact support in x as well as in y in Y ∗. Since
∫

Ω

�
rotEε(x) · ~ψ

(
x,
x

ε

)
dx =

∫

Ω

Ẽε(x) rotx
~ψ
(
x,
x

ε

)
dx,
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using the two-scale convergence we are led to
∫

Ω

∫

Y ∗
V (x, y) · ~ψ(x, y) dx dy =

∫

Ω

∫

Y ∗
Ẽ0(x, y) · rotx

~ψ(x, y) dx dy,

and thus integrating by parts in Ω we get
∫

Ω

∫

Y ∗
E0(x, y) · rotx

~ψ(x, y) dx dy =
∫

Ω

∫

Y ∗
rotxE

0(x, y) · ~ψ(x, y) dx dy.

Hence

(3.9)
∫

Ω

∫

Y ∗
[V (x, y) − rotxE

0(x, y)] · ~ψ(x, y) dx dy = 0.

We will use all these facts to identify E0 and V .
According to [2], [3], [4], [9] there exist unique ϕ ∈ H1(Y ∗) and h1 ∈ H1(Y ∗) with

H1(Y ∗) = {u ∈ L2(Y ∗)3, roty u = 0, divy u = 0, ~n(y) · ~u(y) = 0}

such that

(3.10) E0(x, y) = ∇yϕ(x, y) + h1(x, y),

and finally, one can write

(3.11) E0(x, y) = χY ∗(y) . (y)[E(x)]

and

(3.12) V (x, y) = χY ∗(y) . (y) × . (y)[rot E(x)],

where . is the ∏
3-valued function defined for y ∈ Y ∗ by

. (y) = (~G1(y), ~G2(y), ~G3(y))(3.13)

and

~Gi(y) = (∇Φ̃i)(y),

each Φ̃i being solution in H1(Y ∗) of

(3.14)





Φ̃i = yi −Υi, Υi Y -periodic,

∆Φ̃i = 0 in Y ∗,

∂Φi

∂n

∣∣∣
∂T

= 0.
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Note that roty . = 0 and ~n(y) · . (y) = 0.
From the variational formulation (3.2), one gets ∀ ~ψ ∈ (C∞(Ω))3

∫

Ω

∫

Y ∗
V (x, y) · rot ~ψ(x) dx dy +

∫

Ω

E(x) · ~ψ(x) dx =
∫

Ω

F (x) · ~ψ(x) dx,

which by virtue of (3.12) yields

∫

Ω

χY ∗(y) . (y)× . (y)[rotxE(x)]·rotx
~ψ(x) dx+

∫

Ω

E(x)· ~ψ(x) dx =
∫

Ω

F (x)· ~ψ(x) dx.

Since we can set
∫

Y ∗ . (y)× . (y) dy = η1I , this concludes the proof of Theorem 2(b).
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