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Abstract. The paper considers the problem of estimating the risk of a tick-borne disease 
in a given region. A large set of epidemiological data is evaluated, including the point 
pattern of collected cases, the population map and covariates, i.e. explanatory variables of 
geographical nature, obtained from GIS. 

The methodology covers the choice of those covariates which influence the risk of infection 
most. Generalized linear models are used and AIC criterion yields the decision. Further, an 
empirical Bayesian approach is used to estimate the parameters of the risk model. Statistical 
properties of the estimators are investigated. Finally, a comparison with earlier results is 
discussed from the point of view of statistical disease mapping. 

Keywords: Bayesian estimation, generalized linear model, epidemiological data, statisti
cal properties 
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1. INTRODUCTION 

Statistical disease mapping aims to characterize the spatial variation of cases of a 

disease and to study connections with given covariates. Most analyses published in 

the literature are based on the area-level approach which means that cases are ag

gregated in subregions. If a point pattern of cases is available, a planar point process 

modelling is another possible approach. In Diggle [3] a survey of both approaches is 

given. 

We are interested in estimating the risk that a person gets infected by a tick-borne 

disease at a specific location, which is the task usually dealt with by epidemiologists 

* This work was supported by the grant No. 201/98/0090 of the Grant Agency of the Czech 
Republic, and by the project MSM 113200008. 
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and medical practitioners making decision on prophylactic measures in endemic ar
eas (Zeman [9]). Suppose that the incidence of the disease has been registered for a 
representative period, and the total human population exposed is known. Further, 
assume that the area of interest is divided into n regions which may be either ad
ministrative or deliberately designed for the purposes of this study. In this area-level 
approach, for each region an average risk is enquired disregarding individual times 
of exposure to the risk factor. 

Let the number of people living in the ith region be Ni. If the probabilities of being 
infected were the same for all of them, say equal to 7r», then the observed proportion 
of the infected pi = Oi/Ni would be an unbiased estimate of the probability 7T;, the 
risk of infection. The reality, however, is more complex. Every inhabitant of the 
region has a different exposure intensity and hence a different probability of being 
infected and it is the average value of these probabilities which should be called 
the risk of infection for the region, say r;. The approach used in the present paper 
is to consider this parameter as a random variable having some prior distribution 
that depends on a set of variables which describe the environmental conditions. 

This approach belongs to a class of empirical Bayesian approaches widely used in 
epidemiology, see e.g. Mollie and Richardson [6]. 

In this paper first the dataset is described and the process of selection of ex
planatory variables is discussed in detail. Using the statistical model the desired risk 
estimators are obtained. The results are compared with the earlier work of Masata [4] 
based on a different Bayesian approach. 

2 . DESCRIPTION OF THE DATA 

The whole area of the Central Bohemia (CB) was divided into 141 small squares, 

see Fig. 1. The hole in the middle of Fig. 1 corresponds to the capital Prague which is 

not a part of CB administratively and its inhabitants are excluded from the analysis. 

For each square we know, cf. Zeman [9] 

• O .. .the number of persons infected by tick-borne encephalitis reported in the 

years 1971-1993 (446 cases altogether) 

• N .. .the number of inhabitants living in each square (total about 1.1 million) 

• Overlap .. .the proportion of the square area which lies within CB. There are 

54 squares partly outside of the CB, we call them border squares thereafter. 

The following data that provide additional information about the individual regions 

will be called explanatory variables (related to each square area): 

• K2, X3, X4 ... the proportion of the area of coniferous, mixed, and deciduous 

forest, respectively. 
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Figure 1. The area of the Central Bohemia divided into 141 squares sized 10x10 km. The 
administrative subdivision into districts (see the boundaries) is too coarse for the 
analysis. 

• VI, V2, V3, V4 . . . the proportion of the area having elevation < 300m, 300-

500 m, 500-700 m, and 700-900 m, respectively. 

• LI, L2, L3, L4, L5, L6 . . . the proportion of the area covered by forests of indi
vidual area 1-10 ha, 10-50 ha, 50-150 ha, 150-300 ha, 300-600 ha, and > 600 ha, 
respectively. 

The original elevation model was obtained from the Institute of Military Topog
raphy, Dobruska, all the other explanatory variables were derived from the satellite 
images of LANDSAT-5 MSS with resolution power of 80 x 80 m. 

3 . STATISTICAL METHODS 

3.1. Empirical Bayesian approach 

Suppose that the risk r* in the ith square is a random variable with some prior 
distribution. We assume the exponential prior distribution with the mean E(ri) = 7Tj. 
This is partly justified by the argument that smaller risk values are more probable 
than larger ones. 

Assume that the number of infected persons Oi can be approximated by the Pois-
son distribution. The posterior distribution of the risk ri\Oi has gamma distribution 
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with parameters 

(1) 77 = 0 + 1 and a 
iV + l/jr' 

i.e. the posterior mean is 

oi + 1 
(2) E(ГІ\OІ) 

NІ + 1/ҠІ' 

We will use this posterior mean for the risk quantification. In (2), the trivial estimate 

of the risk is corrected by the value 7r which is a function of explanatory variables. 

3.2. Optimizing t h e set of explanatory variables 

Here we assume again that the response variable O is approximated by the Poisson 

distribution with the mean A. Suppose that the number of infected persons O after 

appropriate transformation depends on the explanatory variables and the relation

ship is linear 

(3) X = f(P0 + p1x1 + ... + Ppxp). 

At a first glance it may seem surprising that the number 7V2 of persons exposed 

to the risk does not appear explicitly in the function (3). It should be born in mind, 

however, that Ni enters the result in another way, see formula (2). 

The suitable function and the estimation of the parameters can be found by the 

theory of GLM models, see McCullagh and Nelder [5]. GLM models extend the 

classical regression analysis to the case of the response variable coming from the 

distribution of exponential family. This is in many cases more natural than the 

assumption of normality. The distribution of exponential family can be written in 

the form 

(4) 9(y; M=e*Ą{y -Ь{ ))W

+c(y,v,W)} 

where b(-), c(-) are specific functions depending on this distribution, 0 is the so-called 

canonical parameter, <p is the dispersion parameter, and w is a known weight. 

The canonical parameter 0 contains the 'natural' link function that yields the 

transformation of the mean of the response variable into the linear relationship with 

the explanatory variables. Another type of the link function can be chosen than 

the natural one. The use of the natural link function gives to the estimates better 
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theoretical properties (existence and uniqueness). The probability function for the 
Poisson distribution can be written in the form (4) as 

(5) P(0 = o) = e x p | o log A - A - l o g o . } , 

e b(e) c(o,<p) 

where 6 = log A is the natural link function. Hence the function / in (3) is 

t g \ ^ _ ePo+Pixi + -~+PpXp^ 

The dispersion parameter for the Poisson distribution is tp = 1. For the mean and 
variance it holds 

(7) E(0) = b'(6) = A, var(O) = b"(0)<D = A. 

The estimation of parameters is based on the maximum likelihood method when 
substituting (6) for the parameter A into the likelihood function. The estimates 
are obtained iteratively using the IWLS (iterative weighted least squares regression) 
described in McCullagh and Nelder [5]. 

In the classical linear regression, the residual sum of squares is a measure of the 
goodness of fit, in GLM models residual deviance DR is used instead (in the following 
bold letters are used for vectors, e.g. o = (oi)?=1), 

(8) DR = 2l(o)-2l(\o). 

Here 1(6) is the maximum likelihood function obtained by the absolute fit of observed 
data with the model, that is A = o. Similary l(\,o) is the likelihood function with 
substituted ML estimates. DR has approximately xn-q distribution, where q is 
the number of parameters. The residual deviance DR is also a relative measure to 

compare two models. Denote D° = 2l(o) - 21° the null deviance where 1° is the null 

model of likelihood function, i.e. no relationship is assumed and the predicted values 
n 

of A are substituted by the overall mean A = Yl Oi/n. 
i = i 

The fit of our model can be quantified relatively when we substract the residual 
deviance DR from null deviance D°, 

(9) D = D° -DR = 2/(A, o) - 2/°; 

D has approximately x\ distribution. 
Accordingly, the contribution of explanatory variables added into the model can 

be tested. For comparison between the model G and F the deviance is obtained as 
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D(AG, A F ,o) = 2Z(AG,o) - 2l(\F,o) where D(A G , A F ,o) - * 2 _ s , t is the number 

of parameters of the model G and 5 is the number of parameters of the model F. 

In classical regression analysis, the residual sum of squares is reduced by adding 

any explanatory variable. The same applies for residual deviance. The AIC cri

terion (Akaike Information Criterion) takes into account the number of estimated 

parameters 

(10) AIC = DR + 2pp 

where p is the number of parameters, and (p is the estimate of the dispersion param

eter from the sample 

(11) ф=J—y> (OІ - A)2 

A 

The criterion for the choice among all possible models is the minimum of AIC 

3.3. Over dispersion 

For the Poisson distributed response variable, the variance (7) and the dispersion 

parameter <D = 1 are given. High values of residual deviance, which is here the 

measure of the fit, can cause the rejection of the model. This phenomenon is called 

'overdispersion', which means that the model has higher variability than assumed. 

The indicator that the overdispersion is present in the model can be also the esti

mated dispersion parameter <D. A value greater than 1 makes the variance of the 

model for Poisson data greater than in (7). To avoid the problem of overdispersed 

data we can replace the assumption of Poisson distributed response variable by neg

ative binomial distribution which is more flexible due to an additional parameter r. 

More details are described in Venables and Ripley [8]. The probability function of 

the negative binomial distribution in the form of (4) can be written as 

(12) P(0 = o) = e x p j o l o g ( ~ ) - r l o g ( ^ ) +c(o,0) j . 

0 b(6) 

In (12), the natural link function is 0, and the dispersion parameter is </? = 1. It 

holds E(0) = A, var(O) = A + A2/r, so the variance is greater than the mean, which 

may be a better reflection of reality. 
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4. NUMERICAL RESULTS 

Heгe we deal with the squaгes wheгe we have complete (oг almost complete) infoг-

mation, i.e. with the squaгes in Fig. 1 having the oveгlap with the CB moгe than 90 %. 

Since it is assumed that the explanatoгy vaгiables affect the response vaгiable by a 

lineaг гelationship afteг tгansfoгmation of the гesponse vaгiable, the simple scatteг-

plots between гesponse and explanatoгy vaгiables can be the fiгst indicatoгs of what 

the dependency might be. 

We distinguish between the гandom vaгiable OІ and its obseгved value o.. In Fig. 2 

the гelationship between the numbeг of infected peгsons o, and the vaгiables XЗ and 

XA is obvious. The vaгiable X2 does not show any dependency. 
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Figure 2. Scatterplots of variables o, K2-K4. 

In Fig. 3, the variable V2 shows the best correlation with the number of infected, 

and so do the variables L2 and L3 in Fig. 4. The simple correlation coefficients are 

shown in the Tabs, la, lb. 

X2 KЗ K4 VI V2 VЗ VA 

o -0.02 0.56 0.40 -0.40 0.43 0.03 -0.08 

Table la. Correlation coefficients between variables o and X, V, respectively. 

L\ L2 LЗ L4 LЪ L6 

o 0.37 0.62 0.61 0.24 -0.02 -0.07 

Table lb. Correlation coefficients between variables o and L. 
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Figure 3. Scatterplots of variables o, V1-V4. 
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Figure 4. Scatterplots of variables D, L1-L6. 

4.1. The choice of the model 

In the first step, we have to find an appropriate model for the distribution of the 

response variable and the form of the link function. We deal with the variable XZ at 

first, which exhibited positive correlation with the number of infected, and assume 

the number of infected in the square area to be Poisson distributed. The estimation 

of the parameters using the natural link function coming from (5) has been carried 

out in the programming language S supported by the statistical software S-PLUS 

log A. =0.62 + 6.14(X3)i. 
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The residual deviance exceeded the quantile of its approximative distribution DR = 

388.3 > Xo.95-85 — 107.5. The estimated dispersion parameter from (11) is tp = 5. 

The data show higher variability than expected by Poisson model. We try to esti

mate the parameters from the likelihood function computed for negative binomial 

distribution of the response variable. The program does not use the natural link 

function as in (12) and works with the same link function as in the Poisson model 

log Ai = 0.40 + 7.73(X3)i, f = 1.01, <p = 1.02. 

This time the residual deviance did not exceed the quantile of its approximative 

distribution DR = 96.6 < Xo.95;85 = 107.5 and the estimation of the dispersion 

parameter corresponds to its expected value 1. The goodness of fit with the model 

using the variable X3 is confirmed since in (9) it holds 

лR D = DÖ -Dн = 136.0 - 96.6 = 39.4 > 3.84 Xo.95;l* 

The plot of the observed values Oi against the values Â  predicted by the model with 

the explanatory variable X3 shows the goodness of fit in Fig. 5. 

Figure 5. Observed cases Oi plotted against the fitted Â . 

The fitted values should in the ideal case lie on the diagonal. The correlation 

coefficient is cor(oi, A*) = 0.49. There is still a lack of fit using only the variable X3 

and we keep looking for a set of available explanatory variables to reach a better 

fit of the data. The model for the negative binomial distribution of the response 

variable O is used for that. The estimate f = 1 is used fixed for better comparison 

among the models with other explanatory variables. 
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4.2. The choice of the set of the explanatory variables 

In the first column of Tab. 2, there are six explanatory variables that are included 

into the model separately and ordered by the size of the residual deviance RD. In the 

third column of Tab. 2 there is the value of the correlation coefficient between the 

observed and the fitted values cor(or,Ai). The value RD that exceeds the quantile 

Xo.95;85 = 107.5 is marked with the star. The rest of the variables showed poor fit 

to the data. 

RD cor(oj,Лt) 

LЪ 90.1 0.58 

L2 91.9 0.69 

XЗ 95.8 0.49 

V2 103.1 0.42 

VI 103.1 0.40 

X4 115.8* 0.32 

Table 2. Residual deviance R and correlation coefficient cor(o^, A2) for explanatory vari
ables included into the model separately. 

If all variables are included into the model the algorithm of stepwise regression 

using the minimization of the AIC results in the final model with the variables L2, 

L3 (AIC= 90.0418). We should prefer a simpler model with different types of ex

planatory variables because the information they contain is less dependent. The 

variables L2 and L3 are highly correlated therefore including the variable X3 instead 

of L3 could improve the model (AIC = DR + 2p = 91.9 + 4 = 95.9). The correlation 

coefficient between the observed and the fitted values has the value cor(o2, Ar) =0.70. 

The variable V2 did not show bad fit to the data but its inclusion into the model 

with the variables L2 and X3 would not improve the fit significantly. 

The size of the forest 10-50 ha (L2) and the ratio of the mixed forest (X3) seem to 

be satisfactory explanatory variables explaining the number of infected and represent 

the required prior information in the study. The final model used in the next section 

to get the predicted values is 

(13) log A2 = -0.04 + 3.93(X3)2 + 91.89(L2),, 

where DR = 91.9 < Xo.95,84 = 1 0 7 - 5 > 0 = °-95> D = D° - DR = 134.8 - 91.9 = 

42.9 > X0.95;2 = 6.0. 

4.3. Estimation of t h e risk 

Here we deal with all squares including the border squares. The explanatory 

variables are in these squares corrected by multiplication by the variable Overlap. 
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The empirical Bayesian estimation is used. We substitute the result (13) of the 
regression 7Ti = Xi/Ni into the formula (2) to get the posterior mean estimator as 
the estimate of the risk. In Fig. 6 the trivial estimates of the risk are compared with 
the posterior ones. The values are ordered by the size of the trivial estimates of the 
risk (in ascending order). The highest values are shown in Tab. 3. 

Id o o/N E(ri\0i) 

155 4 117.10 119.80 

119 17 155.27 127.14 

168 11 165.66 154.56 

157 5 183.62 170.58 

156 4 197.92 205.15 

139 8 204.55 206.52 

136 15 232.67 232.19 

41 9 310.45 295.23 

140 23 371.21 313.53 

101 13 393.82 380.65 

183 14 429.18 424.34 

100 21 639.07 637.56 

167 21 748.13 728.62 

182 21 848.48 795.11 

152 28 1132.23 1113.71 

Table 3. The number of the square (Id) in Fig. 1 with the number of the infected per
sons (oi), trivial estimate (oi/Ni) and Bayesian estimate E(ri\oi) of the risk [x 105] 
for the squares with the highest estimated risk (in ascending order). 

The posterior mean is very close to the trivial estimate. If the trivial estimate 
equals zero the posterior mean tends to be higher, on the contrary by very high 
trivial estimate the posterior mean is lower. There are, though, some remarkable 
outliers that are marked in Fig. 6 by the numbers. The numbers 1, 29, 54, 59 in 
Fig. 6 represent the squares with the number 11, 81, 195, 204 in Fig. 1, respectively. 
These squares have the overlap with the area of the CB less than 9 %. The correction 
of the explanatory variables in the border squares is unsatisfactory. 

The posterior mean shows higher departure from the trivial estimate in further 
squares with numbers 109, 116, 126, 140. As for the squares 109, 126 in Fig. 1 the 
low posterior mean is caused by extremely low value of one or both explanatory 
variables. X3 is on the contrary very high in the square 116 and L2 is very low in 
the square 140. 
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40 60 

Number of square 

Figure 6. Trivial (o) and Bayesian estimates (+), mean value (in ascending order—the 
number of square is renumbered). 

4.4. Properties of the risk estimators 

Mean square error MSE is an appropriate measure of the quality of the estimation 

of the parameters comprising both bias and variability 

(14) MSE = vaг(ř) + (E(ř) - г) 2 

where f is the estimation of the unobservable risk r. Denote the mean value of the 

trivial (Bayesian) estimate by rsi (TAP), respectively. 

In the Introduction, the possible bias of the trivial estimate rsi was discussed. 

Intuitively, the zero risk obtained by the trivial estimate is less likely, and hence the 

Bayesian estimate never predicting zero value of the risk might be closer to the true 

risk and therefore less biased. If we do not consider the error due to regression in 

the estimation of the posterior mean we can compare the variability of the trivial 

and the Bayesian estimates in the range of the real data set. 

The trivial estimate p, assuming that Oi are binomially distributed, has the 

mean rjgj and variance rB/(l — TBI)/N. The Bayesian estimate T-AP has the gamma 

distribution with the parameters (77, cr), see (1), with the mean (2) rAP = rja = 

0 -h l(N -f 1/TT)"1 and variance var(r^p) = rja2 = O + l(N + l/V) - 2 . 

In Fig. 7, the interquartile range Kn.75 — -̂ 0.25 of both distributions as a function 

of the mean value is shown. N is in both cases taken as jY = 2000. The higher N 

the less different are both estimates. The vertical line can be understood as the 

risk, the maximum value 0.015 in Fig. 7 corresponds approximately to the maximum 

observed value in the square 152. 

From the formula (2), it is obvious that the prior information makes always the 

denominator higher. To compare the variability of the trivial and the Bayesian 
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Figure 7. The comparison of the variability of the risk estimates as a function of E(r). 
The points correspond to the binomial distribution with the mean E(r) = O/N, 
the line represents the interquartile range of the gamma distribution with the 
parameters 77 — O, a = 1/N with the mean E(r) — 77*7, the dot-and-dash line 
corresponds the interquartile range of the gamma distribution with the cr* = 
(N + iooo)-1. 

estimate for the same mean value the second parameter a in gamma distribution 
has to be decreased. The interquartile range of the gamma distribution with the 
a* = (N -f-1000)_1 is drawn in Fig. 7 by dot-and-dash line. If both estimates were 
unbiased or equally biased the Bayesian one is that of lower variability for low level 
of risk r < 0.015 and hence of lower MSE. 

If the trivial estimate underestimates the true risk there is no guaranty of 
lower MSE until the squared bias in the formula (14) exceeds the variance. This 
happens already for a bias of 3 infected from 2000 people in the square. Such an 
analysis applies for higher N values, too. It is worth mentioning that the variability 
of the trivial estimate is lower compared to the Bayesian estimate for the higher 
level of risk approximately r > 0.1, but these values do not appear in practice. 

The pure comparison of credibility intervals without regard to the bias should be 
taken with caution but can still bring some information on reliability. The true bias 
can hardly be estimated. The 95 % credibility (confidence) intervals for the estimated 
risk in each square area based on the Bayesian (trivial) method are shown in Fig. 8. 
These intervals correspond to the squares with overlap greater than 90 % with the 
area of the CB, which are in ascending order according to mean estimated risk. 

In 25 squares, there is no observed case of the infection and therefore the trivial 
estimates and the confidence intervals for the risk are equal to zero and are closer 
than the credibility intervals obtained from the Bayesian method. In the rest of 
the squares, 70 % of the credibility intervales obtained from the Bayesian method 
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Number of square 

Figure 8. 95% intervals for trivial (full line) and Bayes risk estimates (broken line). 

are closer than the trivial ones. The squares with high estimates of the risk by the 
Bayesian method are marked in Fig. 8 by the numbers 23, 55, 72. These numbers 
correspond to the squares 169, 116, 98 in Fig. 1. In all cases, the number of observed 
cases is zero or low and the Bayesian estimate is increased by prior information. 

5. CONCLUSIONS 

The whole paper is written in an area level data setting, an alternative approach 
discussed in Diggle [3] and Best et. al. [1] makes use of (marked) point process mod
elling of cases where intensity function is a crucial concept in the risk model. Both 
approaches make it possible to construct models with varying complexity, e.g. the 
ratio kernel estimator (Bithell [2]) of intensity function applied in Zeman [9] to the 
pattern of cases studied here is simpler than a hierarchical Bayesian model in Stern, 
Cressie [7] in an area level approach. Generally the point process approach may give 
a finer resolution of disease cases and it is both theoretically and computationally 
more demanding. The area level approach is finite-dimensional and useful in situ
ations where a natural (geographical) division into subregions is desired or a fine 
resolution is not needed. E.g. for our pattern of 446 cases the area level approach 
with subregions in Fig. 1 must lead to satisfactory interpretations. 

A substantial part of the paper is devoted to the choice of explanatory variables 
which influence most the risk of infection. The AIC criterion seems to be natural 
and enables to reduce large geographical information available to the most important 
factors. 

For the risk estimation, a simple approach has been applied which misses modelling 
of spatial dependence and association, see e.g. Stern and Cressie [7]. We can compare 
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our approach with that of Stern and Cressie [7] as applied to our dataset in Masata [4]. 
Masata [4] used only explanatory variables X (type of forest) and a coarser division 
of CB into 41 subregions. Under the same conditions we obtain comparable results 
using our approach, see Fig. 9. 

Figure 9. Comparison of the present method and that of Stern and Cressie [7]. Esti
mated risk is on the vertical axis, the number of the subarea is on the horizontal 
axis. Empirical Bayesian estimates are denoted by (o) and estimates obtained 
by Masata [4] by (+). 95% credibility intervals for empirical Bayesian estimates 
(full line) and Masata [4] estimates (broken line) are drawn. 

In Fig. 9, we observe that in six subregions with highest mean posterior risk the 
values obtained by us are about 10 % higher. This may be caused by the fact that in 
the model with spatial dependence the extreme risk estimates are dropped by the val
ues in neighbouring subregions. But this does not lead to a conclusion that the more 
complex model is better. Unfortunately, we are not able to distinguish clustering and 
spatial variation from a single point pattern of cases. Since clustering is a departure 
from the assumption of independent cases and spatial variation is a departure from 
the assumption of equal risk (see Diggle [3]), spatial variation is expected in our case 
and not dependence. Concerning the credibility intervals in Fig. 9 the more complex 
model applied by Masata [4] does not lead to a substantial precision improvement. 
Summarizing these observations we conclude that the presented approach yields an 
appropriate method for evaluation the tick-borne encephalitis infection risk. 
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Abstract. The paper considers the problem of estimating the risk of a tick-borne disease
in a given region. A large set of epidemiological data is evaluated, including the point
pattern of collected cases, the population map and covariates, i.e. explanatory variables of
geographical nature, obtained from GIS.
The methodology covers the choice of those covariates which influence the risk of infection

most. Generalized linear models are used and AIC criterion yields the decision. Further, an
empirical Bayesian approach is used to estimate the parameters of the risk model. Statistical
properties of the estimators are investigated. Finally, a comparison with earlier results is
discussed from the point of view of statistical disease mapping.

Keywords: Bayesian estimation, generalized linear model, epidemiological data, statisti-
cal properties

MSC 2000 : 62G05

1. Introduction

Statistical disease mapping aims to characterize the spatial variation of cases of a

disease and to study connections with given covariates. Most analyses published in
the literature are based on the area-level approach which means that cases are ag-
gregated in subregions. If a point pattern of cases is available, a planar point process

modelling is another possible approach. In Diggle [3] a survey of both approaches is
given.

We are interested in estimating the risk that a person gets infected by a tick-borne
disease at a specific location, which is the task usually dealt with by epidemiologists

*This work was supported by the grant No. 201/98/0090 of the Grant Agency of the Czech
Republic, and by the project MSM 113200008.

389



and medical practitioners making decision on prophylactic measures in endemic ar-

eas (Zeman [9]). Suppose that the incidence of the disease has been registered for a
representative period, and the total human population exposed is known. Further,
assume that the area of interest is divided into n regions which may be either ad-

ministrative or deliberately designed for the purposes of this study. In this area-level
approach, for each region an average risk is enquired disregarding individual times

of exposure to the risk factor.

Let the number of people living in the ith region be Ni. If the probabilities of being

infected were the same for all of them, say equal to πi, then the observed proportion
of the infected pi = Oi/Ni would be an unbiased estimate of the probability πi, the

risk of infection. The reality, however, is more complex. Every inhabitant of the
region has a different exposure intensity and hence a different probability of being

infected and it is the average value of these probabilities which should be called
the risk of infection for the region, say ri. The approach used in the present paper
is to consider this parameter as a random variable having some prior distribution

that depends on a set of variables which describe the environmental conditions.
This approach belongs to a class of empirical Bayesian approaches widely used in

epidemiology, see e.g. Mollie and Richardson [6].

In this paper first the dataset is described and the process of selection of ex-

planatory variables is discussed in detail. Using the statistical model the desired risk
estimators are obtained. The results are compared with the earlier work of Mašata [4]

based on a different Bayesian approach.

2. Description of the data

The whole area of the Central Bohemia (CB) was divided into 141 small squares,

see Fig. 1. The hole in the middle of Fig. 1 corresponds to the capital Prague which is
not a part of CB administratively and its inhabitants are excluded from the analysis.

For each square we know, cf. Zeman [9]

• O . . . the number of persons infected by tick-borne encephalitis reported in the
years 1971–1993 (446 cases altogether)

• N . . . the number of inhabitants living in each square (total about 1.1 million)

• Overlap . . . the proportion of the square area which lies within CB. There are

54 squares partly outside of the CB, we call them border squares thereafter.

The following data that provide additional information about the individual regions

will be called explanatory variables (related to each square area):

• X2, X3, X4 . . . the proportion of the area of coniferous, mixed, and deciduous
forest, respectively.
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11 12 13

24 25 26 27 28 29

40 41 42 43 44 45

53 54 55 56 57 58 59 60 61 62 63

66 67 68 69 70 71 72 73 74 75 76 77 78 79

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

97 98 99 100 101 102 103 106 107 108 109 110 111

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

132 133 134 135 136 137 138 139 140 141 142 143 144

148 149 150 151 152 153 154 155 156 157 158 159

163 164 165 166 167 168 169 170 171 172 173 174

179 180 181 182 183 184 185 186 187 188 189 190

195 196 197 198 199 200 201 202 204

Figure 1. The area of the Central Bohemia divided into 141 squares sized 10×10 km. The
administrative subdivision into districts (see the boundaries) is too coarse for the
analysis.

• V 1, V 2, V 3, V 4 . . . the proportion of the area having elevation < 300m, 300–
500m, 500–700m, and 700–900m, respectively.

• L1, L2, L3, L4, L5, L6 . . . the proportion of the area covered by forests of indi-

vidual area 1–10ha, 10–50ha, 50–150ha, 150–300ha, 300–600ha, and > 600ha,
respectively.

The original elevation model was obtained from the Institute of Military Topog-
raphy, Dobruška, all the other explanatory variables were derived from the satellite

images of LANDSAT-5 MSS with resolution power of 80× 80m.

3. Statistical methods

3.1. Empirical Bayesian approach

Suppose that the risk ri in the ith square is a random variable with some prior
distribution. We assume the exponential prior distribution with the mean E(ri) = πi.

This is partly justified by the argument that smaller risk values are more probable
than larger ones.

Assume that the number of infected persons Oi can be approximated by the Pois-
son distribution. The posterior distribution of the risk ri|Oi has gamma distribution
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with parameters

(1) η = O + 1 and σ =
1

N + 1/π
,

i.e. the posterior mean is

(2) E(ri|Oi) =
Oi + 1

Ni + 1/πi
.

We will use this posterior mean for the risk quantification. In (2), the trivial estimate

of the risk is corrected by the value π which is a function of explanatory variables.

3.2. Optimizing the set of explanatory variables
Here we assume again that the response variable O is approximated by the Poisson

distribution with the mean λ. Suppose that the number of infected persons O after
appropriate transformation depends on the explanatory variables and the relation-

ship is linear

(3) λ = f(β0 + β1x1 + . . . + βpxp).

At a first glance it may seem surprising that the number Ni of persons exposed
to the risk does not appear explicitly in the function (3). It should be born in mind,

however, that Ni enters the result in another way, see formula (2).

The suitable function and the estimation of the parameters can be found by the

theory of GLM models, see McCullagh and Nelder [5]. GLM models extend the
classical regression analysis to the case of the response variable coming from the

distribution of exponential family. This is in many cases more natural than the
assumption of normality. The distribution of exponential family can be written in

the form

(4) g(y; θ, ϕ) = exp
{ (yθ − b(θ))w

ϕ
+ c(y, ϕ, w)

}

where b(·), c(·) are specific functions depending on this distribution, θ is the so-called
canonical parameter, ϕ is the dispersion parameter, and w is a known weight.

The canonical parameter θ contains the ‘natural’ link function that yields the
transformation of the mean of the response variable into the linear relationship with

the explanatory variables. Another type of the link function can be chosen than
the natural one. The use of the natural link function gives to the estimates better
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theoretical properties (existence and uniqueness). The probability function for the

Poisson distribution can be written in the form (4) as

(5) P (O = o) = exp
{
o log λ︸︷︷︸

θ

− λ︸︷︷︸
b(θ)

− log o!︸ ︷︷ ︸
c(o,ϕ)

}
,

where θ = log λ is the natural link function. Hence the function f in (3) is

(6) λ = eβ0+β1x1+...+βpxp .

The dispersion parameter for the Poisson distribution is ϕ = 1. For the mean and
variance it holds

(7) E(O) = b′(θ) = λ, var(O) = b′′(θ)ϕ = λ.

The estimation of parameters is based on the maximum likelihood method when
substituting (6) for the parameter λ into the likelihood function. The estimates

are obtained iteratively using the IWLS (iterative weighted least squares regression)
described in McCullagh and Nelder [5].

In the classical linear regression, the residual sum of squares is a measure of the
goodness of fit, in GLM models residual deviance DR is used instead (in the following

bold letters are used for vectors, e.g. o = (oi)n
i=1),

(8) DR = 2l(o)− 2l(λ̂, o).

Here l(o) is the maximum likelihood function obtained by the absolute fit of observed
data with the model, that is λ = o. Similary l(λ̂, o) is the likelihood function with
substituted ML estimates. DR has approximately χ2

n−q distribution, where q is
the number of parameters. The residual deviance DR is also a relative measure to

compare two models. Denote D0 = 2l(o)− 2l0 the null deviance where l0 is the null
model of likelihood function, i.e. no relationship is assumed and the predicted values

of λ̂ are substituted by the overall mean λ̂ =
n∑

i=1

oi/n.

The fit of our model can be quantified relatively when we substract the residual

deviance DR from null deviance D0,

(9) D = D0 −DR = 2l(λ̂, o)− 2l0;

D has approximately χ2
1 distribution.

Accordingly, the contribution of explanatory variables added into the model can
be tested. For comparison between the model G and F the deviance is obtained as
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D(λ̂G, λ̂F , o) = 2l(λ̂G, o) − 2l(λ̂F , o) where D(λ̂G, λ̂F , o) ∼ χ2
t−s, t is the number

of parameters of the model G and s is the number of parameters of the model F .
In classical regression analysis, the residual sum of squares is reduced by adding
any explanatory variable. The same applies for residual deviance. The AIC cri-

terion (Akaike Information Criterion) takes into account the number of estimated
parameters

(10) AIC = DR + 2pϕ̂

where p is the number of parameters, and ϕ̂ is the estimate of the dispersion param-
eter from the sample

(11) ϕ̂ =
1

n− p

∑ (oi − λ̂)2

λ̂
.

The criterion for the choice among all possible models is the minimum of AIC.

3.3. Overdispersion
For the Poisson distributed response variable, the variance (7) and the dispersion

parameter ϕ = 1 are given. High values of residual deviance, which is here the
measure of the fit, can cause the rejection of the model. This phenomenon is called
‘overdispersion’, which means that the model has higher variability than assumed.

The indicator that the overdispersion is present in the model can be also the esti-
mated dispersion parameter ϕ. A value greater than 1 makes the variance of the

model for Poisson data greater than in (7). To avoid the problem of overdispersed
data we can replace the assumption of Poisson distributed response variable by neg-

ative binomial distribution which is more flexible due to an additional parameter τ .
More details are described in Venables and Ripley [8]. The probability function of
the negative binomial distribution in the form of (4) can be written as

(12) P (O = o) = exp
{

o log
( λ

τ + λ

)

︸ ︷︷ ︸
θ

− τ log
(τ + λ

τ

)

︸ ︷︷ ︸
b(θ)

+c(o, θ)
}

.

In (12), the natural link function is θ, and the dispersion parameter is ϕ = 1. It
holds E(O) = λ, var(O) = λ+λ2/τ , so the variance is greater than the mean, which
may be a better reflection of reality.
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4. Numerical results

Here we deal with the squares where we have complete (or almost complete) infor-
mation, i.e. with the squares in Fig. 1 having the overlap with the CB more than 90%.

Since it is assumed that the explanatory variables affect the response variable by a
linear relationship after transformation of the response variable, the simple scatter-
plots between response and explanatory variables can be the first indicators of what

the dependency might be.

We distinguish between the random variableOi and its observed value oi. In Fig. 2
the relationship between the number of infected persons oi and the variables X3 and
X4 is obvious. The variable X2 does not show any dependency.

O
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Figure 2. Scatterplots of variables o, X2–X4.

In Fig. 3, the variable V 2 shows the best correlation with the number of infected,
and so do the variables L2 and L3 in Fig. 4. The simple correlation coefficients are
shown in the Tabs. 1a, 1b.

X2 X3 X4 V 1 V 2 V 3 V 4
o −0.02 0.56 0.40 −0.40 0.43 0.03 −0.08

Table 1a. Correlation coefficients between variables o and X, V , respectively.

L1 L2 L3 L4 L5 L6
o 0.37 0.62 0.61 0.24 −0.02 −0.07

Table 1b. Correlation coefficients between variables o and L.
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Figure 3. Scatterplots of variables o, V 1–V 4.
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Figure 4. Scatterplots of variables o, L1–L6.

4.1. The choice of the model

In the first step, we have to find an appropriate model for the distribution of the
response variable and the form of the link function. We deal with the variable X3 at
first, which exhibited positive correlation with the number of infected, and assume
the number of infected in the square area to be Poisson distributed. The estimation

of the parameters using the natural link function coming from (5) has been carried
out in the programming language S supported by the statistical software S-PLUS

log λ̂i = 0.62 + 6.14(X3)i.
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The residual deviance exceeded the quantile of its approximative distribution DR =
388.3 > χ2

0.95;85 = 107.5. The estimated dispersion parameter from (11) is ϕ̂ = 5.
The data show higher variability than expected by Poisson model. We try to esti-
mate the parameters from the likelihood function computed for negative binomial

distribution of the response variable. The program does not use the natural link
function as in (12) and works with the same link function as in the Poisson model

log λ̂i = 0.40 + 7.73(X3)i, τ̂ = 1.01, ϕ̂ = 1.02.

This time the residual deviance did not exceed the quantile of its approximative

distribution DR = 96.6 < χ2
0.95;85 = 107.5 and the estimation of the dispersion

parameter corresponds to its expected value 1. The goodness of fit with the model

using the variable X3 is confirmed since in (9) it holds

D = D0 −DR = 136.0− 96.6 = 39.4 > 3.84 = χ2
0.95;1.

The plot of the observed values oi against the values λ̂i predicted by the model with

the explanatory variable X3 shows the goodness of fit in Fig. 5.

fitted values

o

5 10 15 20 25

0
5

10
15

20
25

Figure 5. Observed cases oi plotted against the fitted λ̂i.

The fitted values should in the ideal case lie on the diagonal. The correlation
coefficient is cor(oi, λ̂i) = 0.49. There is still a lack of fit using only the variable X3
and we keep looking for a set of available explanatory variables to reach a better
fit of the data. The model for the negative binomial distribution of the response

variable O is used for that. The estimate τ̂
.= 1 is used fixed for better comparison

among the models with other explanatory variables.
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4.2. The choice of the set of the explanatory variables
In the first column of Tab. 2, there are six explanatory variables that are included

into the model separately and ordered by the size of the residual deviance RD. In the
third column of Tab. 2 there is the value of the correlation coefficient between the

observed and the fitted values cor(oi, λ̂i). The value RD that exceeds the quantile
χ2

0.95;85 = 107.5 is marked with the star. The rest of the variables showed poor fit
to the data.

RD cor(oi, λ̂i)
L3 90.1 0.58
L2 91.9 0.69
X3 95.8 0.49
V 2 103.1 0.42
V 1 103.1 0.40
X4 115.8∗ 0.32

Table 2. Residual deviance RD and correlation coefficient cor(oi, λ̂i) for explanatory vari-
ables included into the model separately.

If all variables are included into the model the algorithm of stepwise regression

using the minimization of the AIC results in the final model with the variables L2,
L3 (AIC= 90.0418). We should prefer a simpler model with different types of ex-
planatory variables because the information they contain is less dependent. The
variables L2 and L3 are highly correlated therefore including the variable X3 instead
of L3 could improve the model (AIC = DR + 2p = 91.9 + 4 = 95.9). The correlation
coefficient between the observed and the fitted values has the value cor(oi, λ̂i) = 0.70.
The variable V 2 did not show bad fit to the data but its inclusion into the model
with the variables L2 and X3 would not improve the fit significantly.
The size of the forest 10–50ha (L2) and the ratio of the mixed forest (X3) seem to

be satisfactory explanatory variables explaining the number of infected and represent
the required prior information in the study. The final model used in the next section

to get the predicted values is

(13) log λ̂i = −0.04 + 3.93(X3)i + 91.89(L2)i,

where DR = 91.9 < χ2
0.95;84 = 107.5, ϕ̂ = 0.95, D = D0 − DR = 134.8 − 91.9 =

42.9 > χ2
0.95;2 = 6.0.

4.3. Estimation of the risk
Here we deal with all squares including the border squares. The explanatory

variables are in these squares corrected by multiplication by the variable Overlap.
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The empirical Bayesian estimation is used. We substitute the result (13) of the

regression πi = λ̂i/Ni into the formula (2) to get the posterior mean estimator as
the estimate of the risk. In Fig. 6 the trivial estimates of the risk are compared with
the posterior ones. The values are ordered by the size of the trivial estimates of the

risk (in ascending order). The highest values are shown in Tab. 3.

Id o o/N E(ri|oi)
155 4 117.10 119.80
119 17 155.27 127.14
168 11 165.66 154.56
157 5 183.62 170.58
156 4 197.92 205.15
139 8 204.55 206.52
136 15 232.67 232.19
41 9 310.45 295.23

140 23 371.21 313.53
101 13 393.82 380.65
183 14 429.18 424.34
100 21 639.07 637.56
167 21 748.13 728.62
182 21 848.48 795.11
152 28 1132.23 1113.71

Table 3. The number of the square (Id) in Fig. 1 with the number of the infected per-
sons (oi), trivial estimate (oi/Ni) and Bayesian estimate E(ri|oi) of the risk [×105]
for the squares with the highest estimated risk (in ascending order).

The posterior mean is very close to the trivial estimate. If the trivial estimate
equals zero the posterior mean tends to be higher, on the contrary by very high

trivial estimate the posterior mean is lower. There are, though, some remarkable
outliers that are marked in Fig. 6 by the numbers. The numbers 1, 29, 54, 59 in

Fig. 6 represent the squares with the number 11, 81, 195, 204 in Fig. 1, respectively.
These squares have the overlap with the area of the CB less than 9%. The correction

of the explanatory variables in the border squares is unsatisfactory.

The posterior mean shows higher departure from the trivial estimate in further

squares with numbers 109, 116, 126, 140. As for the squares 109, 126 in Fig. 1 the
low posterior mean is caused by extremely low value of one or both explanatory

variables. X3 is on the contrary very high in the square 116 and L2 is very low in
the square 140.
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Figure 6. Trivial (o) and Bayesian estimates (+), mean value (in ascending order—the
number of square is renumbered).

4.4. Properties of the risk estimators
Mean square error MSE is an appropriate measure of the quality of the estimation

of the parameters comprising both bias and variability

(14) MSE = var(r̂) + (E(r̂) − r)2

where r̂ is the estimation of the unobservable risk r. Denote the mean value of the
trivial (Bayesian) estimate by rBI (rAP ), respectively.
In the Introduction, the possible bias of the trivial estimate rBI was discussed.

Intuitively, the zero risk obtained by the trivial estimate is less likely, and hence the
Bayesian estimate never predicting zero value of the risk might be closer to the true

risk and therefore less biased. If we do not consider the error due to regression in
the estimation of the posterior mean we can compare the variability of the trivial

and the Bayesian estimates in the range of the real data set.
The trivial estimate p, assuming that Oi are binomially distributed, has the

mean rBI and variance rBI(1 − rBI)/N . The Bayesian estimate r̂AP has the gamma
distribution with the parameters (η, σ), see (1), with the mean (2) rAP = ησ =
O + 1(N + 1/π)−1 and variance var(r̂AP ) = ησ2 = O + 1(N + 1/π)−2.
In Fig. 7, the interquartile range X̃0.75 − X̃0.25 of both distributions as a function

of the mean value is shown. N is in both cases taken as N = 2000. The higher N

the less different are both estimates. The vertical line can be understood as the

risk, the maximum value 0.015 in Fig. 7 corresponds approximately to the maximum
observed value in the square 152.

From the formula (2), it is obvious that the prior information makes always the
denominator higher. To compare the variability of the trivial and the Bayesian
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Figure 7. The comparison of the variability of the risk estimates as a function of E(r̂).
The points correspond to the binomial distribution with the mean E(r̂) = O/N ,
the line represents the interquartile range of the gamma distribution with the
parameters η = O, σ = 1/N with the mean E(r̂) = ησ, the dot-and-dash line
corresponds the interquartile range of the gamma distribution with the σ∗ =
(N + 1000)−1.

estimate for the same mean value the second parameter σ in gamma distribution

has to be decreased. The interquartile range of the gamma distribution with the
σ∗ = (N + 1000)−1 is drawn in Fig. 7 by dot-and-dash line. If both estimates were

unbiased or equally biased the Bayesian one is that of lower variability for low level
of risk r < 0.015 and hence of lower MSE.
If the trivial estimate underestimates the true risk there is no guaranty of

lower MSE until the squared bias in the formula (14) exceeds the variance. This
happens already for a bias of 3 infected from 2000 people in the square. Such an

analysis applies for higher N values, too. It is worth mentioning that the variability
of the trivial estimate is lower compared to the Bayesian estimate for the higher

level of risk approximately r > 0.1, but these values do not appear in practice.
The pure comparison of credibility intervals without regard to the bias should be

taken with caution but can still bring some information on reliability. The true bias
can hardly be estimated. The 95 % credibility (confidence) intervals for the estimated
risk in each square area based on the Bayesian (trivial) method are shown in Fig. 8.
These intervals correspond to the squares with overlap greater than 90 % with the
area of the CB, which are in ascending order according to mean estimated risk.

In 25 squares, there is no observed case of the infection and therefore the trivial
estimates and the confidence intervals for the risk are equal to zero and are closer

than the credibility intervals obtained from the Bayesian method. In the rest of
the squares, 70 % of the credibility intervales obtained from the Bayesian method
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Figure 8. 95% intervals for trivial (full line) and Bayes risk estimates (broken line).

are closer than the trivial ones. The squares with high estimates of the risk by the

Bayesian method are marked in Fig. 8 by the numbers 23, 55, 72. These numbers
correspond to the squares 169, 116, 98 in Fig. 1. In all cases, the number of observed

cases is zero or low and the Bayesian estimate is increased by prior information.

5. Conclusions

The whole paper is written in an area level data setting, an alternative approach
discussed in Diggle [3] and Best et. al. [1] makes use of (marked) point process mod-

elling of cases where intensity function is a crucial concept in the risk model. Both
approaches make it possible to construct models with varying complexity, e.g. the
ratio kernel estimator (Bithell [2]) of intensity function applied in Zeman [9] to the

pattern of cases studied here is simpler than a hierarchical Bayesian model in Stern,
Cressie [7] in an area level approach. Generally the point process approach may give

a finer resolution of disease cases and it is both theoretically and computationally
more demanding. The area level approach is finite-dimensional and useful in situ-

ations where a natural (geographical) division into subregions is desired or a fine
resolution is not needed. E.g. for our pattern of 446 cases the area level approach

with subregions in Fig. 1 must lead to satisfactory interpretations.

A substantial part of the paper is devoted to the choice of explanatory variables
which influence most the risk of infection. The AIC criterion seems to be natural

and enables to reduce large geographical information available to the most important
factors.

For the risk estimation, a simple approach has been applied which misses modelling
of spatial dependence and association, see e.g. Stern and Cressie [7]. We can compare
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our approach with that of Stern and Cressie [7] as applied to our dataset in Mašata [4].

Mašata [4] used only explanatory variables X (type of forest) and a coarser division
of CB into 41 subregions. Under the same conditions we obtain comparable results
using our approach, see Fig. 9.
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Figure 9. Comparison of the present method and that of Stern and Cressie [7]. Esti-
mated risk is on the vertical axis, the number of the subarea is on the horizontal
axis. Empirical Bayesian estimates are denoted by (o) and estimates obtained
by Mašata [4] by (+). 95% credibility intervals for empirical Bayesian estimates
(full line) and Mašata [4] estimates (broken line) are drawn.

In Fig. 9, we observe that in six subregions with highest mean posterior risk the
values obtained by us are about 10 % higher. This may be caused by the fact that in
the model with spatial dependence the extreme risk estimates are dropped by the val-
ues in neighbouring subregions. But this does not lead to a conclusion that the more

complex model is better. Unfortunately, we are not able to distinguish clustering and
spatial variation from a single point pattern of cases. Since clustering is a departure

from the assumption of independent cases and spatial variation is a departure from
the assumption of equal risk (see Diggle [3]), spatial variation is expected in our case

and not dependence. Concerning the credibility intervals in Fig. 9 the more complex
model applied by Mašata [4] does not lead to a substantial precision improvement.

Summarizing these observations we conclude that the presented approach yields an
appropriate method for evaluation the tick-borne encephalitis infection risk.
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