Applications of Mathematics

Alexander Ženíšek

Extensions from the Sobolev spaces H^{1} satisfying prescribed Dirichlet boundary conditions

Applications of Mathematics, Vol. 49 (2004), No. 5, 405-413
Persistent URL: http://dml.cz/dmlcz/134576

Terms of use:

© Institute of Mathematics AS CR, 2004

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

EXTENSIONS FROM THE SOBOLEV SPACES H^{1} SATISFYING PRESCRIBED DIRICHLET BOUNDARY CONDITIONS*

Alexander ŽeníŠek, Brno

(Received May 20, 2002, in revised version Novermber 11, 2003)

Abstract. Extensions from $H^{1}\left(\Omega_{P}\right)$ into $H^{1}(\Omega)$ (where $\Omega_{P} \subset \Omega$) are constructed in such a way that extended functions satisfy prescribed boundary conditions on the boundary $\partial \Omega$ of Ω. The corresponding extension operator is linear and bounded.

Keywords: extensions satisfying prescribed boundary conditions, Nikolskij extension theorem

MSC 2000: 65N99

This note completes the considerations and results of [4] where a completely discretized variational problem corresponding to a two-dimensional nonlinear second order parabolic-elliptic initial-boundary value problem was analyzed.

Our problem reads as follows: Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain with a Lipschitz continuous boundary in the sense of Nečas (see [3] or [6, Definition 1]). Let

$$
\begin{equation*}
\bar{\Omega}=\bar{\Omega}_{E} \cup \bar{\Omega}_{P}, \quad \Omega_{E} \cap \Omega_{P}=\emptyset \tag{1}
\end{equation*}
$$

where the subset $\Omega_{M}(M=E, P)$ is either a domain or a union of a finite number of mutually disjoint domains (all domains considered are assumed to have a Lipschitz continuous boundary) ${ }^{* *}$-see, for example, Figs. $1-3$. (Ω_{P} and Ω_{E} denote the domains (or sets) where the problem studied in [4] is described by parabolic and elliptic

[^0]equations, respectively.) We define
\[

$$
\begin{align*}
V & =\left\{v \in H^{1}(\Omega): v=0 \text { on } \Gamma_{1}\right\} \quad\left(\Gamma_{1} \subset \partial \Omega, \operatorname{meas}_{N-1} \Gamma_{1}>0\right) \tag{2}\\
V_{M} & =\left\{v_{M} \in H^{1}\left(\Omega_{M}\right): v_{M}=0 \text { on } \Gamma_{1} \cap \partial \Omega_{M}\right\} \quad(M=E, P) \tag{3}
\end{align*}
$$
\]

We have to find a bounded linear extension operator $\mathcal{P}: V_{P} \rightarrow V$; this means an operator \mathcal{P} with the following properties:

$$
\begin{gather*}
\mathcal{P}\left(c_{1} u_{P}+c_{2} v_{P}\right)=c_{1} \mathcal{P} u_{P}+c_{2} \mathcal{P} v_{P} \quad \forall c_{1}, c_{2} \in \mathbb{R}, \quad \forall u_{P}, v_{P} \in V_{P} \tag{4}\\
\left\|\mathcal{P} u_{P}\right\|_{H^{1}(\Omega)} \leqslant C\left\|u_{P}\right\|_{H^{1}\left(\Omega_{P}\right)} \quad \forall u_{P} \in V_{P} \tag{5}\\
\left.\mathcal{P} u_{P}\right|_{\Omega_{P}}=u_{P} \quad \forall u_{P} \in V_{P} \tag{6}
\end{gather*}
$$

In [4, Lemma 3.9] the existence of such an extension operator was proved under the restrictive assumption

$$
\begin{equation*}
\partial \Omega \cap \partial \Omega_{E} \cap \partial \Omega_{P} \subset \Gamma_{1} \quad \text { or } \quad \partial \Omega_{E} \cap \partial \Omega_{P} \cap \Gamma_{1}=\emptyset \tag{7}
\end{equation*}
$$

in [5, Theorem 44.3] the two-dimensional situation with $\partial \Omega_{E} \cap \partial \Omega_{P} \cap \Gamma_{1}$ being a one point set was also studied. (It should be noted that assumption (7) and [4, Lemma 3.9] do not depend on the dimension N.)

In this paper the two-dimensional considerations are completed and generalized to the three-dimensional case.

In our considerations we shall need first of all the following form of the Nikolskij extension theorem (formulated first with this name in [2]):

1. Lemma. Let $G \in \mathcal{C}^{0,1}$ be an N-dimensional domain (for applications, $N=2$ and $N=3$ is sufficient) and let $G_{0} \in \mathcal{C}^{0,1}$ be such a domain that $\bar{G} \subset G_{0}$. Then there exists a bounded linear operator $\mathcal{E}: H^{1}(G) \rightarrow H_{0}^{1}\left(G_{0}\right)$ such that

$$
(\mathcal{E} u)(X)=u(X) \quad \forall X \in G,
$$

where

$$
H_{0}^{1}\left(G_{0}\right)=\left\{v \in H^{1}\left(G_{0}\right), \mathfrak{T} v=0 \text { on } G_{0}\right\}
$$

$\mathfrak{T}: H^{1}\left(G_{0}\right) \rightarrow L_{2}\left(\partial G_{0}\right)$ being the trace operator.
We note that we use the usual brief notation $H^{1}(G)=H^{1,2}(G)$ and $H_{0}^{1}\left(G_{0}\right)=$ $H_{0}^{1,2}\left(G_{0}\right)$ for the corresponding Sobolev spaces (see [1]).

The proof of Lemma 1 is a special case (for $k=1$) of the proof of [6, Theorem 1.4 and Lemma 1.6]. The following lemma can be obtained by a simple modification of this proof:
2. Lemma. Let $G \in \mathcal{C}^{0,1}$ be an N-dimensional domain ($N=2$ or $N=3$) which is multiply connected. Let $\bar{H}_{1}, \ldots, \bar{H}_{n}$ be the "holes" in G with boundaries $\partial H_{1}, \ldots, \partial H_{n}$. Let ∂L_{0} be such a closed simple curve (or surface) that $\partial G=\partial L_{0} \cup$ $\partial H_{1} \cup \ldots \cup \partial H_{n}$. Further, let $\partial L_{1}, \ldots, \partial L_{n}$ be such closed simple curves (or surfaces) that $\partial S_{i}=\partial H_{i} \cup \partial L_{i}$ form the boundary of a strip (or layer) $\bar{S}_{i} \subset \bar{H}_{i}$ with a positive width $\left(S_{i} \in \mathcal{C}^{0,1}\right)$. Let us define a closed domain $\bar{D}=\bar{G} \cup \bar{S}_{1} \cup \ldots \cup \bar{S}_{n}$. Then there exists a bounded linear operator $\mathcal{F}: H^{1}(G) \rightarrow H^{1}(D)$ such that

$$
\begin{aligned}
& (\mathcal{F} u)(X)=u(X) \quad \forall X \in G, \quad \forall u \in H^{1}(G), \\
& \left.\mathcal{F} u\right|_{\partial L_{i}}=0 \quad \forall u \in H^{1}(G)(i=1, \ldots, n) .
\end{aligned}
$$

The following theorem is valid for both $N=2$ and $N=3$.
3. Theorem. Let $N=2$ or $N=3$. Let $\Omega \in \mathcal{C}^{0,1}, \Omega_{E} \in \mathcal{C}^{0,1}, \Omega_{P} \in \mathcal{C}^{0,1}$ be domains satisfying (1). Then there exists a bounded linear extension operator $\mathcal{P}: V_{P} \rightarrow V$, i.e., an operator satisfying (4)-(6).

Proof. First we note that part A3a of the proof of [4, Lemma 3.9] is not correct; thus we choose a quite different and more general way of proving. We shall consider several situations, most of them being indicated in Figs. 1a-3b. (Shadowed parts of the boundary $\partial \Omega$ denote the set $\Gamma_{1} \subset \partial \Omega$.) In parts A-E of this proof the two-dimensional case is studied. Changes in the proof when $N=3$ are introduced in part F.
A) In the case of Fig. 1a we apply Lemma 1 with $G=\Omega_{P}$ and $G_{0}=\bar{\Omega}_{P} \cup \Omega_{E}$.
B) In the case of Fig. 1b we apply Lemma 2 with $G=\Omega_{P}, \bar{H}_{1}=\bar{\Omega}_{E}$ and $n=1$. By Lemma 2 we have

$$
\begin{equation*}
\left\|\mathcal{F} u_{P}\right\|_{1, D} \leqslant C\left\|u_{P}\right\|_{1, \Omega_{P}} . \tag{8}
\end{equation*}
$$

We define

$$
\mathcal{P} u_{P}= \begin{cases}u_{P} & \text { in } \Omega_{P} \\ \mathcal{F} u_{P} & \text { in } \bar{S}_{1} \\ 0 & \text { in } \Omega_{E} \backslash \bar{S}_{1}\end{cases}
$$

Hence by (8)

$$
\left\|\mathcal{P} u_{P}\right\|_{1, \Omega} \leqslant C\left\|u_{P}\right\|_{1, \Omega_{P}} .
$$

Figure 1a and Figure 1b.

Figure 2a and Figure 2b.
C) In the case of Fig. 2b, where $\partial \Omega_{E} \cap \partial \Omega_{P} \cap \Gamma_{1}=\emptyset$, we use Lemma 1 with $G=\Omega_{P}$ and choose a domain $G_{0} \supset \bar{\Omega}_{P}$ such that $G_{0} \cap \partial \Omega_{E} \cap \Gamma_{1}=\emptyset$. For $\mathcal{E} u_{P} \in H_{0}^{1}\left(G_{0}\right)$ we have by Lemma 1

$$
\begin{equation*}
\left\|\mathcal{E} u_{P}\right\|_{1, G_{0}} \leqslant C\left\|u_{P}\right\|_{1, \Omega_{P}} \tag{9}
\end{equation*}
$$

We define

$$
\mathcal{P} u_{P}= \begin{cases}u_{P} & \text { in } \Omega_{P} \\ \mathcal{E} u_{P} & \text { in } \bar{G}_{0} \backslash \Omega_{P} \\ 0 & \text { in } \Omega_{E} \backslash \bar{G}_{0}\end{cases}
$$

Hence by (9)

$$
\left\|\mathcal{P} u_{P}\right\|_{1, \Omega} \leqslant C\left\|u_{P}\right\|_{1, \Omega_{P}}
$$

D) Now we shall consider the cases where $\partial \Omega_{E} \cap \partial \Omega_{P} \cap \Gamma_{1} \neq \emptyset$. Let $\Omega^{*}=$ $\Omega \cup \bar{H}_{1} \cup \ldots \cup \bar{H}_{m}, \bar{H}_{i}$ being the "holes" in Ω. Let ∂K be a closed simple curve with the property $\partial K \cap \Omega=\emptyset$ and such that ∂K and $\partial \Omega^{*}$ form the boundary of a strip Ω_{1} with a positive width: $\partial \Omega_{1}=\partial K \cup \partial \Omega^{*}$.

Figure 3a and Figure 3b.

Figure 4a and Figure 4b.

1. First, let us consider the case $\Gamma_{1}=\partial \Omega$ (or at least $\Gamma_{1}=\partial \Omega^{*}$). Let us define a closed domain \bar{G} by the relation

$$
\bar{G}=\bar{\Omega}_{P} \cup \bar{\Omega}_{1}
$$

and let the function $v \in H^{1}(G)$ satisfy

$$
v= \begin{cases}u_{P} & \text { in } \Omega_{P} \\ 0 & \text { in } \Omega_{1}\end{cases}
$$

We have

$$
\begin{equation*}
\|v\|_{1, G}=\left\|u_{P}\right\|_{1, \Omega_{P}} \tag{10}
\end{equation*}
$$

Let G_{0} be such a domain that $\bar{G} \subset G_{0}$. Moreover, if Ω_{E} is not simply connected then we choose G_{0} in such a way that $G_{0} \cap \bar{H}_{i}=\emptyset$, where $\bar{H}_{i}(i=1, \ldots, n)$ are
the "holes" in Ω_{E}. Applying Lemma 1 to the function v we obtain a function $\mathcal{E} v \in H^{1}\left(G_{0}\right)$ satisfying

$$
\begin{equation*}
\|\mathcal{E} v\|_{1, G_{0}} \leqslant C\|v\|_{1, G} \tag{11}
\end{equation*}
$$

Let us set

$$
\tilde{u}_{E}= \begin{cases}\mathcal{E} v & \text { in } G_{0} \cap \Omega_{E} \\ 0 & \text { in } \Omega_{E} \backslash G_{0}\end{cases}
$$

Then the function

$$
\tilde{u}= \begin{cases}u_{P} & \text { in } \Omega_{P} \tag{12}\\ \tilde{u}_{E} & \text { in } \Omega_{E}\end{cases}
$$

satisfies, according to (11) and (10),

$$
\begin{aligned}
\|\tilde{u}\|_{1, \Omega}^{2} & =\left\|u_{P}\right\|_{1, \Omega_{P}}^{2}+\left\|\tilde{u}_{E}\right\|_{1, \Omega_{E}}^{2}=\left\|u_{P}\right\|_{1, \Omega_{P}}^{2}+\|\mathcal{E} v\|_{1, G_{0} \cap \Omega_{E}}^{2} \\
& \leqslant\left\|u_{P}\right\|_{1, \Omega_{P}}^{2}+C^{2}\|v\|_{1, G}^{2}=\left(1+C^{2}\right)\left\|u_{P}\right\|_{1, \Omega_{P}}^{2} .
\end{aligned}
$$

Hence the function \tilde{u} given by (12) is the desired extension, $\tilde{u}=\mathcal{P} u_{P}$.
2. Let now $\Gamma_{1} \neq \partial \Omega^{*}$ and $\partial \Omega \cap \partial \Omega_{E} \cap \partial \Omega_{P} \subset \Gamma_{1}$; see, for example, Fig. 2a. It suffices to explain the idea of the proof for the circle and boundary conditions from Fig. 2a. Let the center of this circle coincide with the origin of the given Cartesian coordinate system and let $\partial \Omega_{P} \cap \partial \Omega_{E}$ be the segment lying on the axis x_{2}. Let $A=[0, R]$ and $B=[0,-R]$ be the end-points of $\partial \Omega_{P} \cap \partial \Omega_{E}$, where R is the radius of the circle considered. Let γ_{A} and γ_{B} be the parts of Γ_{1} containing the points A and B, respectively. Let A_{1} be the end-point of γ_{A} which lies on $\partial \Omega_{P}$. Similarly, let B_{1} be the end-point of γ_{B} which lies on $\partial \Omega_{P}$. Finally, let A_{1}^{*} and B_{1}^{*} be the points of ∂K which are closest to A_{1} and B_{1}, respectively. Let us cut the domain Ω_{1} into two parts Q_{2} and Ω_{2} by the segments $A_{1}^{*} A_{1}$ and $B_{1}^{*} B_{1}: \bar{\Omega}_{1}=\bar{\Omega}_{2} \cup \bar{Q}_{2}, \Omega_{2} \cap Q_{2}=\emptyset$, where Q_{2} lies along a part of $\partial \Omega_{P}$. The domain Ω_{2} is sketched together with Ω in Fig. 4a.

Let us define a closed domain \bar{G} by the relation

$$
\begin{equation*}
\bar{G}=\bar{\Omega}_{P} \cup \bar{\Omega}_{2} \tag{13}
\end{equation*}
$$

and let the function $v \in H^{1}(G)$ satisfy

$$
v= \begin{cases}u_{P} & \text { in } \Omega_{P} \\ 0 & \text { in } \Omega_{2}\end{cases}
$$

Again, as in part 1, relation (10) holds and we can repeat all considerations from that part and obtain also in this case the desired extension $\mathcal{P} u_{P}$.
3. Now let us consider the case that the set $\partial \Omega \cap \partial \Omega_{E} \cap \partial \Omega_{P}$ consists only of the point A (see, e.g., Fig. 3a). Let the point A_{1} have the same meaning as in part 2 and let $D^{*} \in \partial K$ be the point of ∂K closest to the point D (which is sketched in Fig. 4b). Let us cut the domain Ω_{1} into two parts Q_{3} and Ω_{3} by segments $A_{1}^{*} A_{1}$ and $D^{*} D: \bar{\Omega}_{1}=\bar{Q}_{3} \cup \bar{\Omega}_{3}, Q_{3} \cap \Omega_{3}=\emptyset$, where the closed strip \bar{Q}_{3} contains the point B. The domain Ω_{3} is sketched together with Ω in Fig. 4 b .

Let us define a closed domain \bar{G} by the relation

$$
\begin{equation*}
\bar{G}=\bar{\Omega}_{P} \cup \bar{\Omega}_{3} \tag{14}
\end{equation*}
$$

and let the function $v \in H^{1}(G)$ satisfy

$$
v= \begin{cases}u_{P} & \text { in } \Omega_{P} \\ 0 & \text { in } \Omega_{3}\end{cases}
$$

Relation (10) again holds.
Let G_{0} be such a domain that $\bar{G} \subset G_{0}$ and $\bar{G}_{0} \cap \bar{H}_{i}=\emptyset$, where \bar{H}_{i} are the "holes" in Ω_{E}. Now we can apply Lemma 1 to the function v and repeat the construction of $\mathcal{P} u_{P}$ introduced in part 1 .

3a. Let us note that we could use the segment $A_{2}^{*} A_{2}$ instead of the segment $D^{*} D$, where A_{2} is the second end-point of the $\operatorname{arc} \gamma_{A}$ and $A_{2}^{*} \in \partial K$. This approach has a modification (whose three-dimensional generalization will be useful in part F of this proof): Let $\omega \in \mathcal{C}^{0,1}$ be a domain with the following properties: $\omega \cap \Omega=\emptyset$ and $\bar{\omega} \cap \bar{\Omega}=\gamma_{A}$. We define

$$
\begin{equation*}
G=\omega \cup \gamma_{A} \cup \Omega_{P} \tag{15}
\end{equation*}
$$

Hence $\bar{G}=\bar{\omega} \cup \bar{\Omega}_{P}$ and we can construct the extension $\mathcal{P} u_{P}$ in the same way as in part 3.
4. We should mention also the case $\partial \Omega_{P} \backslash\left(\partial \Omega_{E} \cap \partial \Omega_{P}\right) \subset \Gamma_{1}$: it suffices to exchange the notation of the subdomains Ω_{E} and Ω_{P} in Fig. 4a; the rest is clear.
5. If $\gamma_{A} \cap\left(\partial \Omega_{E} \backslash \bar{I}\right)=\emptyset, \gamma_{B} \cap\left(\partial \Omega_{E} \backslash \bar{I}\right)=\emptyset$, where I is the relative interior of $\partial \Omega_{E} \cap \partial \Omega_{P}$, then we proceed in the same way as in part C.
6. At the end of part D of the proof let us consider the case $\gamma_{A} \cap\left(\partial \Omega_{P} \backslash \bar{I}\right)=\emptyset$, $\gamma_{B} \cap\left(\partial \Omega_{P} \backslash \bar{I}\right)=\emptyset$, where $I=\partial \Omega_{P} \cap \partial \Omega_{E}$. For a greater simplicity, let $\gamma_{B}=\emptyset$ and $\Gamma_{1}=\gamma_{A} \cup \lambda$ where $\lambda \subset \partial \Omega_{P} \backslash I\left(\lambda \cap \gamma_{A}=\emptyset\right)$; further, let $\partial \Omega$ be again a circle. We obtain a modification of Fig. 3a with $A_{1} \equiv A$, where A_{1} again denotes the lefthand end-point of the $\operatorname{arc} \gamma_{A}$. Let R_{1} be the upper end-point of λ and R_{2} the lower
end-point of λ. Let τ_{1} be a (piecewise) smooth arc connecting the points R_{1}, A_{1} and τ_{2} a (piecewise) smooth arc connecting the points R_{2}, A_{2}. Let τ_{1}, τ_{2} have no common points with $\partial \Omega$ (except for the end-points R_{i}, A_{i}). Let S be the strip with $\partial S=\tau_{1} \cup \tau_{2} \cup \lambda \cup \gamma_{A} \cup \partial K$. Let us set $\bar{G}=\bar{\Omega}_{P} \cup \bar{S}$. It is always possible to choose the $\operatorname{arcs} \tau_{1}, \tau_{2}$ such that $G \in \mathcal{C}^{0,1}$. The domain G is a domain with two "holes". Let the function $v \in H^{1}(G)$ satisfy

$$
v= \begin{cases}u_{P} & \text { in } \Omega_{P} \\ 0 & \text { in } S\end{cases}
$$

Relation (10) again holds. Applying Lemma 2 we obtain the required result in this case.
E) It remains to analyze the case from Fig. 3b, where we sketch the situation which appears in applications very often: the domain Ω_{P}^{1} is the rotor of an electromachine, the domain Ω_{P}^{2} is the stator of an electromachine and the narrow domain between them (the domain Ω_{E}) represents an air crevice. In this case

$$
\Omega_{P}=\Omega_{P}^{1} \cup \Omega_{P}^{2}
$$

is not a domain. Also in this case we can define the space $H^{1}(\Omega)$: For $v_{1} \in H^{1}\left(\Omega_{P}^{1}\right)$, $v_{2} \in H^{1}\left(\Omega_{P}^{2}\right)$ we set

$$
F v=F\left(v_{1}, v_{2}\right)= \begin{cases}v_{1} & \text { on } \Omega_{P}^{1} \\ v_{2} & \text { on } \Omega_{P}^{2}\end{cases}
$$

Then F is a bounded linear mapping from $H^{1}\left(\Omega_{P}^{1}\right) \times H^{1}\left(\Omega_{P}^{2}\right)$ into $H^{1}\left(\Omega_{P}\right)=$ $H^{1}\left(\Omega_{P}^{1} \cup \Omega_{P}^{2}\right)$ and $v=\left(v_{1}, v_{2}\right) \in H^{1}\left(\Omega_{P}\right)$ satisfies

$$
\left.v\right|_{\Omega_{P}^{1}}=v_{1},\left.\quad v\right|_{\Omega_{P}^{2}}=v_{2}
$$

Let δ be the width of the domain Ω_{E}. Let us use Lemma 1 with $G=\Omega_{P}^{1}$ in such a way that $G_{0} \cap \Omega_{E}$ is a strip of the width $\delta / 3$. Further, let us use Lemma 2 with $G=\Omega_{P}^{2}$ in such a way that $D \cap \Omega_{E}$ is a strip of the width $\delta / 3$. Let us set

$$
u_{E}= \begin{cases}\mathcal{E} u_{P}^{1} & \text { in } G_{0} \cap \Omega_{E} \tag{16}\\ 0 & \text { in } \Omega_{E} \backslash\left\{\left(G_{0} \cap \Omega_{E}\right) \cup\left(D \cap \Omega_{E}\right)\right\} \\ \mathcal{F} u_{P}^{2} & \text { in } D \cap \Omega_{E}\end{cases}
$$

By (16) and Lemmas 1,2 we have

$$
\begin{aligned}
\left\|u_{E}\right\|_{1, \Omega_{E}}^{2} & =\left\|\mathcal{E} u_{P}^{1}\right\|_{1, G_{0} \cap \Omega_{E}}^{2}+\left\|\mathcal{F} u_{P}^{2}\right\|_{1, D \cap \Omega_{E}}^{2} \\
& \leqslant C_{1}^{2}\left\|u_{P}^{1}\right\|_{1, \Omega_{P}^{1}}^{2}+C_{2}^{2}\left\|u_{P}^{2}\right\|_{1, \Omega_{P}^{2}} \leqslant \max \left\{C_{1}^{2}, C_{2}^{2}\right\}\left\|u_{P}\right\|_{1, \Omega_{P}}^{2}
\end{aligned}
$$

which we wanted to prove.
F) The above presented method of proving can be easily extended to three dimensions. Only the case not covered by assumption (7) deserves a special attention: Let $\sigma_{1}, \ldots, \sigma_{n}$ with meas $_{2} \sigma_{i}>0(i=1, \ldots, n)$ and $\sigma_{j} \cap \sigma_{k}=\emptyset$ be the parts of Γ_{1} such that $\sigma_{i} \cap\left(\partial \Omega_{E} \cap \partial \Omega_{P}\right) \neq \emptyset(i=1, \ldots, n)$. Let $\Delta_{i}(i=1, \ldots, n)$ be parts of a three-dimensional layer (which is a three-dimensional generalization of the strip Ω_{1} appearing at the beginning of part D) such that $\Delta_{j} \cap \Delta_{k}=\emptyset$ and

$$
\bar{\Delta}_{i} \cap \bar{\Omega}=\sigma_{i} \quad(i=1, \ldots, n) .
$$

We define

$$
G=\Delta \cup \sigma \cup \Omega_{P}
$$

where

$$
\Delta=\bigcup_{i=1}^{n} \Delta_{i}, \quad \sigma=\bigcup_{i=1}^{n} \sigma_{i} .
$$

Hence $\bar{G}=\bar{\Delta} \cup \bar{\Omega}_{P}$ and the construction of the extension $\mathcal{P} u_{P}$ is a straightforward modification of part D3.
4. Remark. The results presented in this paper play an important role connected with the theory of electromagnetic fields in electromachines and generally in the theory of parabolic-elliptic equations (see, e.g., [4]). Without using them one cannot present correct proofs of some related results (as it happened, for example, in [7] and [8]).

References

[1] A. Kufner, O. John, and S. Fučík: Function Spaces. Academia, Prague, 1977.
[2] J. Nečas: Les Méthodes Directes en Théorie des Equations Elliptiques. Academia/Masson, Prague/Paris, 1967.
[3] J. Nečas, I. Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction. Elsevier, Amsterdam, 1981.
[4] A. Ženíšek: Finite element variational crimes in parabolic-elliptic problems. Part I. Nonlinear schemes. Numer. Math. 55 (1989), 343-376.
[5] A. Ženíšek: Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations. Academic Press, London, 1990.
[6] A. Ženíséek: On a generalízation of Nikolskij's extension theorem in the case of two variables. Appl. Math. 48 (2003), 367-404.
[7] M. Zlámal: Finite element solution of quasistationary nonlinear magnetic field. RAIRO Anal. Numér. 16 (1982), 161-191.
[8] M. Zlámal: A linear scheme for the numerical solution of nonlinear quasistationary magnetic fields. Math. Comput. 41 (1983), 425-440.

Author's address: A. Ženíšek, Department of Mathematics, Faculty of Mechanical Engineering VUT, Technická 2, 61669 Brno, Czech Republic, e-mail: zenisek@um.fme.vutbr.cz.

EXTENSIONS FROM THE SOBOLEV SPACES H^{1} SATISFYING PRESCRIBED DIRICHLET BOUNDARY CONDITIONS*

Alexander Ženíšek, Brno

(Received May 20, 2002, in revised version Novermber 11, 2003)

Abstract

Extensions from $H^{1}\left(\Omega_{P}\right)$ into $H^{1}(\Omega)$ (where $\Omega_{P} \subset \Omega$) are constructed in such a way that extended functions satisfy prescribed boundary conditions on the boundary $\partial \Omega$ of Ω. The corresponding extension operator is linear and bounded.

Keywords: extensions satisfying prescribed boundary conditions, Nikolskij extension theorem

MSC 2000: 65N99

This note completes the considerations and results of [4] where a completely discretized variational problem corresponding to a two-dimensional nonlinear second order parabolic-elliptic initial-boundary value problem was analyzed.

Our problem reads as follows: Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain with a Lipschitz continuous boundary in the sense of Nečas (see [3] or [6, Definition 1]). Let

$$
\begin{equation*}
\bar{\Omega}=\bar{\Omega}_{E} \cup \bar{\Omega}_{P}, \quad \Omega_{E} \cap \Omega_{P}=\emptyset \tag{1}
\end{equation*}
$$

where the subset $\Omega_{M}(M=E, P)$ is either a domain or a union of a finite number of mutually disjoint domains (all domains considered are assumed to have a Lipschitz continuous boundary) ${ }^{* *}$-see, for example, Figs. $1-3$. (Ω_{P} and Ω_{E} denote the domains (or sets) where the problem studied in [4] is described by parabolic and elliptic

[^1]equations, respectively.) We define
\[

$$
\begin{align*}
V & =\left\{v \in H^{1}(\Omega): v=0 \text { on } \Gamma_{1}\right\} \quad\left(\Gamma_{1} \subset \partial \Omega, \operatorname{meas}_{N-1} \Gamma_{1}>0\right), \tag{2}\\
V_{M} & =\left\{v_{M} \in H^{1}\left(\Omega_{M}\right): v_{M}=0 \text { on } \Gamma_{1} \cap \partial \Omega_{M}\right\} \quad(M=E, P) . \tag{3}
\end{align*}
$$
\]

We have to find a bounded linear extension operator $\mathcal{P}: V_{P} \rightarrow V$; this means an operator \mathcal{P} with the following properties:

$$
\begin{gather*}
\mathcal{P}\left(c_{1} u_{P}+c_{2} v_{P}\right)=c_{1} \mathcal{P} u_{P}+c_{2} \mathcal{P} v_{P} \quad \forall c_{1}, c_{2} \in \mathbb{R}, \quad \forall u_{P}, v_{P} \in V_{P}, \tag{4}\\
\left\|\mathcal{P} u_{P}\right\|_{H^{1}(\Omega)} \leqslant C\left\|u_{P}\right\|_{H^{1}\left(\Omega_{P}\right)} \quad \forall u_{P} \in V_{P}, \tag{5}\\
\left.\mathcal{P} u_{P}\right|_{\Omega_{P}}=u_{P} \quad \forall u_{P} \in V_{P} . \tag{6}
\end{gather*}
$$

In [4, Lemma 3.9] the existence of such an extension operator was proved under the restrictive assumption

$$
\begin{equation*}
\partial \Omega \cap \partial \Omega_{E} \cap \partial \Omega_{P} \subset \Gamma_{1} \quad \text { or } \quad \partial \Omega_{E} \cap \partial \Omega_{P} \cap \Gamma_{1}=\emptyset ; \tag{7}
\end{equation*}
$$

in [5, Theorem 44.3] the two-dimensional situation with $\partial \Omega_{E} \cap \partial \Omega_{P} \cap \Gamma_{1}$ being a one point set was also studied. (It should be noted that assumption (7) and [4, Lemma 3.9] do not depend on the dimension N.)

In this paper the two-dimensional considerations are completed and generalized to the three-dimensional case.

In our considerations we shall need first of all the following form of the Nikolskij extension theorem (formulated first with this name in [2]):

1. Lemma. Let $G \in \mathcal{C}^{0,1}$ be an N-dimensional domain (for applications, $N=2$ and $N=3$ is sufficient) and let $G_{0} \in \mathcal{C}^{0,1}$ be such a domain that $\bar{G} \subset G_{0}$. Then there exists a bounded linear operator $\mathcal{E}: H^{1}(G) \rightarrow H_{0}^{1}\left(G_{0}\right)$ such that

$$
(\mathcal{E} u)(X)=u(X) \quad \forall X \in G,
$$

where

$$
H_{0}^{1}\left(G_{0}\right)=\left\{v \in H^{1}\left(G_{0}\right), \mathfrak{T} v=0 \text { on } G_{0}\right\},
$$

$\mathfrak{T}: H^{1}\left(G_{0}\right) \rightarrow L_{2}\left(\partial G_{0}\right)$ being the trace operator.
We note that we use the usual brief notation $H^{1}(G)=H^{1,2}(G)$ and $H_{0}^{1}\left(G_{0}\right)=$ $H_{0}^{1,2}\left(G_{0}\right)$ for the corresponding Sobolev spaces (see [1]).

The proof of Lemma 1 is a special case (for $k=1$) of the proof of [6, Theorem 1.4 and Lemma 1.6]. The following lemma can be obtained by a simple modification of this proof:
2. Lemma. Let $G \in \mathcal{C}^{0,1}$ be an N-dimensional domain ($N=2$ or $N=3$) which is multiply connected. Let $\bar{H}_{1}, \ldots, \bar{H}_{n}$ be the "holes" in G with boundaries $\partial H_{1}, \ldots, \partial H_{n}$. Let ∂L_{0} be such a closed simple curve (or surface) that $\partial G=\partial L_{0} \cup$ $\partial H_{1} \cup \ldots \cup \partial H_{n}$. Further, let $\partial L_{1}, \ldots, \partial L_{n}$ be such closed simple curves (or surfaces) that $\partial S_{i}=\partial H_{i} \cup \partial L_{i}$ form the boundary of a strip (or layer) $\bar{S}_{i} \subset \bar{H}_{i}$ with a positive width $\left(S_{i} \in \mathcal{C}^{0,1}\right)$. Let us define a closed domain $\bar{D}=\bar{G} \cup \bar{S}_{1} \cup \ldots \cup \bar{S}_{n}$. Then there exists a bounded linear operator $\mathcal{F}: H^{1}(G) \rightarrow H^{1}(D)$ such that

$$
\begin{aligned}
& (\mathcal{F} u)(X)=u(X) \quad \forall X \in G, \quad \forall u \in H^{1}(G), \\
& \left.\mathcal{F} u\right|_{\partial L_{i}}=0 \quad \forall u \in H^{1}(G) \quad(i=1, \ldots, n) .
\end{aligned}
$$

The following theorem is valid for both $N=2$ and $N=3$.
3. Theorem. Let $N=2$ or $N=3$. Let $\Omega \in \mathcal{C}^{0,1}, \Omega_{E} \in \mathcal{C}^{0,1}, \Omega_{P} \in \mathcal{C}^{0,1}$ be domains satisfying (1). Then there exists a bounded linear extension operator $\mathcal{P}: V_{P} \rightarrow V$, i.e., an operator satisfying (4)-(6).

Proof. First we note that part A3a of the proof of [4, Lemma 3.9] is not correct; thus we choose a quite different and more general way of proving. We shall consider several situations, most of them being indicated in Figs. 1a-3b. (Shadowed parts of the boundary $\partial \Omega$ denote the set $\Gamma_{1} \subset \partial \Omega$.) In parts $\mathrm{A}-\mathrm{E}$ of this proof the two-dimensional case is studied. Changes in the proof when $N=3$ are introduced in part F .
A) In the case of Fig. 1a we apply Lemma 1 with $G=\Omega_{P}$ and $G_{0}=\bar{\Omega}_{P} \cup \Omega_{E}$.
B) In the case of Fig. 1b we apply Lemma 2 with $G=\Omega_{P}, \bar{H}_{1}=\bar{\Omega}_{E}$ and $n=1$. By Lemma 2 we have

$$
\begin{equation*}
\left\|\mathcal{F} u_{P}\right\|_{1, D} \leqslant C\left\|u_{P}\right\|_{1, \Omega_{P}} . \tag{8}
\end{equation*}
$$

We define

$$
\mathcal{P} u_{P}= \begin{cases}u_{P} & \text { in } \Omega_{P}, \\ \mathcal{F} u_{P} & \text { in } \bar{S}_{1}, \\ 0 & \text { in } \Omega_{E} \backslash \bar{S}_{1} .\end{cases}
$$

Hence by (8)

$$
\left\|\mathcal{P} u_{P}\right\|_{1, \Omega} \leqslant C\left\|u_{P}\right\|_{1, \Omega_{P}} .
$$

Figure 1a and Figure 1b.

Figure 2a and Figure 2b.
C) In the case of Fig. 2b, where $\partial \Omega_{E} \cap \partial \Omega_{P} \cap \Gamma_{1}=\emptyset$, we use Lemma 1 with $G=\Omega_{P}$ and choose a domain $G_{0} \supset \bar{\Omega}_{P}$ such that $G_{0} \cap \partial \Omega_{E} \cap \Gamma_{1}=\emptyset$. For $\mathcal{E} u_{P} \in H_{0}^{1}\left(G_{0}\right)$ we have by Lemma 1

$$
\begin{equation*}
\left\|\mathcal{E} u_{P}\right\|_{1, G_{0}} \leqslant C\left\|u_{P}\right\|_{1, \Omega_{P}} . \tag{9}
\end{equation*}
$$

We define

$$
\mathcal{P} u_{P}= \begin{cases}u_{P} & \text { in } \Omega_{P}, \\ \mathcal{E} u_{P} & \text { in } \bar{G}_{0} \backslash \Omega_{P}, \\ 0 & \text { in } \Omega_{E} \backslash \bar{G}_{0}\end{cases}
$$

Hence by (9)

$$
\left\|\mathcal{P} u_{P}\right\|_{1, \Omega} \leqslant C\left\|u_{P}\right\|_{1, \Omega_{P}} .
$$

D) Now we shall consider the cases where $\partial \Omega_{E} \cap \partial \Omega_{P} \cap \Gamma_{1} \neq \emptyset$. Let $\Omega^{*}=$ $\Omega \cup \bar{H}_{1} \cup \ldots \cup \bar{H}_{m}, \bar{H}_{i}$ being the "holes" in Ω. Let ∂K be a closed simple curve with the property $\partial K \cap \Omega=\emptyset$ and such that ∂K and $\partial \Omega^{*}$ form the boundary of a strip Ω_{1} with a positive width: $\partial \Omega_{1}=\partial K \cup \partial \Omega^{*}$.

Figure 3a and Figure 3b.

Figure 4a and Figure 4b.

1. First, let us consider the case $\Gamma_{1}=\partial \Omega$ (or at least $\Gamma_{1}=\partial \Omega^{*}$). Let us define a closed domain \bar{G} by the relation

$$
\bar{G}=\bar{\Omega}_{P} \cup \bar{\Omega}_{1}
$$

and let the function $v \in H^{1}(G)$ satisfy

$$
v= \begin{cases}u_{P} & \text { in } \Omega_{P} \\ 0 & \text { in } \Omega_{1}\end{cases}
$$

We have

$$
\begin{equation*}
\|v\|_{1, G}=\left\|u_{P}\right\|_{1, \Omega_{P}} \tag{10}
\end{equation*}
$$

Let G_{0} be such a domain that $\bar{G} \subset G_{0}$. Moreover, if Ω_{E} is not simply connected then we choose G_{0} in such a way that $G_{0} \cap \bar{H}_{i}=\emptyset$, where $\bar{H}_{i}(i=1, \ldots, n)$ are
the "holes" in Ω_{E}. Applying Lemma 1 to the function v we obtain a function $\mathcal{E} v \in H^{1}\left(G_{0}\right)$ satisfying

$$
\begin{equation*}
\|\mathcal{E} v\|_{1, G_{0}} \leqslant C\|v\|_{1, G} . \tag{11}
\end{equation*}
$$

Let us set

$$
\tilde{u}_{E}= \begin{cases}\mathcal{E} v & \text { in } G_{0} \cap \Omega_{E}, \\ 0 & \text { in } \Omega_{E} \backslash G_{0}\end{cases}
$$

Then the function

$$
\tilde{u}= \begin{cases}u_{P} & \text { in } \Omega_{P} \tag{12}\\ \tilde{u}_{E} & \text { in } \Omega_{E}\end{cases}
$$

satisfies, according to (11) and (10),

$$
\begin{aligned}
\|\tilde{u}\|_{1, \Omega}^{2} & =\left\|u_{P}\right\|_{1, \Omega_{P}}^{2}+\left\|\tilde{u}_{E}\right\|_{1, \Omega_{E}}^{2}=\left\|u_{P}\right\|_{1, \Omega_{P}}^{2}+\|\mathcal{E} v\|_{1, G_{0} \cap \Omega_{E}}^{2} \\
& \leqslant\left\|u_{P}\right\|_{1, \Omega_{P}}^{2}+C^{2}\|v\|_{1, G}^{2}=\left(1+C^{2}\right)\left\|u_{P}\right\|_{1, \Omega_{P}}^{2} .
\end{aligned}
$$

Hence the function \tilde{u} given by (12) is the desired extension, $\tilde{u}=\mathcal{P} u_{P}$.
2. Let now $\Gamma_{1} \neq \partial \Omega^{*}$ and $\partial \Omega \cap \partial \Omega_{E} \cap \partial \Omega_{P} \subset \Gamma_{1}$; see, for example, Fig. 2a. It suffices to explain the idea of the proof for the circle and boundary conditions from Fig. 2a. Let the center of this circle coincide with the origin of the given Cartesian coordinate system and let $\partial \Omega_{P} \cap \partial \Omega_{E}$ be the segment lying on the axis x_{2}. Let $A=[0, R]$ and $B=[0,-R]$ be the end-points of $\partial \Omega_{P} \cap \partial \Omega_{E}$, where R is the radius of the circle considered. Let γ_{A} and γ_{B} be the parts of Γ_{1} containing the points A and B, respectively. Let A_{1} be the end-point of γ_{A} which lies on $\partial \Omega_{P}$. Similarly, let B_{1} be the end-point of γ_{B} which lies on $\partial \Omega_{P}$. Finally, let A_{1}^{*} and B_{1}^{*} be the points of ∂K which are closest to A_{1} and B_{1}, respectively. Let us cut the domain Ω_{1} into two parts Q_{2} and Ω_{2} by the segments $A_{1}^{*} A_{1}$ and $B_{1}^{*} B_{1}: \bar{\Omega}_{1}=\bar{\Omega}_{2} \cup \bar{Q}_{2}, \Omega_{2} \cap Q_{2}=\emptyset$, where Q_{2} lies along a part of $\partial \Omega_{P}$. The domain Ω_{2} is sketched together with Ω in Fig. 4a.

Let us define a closed domain \bar{G} by the relation

$$
\begin{equation*}
\bar{G}=\bar{\Omega}_{P} \cup \bar{\Omega}_{2} \tag{13}
\end{equation*}
$$

and let the function $v \in H^{1}(G)$ satisfy

$$
v= \begin{cases}u_{P} & \text { in } \Omega_{P} \\ 0 & \text { in } \Omega_{2}\end{cases}
$$

Again, as in part 1, relation (10) holds and we can repeat all considerations from that part and obtain also in this case the desired extension $\mathcal{P} u_{P}$.
3. Now let us consider the case that the set $\partial \Omega \cap \partial \Omega_{E} \cap \partial \Omega_{P}$ consists only of the point A (see, e.g., Fig. 3a). Let the point A_{1} have the same meaning as in part 2 and let $D^{*} \in \partial K$ be the point of ∂K closest to the point D (which is sketched in Fig. 4b). Let us cut the domain Ω_{1} into two parts Q_{3} and Ω_{3} by segments $A_{1}^{*} A_{1}$ and $D^{*} D: \bar{\Omega}_{1}=\bar{Q}_{3} \cup \bar{\Omega}_{3}, Q_{3} \cap \Omega_{3}=\emptyset$, where the closed strip \bar{Q}_{3} contains the point B. The domain Ω_{3} is sketched together with Ω in Fig. 4 b.

Let us define a closed domain \bar{G} by the relation

$$
\begin{equation*}
\bar{G}=\bar{\Omega}_{P} \cup \bar{\Omega}_{3} \tag{14}
\end{equation*}
$$

and let the function $v \in H^{1}(G)$ satisfy

$$
v= \begin{cases}u_{P} & \text { in } \Omega_{P} \\ 0 & \text { in } \Omega_{3}\end{cases}
$$

Relation (10) again holds.
Let G_{0} be such a domain that $\bar{G} \subset G_{0}$ and $\bar{G}_{0} \cap \bar{H}_{i}=\emptyset$, where \bar{H}_{i} are the "holes" in Ω_{E}. Now we can apply Lemma 1 to the function v and repeat the construction of $\mathcal{P} u_{P}$ introduced in part 1.

3a. Let us note that we could use the segment $A_{2}^{*} A_{2}$ instead of the segment $D^{*} D$, where A_{2} is the second end-point of the arc γ_{A} and $A_{2}^{*} \in \partial K$. This approach has a modification (whose three-dimensional generalization will be useful in part F of this proof): Let $\omega \in \mathcal{C}^{0,1}$ be a domain with the following properties: $\omega \cap \Omega=\emptyset$ and $\bar{\omega} \cap \bar{\Omega}=\gamma_{A}$. We define

$$
\begin{equation*}
G=\omega \cup \gamma_{A} \cup \Omega_{P} \tag{15}
\end{equation*}
$$

Hence $\bar{G}=\bar{\omega} \cup \bar{\Omega}_{P}$ and we can construct the extension $\mathcal{P} u_{P}$ in the same way as in part 3.
4. We should mention also the case $\partial \Omega_{P} \backslash\left(\partial \Omega_{E} \cap \partial \Omega_{P}\right) \subset \Gamma_{1}$: it suffices to exchange the notation of the subdomains Ω_{E} and Ω_{P} in Fig. 4a; the rest is clear.
5. If $\gamma_{A} \cap\left(\partial \Omega_{E} \backslash \bar{I}\right)=\emptyset, \gamma_{B} \cap\left(\partial \Omega_{E} \backslash \bar{I}\right)=\emptyset$, where I is the relative interior of $\partial \Omega_{E} \cap \partial \Omega_{P}$, then we proceed in the same way as in part C.
6. At the end of part D of the proof let us consider the case $\gamma_{A} \cap\left(\partial \Omega_{P} \backslash \bar{I}\right)=\emptyset$, $\gamma_{B} \cap\left(\partial \Omega_{P} \backslash \bar{I}\right)=\emptyset$, where $I=\partial \Omega_{P} \cap \partial \Omega_{E}$. For a greater simplicity, let $\gamma_{B}=\emptyset$ and $\Gamma_{1}=\gamma_{A} \cup \lambda$ where $\lambda \subset \partial \Omega_{P} \backslash I\left(\lambda \cap \gamma_{A}=\emptyset\right)$; further, let $\partial \Omega$ be again a circle. We obtain a modification of Fig. 3a with $A_{1} \equiv A$, where A_{1} again denotes the lefthand end-point of the arc γ_{A}. Let R_{1} be the upper end-point of λ and R_{2} the lower
end-point of λ. Let τ_{1} be a (piecewise) smooth arc connecting the points R_{1}, A_{1} and τ_{2} a (piecewise) smooth arc connecting the points R_{2}, A_{2}. Let τ_{1}, τ_{2} have no common points with $\partial \Omega$ (except for the end-points R_{i}, A_{i}). Let S be the strip with $\partial S=\tau_{1} \cup \tau_{2} \cup \lambda \cup \gamma_{A} \cup \partial K$. Let us set $\bar{G}=\bar{\Omega}_{P} \cup \bar{S}$. It is always possible to choose the $\operatorname{arcs} \tau_{1}, \tau_{2}$ such that $G \in \mathcal{C}^{0,1}$. The domain G is a domain with two "holes". Let the function $v \in H^{1}(G)$ satisfy

$$
v= \begin{cases}u_{P} & \text { in } \Omega_{P} \\ 0 & \text { in } S\end{cases}
$$

Relation (10) again holds. Applying Lemma 2 we obtain the required result in this case.
E) It remains to analyze the case from Fig. 3b, where we sketch the situation which appears in applications very often: the domain Ω_{P}^{1} is the rotor of an electromachine, the domain Ω_{P}^{2} is the stator of an electromachine and the narrow domain between them (the domain Ω_{E}) represents an air crevice. In this case

$$
\Omega_{P}=\Omega_{P}^{1} \cup \Omega_{P}^{2}
$$

is not a domain. Also in this case we can define the space $H^{1}(\Omega)$: For $v_{1} \in H^{1}\left(\Omega_{P}^{1}\right)$, $v_{2} \in H^{1}\left(\Omega_{P}^{2}\right)$ we set

$$
F v=F\left(v_{1}, v_{2}\right)= \begin{cases}v_{1} & \text { on } \Omega_{P}^{1} \\ v_{2} & \text { on } \Omega_{P}^{2}\end{cases}
$$

Then F is a bounded linear mapping from $H^{1}\left(\Omega_{P}^{1}\right) \times H^{1}\left(\Omega_{P}^{2}\right)$ into $H^{1}\left(\Omega_{P}\right)=$ $H^{1}\left(\Omega_{P}^{1} \cup \Omega_{P}^{2}\right)$ and $v=\left(v_{1}, v_{2}\right) \in H^{1}\left(\Omega_{P}\right)$ satisfies

$$
\left.v\right|_{\Omega_{P}^{1}}=v_{1},\left.\quad v\right|_{\Omega_{P}^{2}}=v_{2} .
$$

Let δ be the width of the domain Ω_{E}. Let us use Lemma 1 with $G=\Omega_{P}^{1}$ in such a way that $G_{0} \cap \Omega_{E}$ is a strip of the width $\delta / 3$. Further, let us use Lemma 2 with $G=\Omega_{P}^{2}$ in such a way that $D \cap \Omega_{E}$ is a strip of the width $\delta / 3$. Let us set

$$
u_{E}= \begin{cases}\mathcal{E} u_{P}^{1} & \text { in } G_{0} \cap \Omega_{E}, \tag{16}\\ 0 & \text { in } \Omega_{E} \backslash\left\{\left(G_{0} \cap \Omega_{E}\right) \cup\left(D \cap \Omega_{E}\right)\right\}, \\ \mathcal{F} u_{P}^{2} & \text { in } D \cap \Omega_{E}\end{cases}
$$

By (16) and Lemmas 1, 2 we have

$$
\begin{aligned}
\left\|u_{E}\right\|_{1, \Omega_{E}}^{2} & =\left\|\mathcal{E} u_{P}^{1}\right\|_{1, G_{0} \cap \Omega_{E}}^{2}+\left\|\mathcal{F} u_{P}^{2}\right\|_{1, D \cap \Omega_{E}}^{2} \\
& \leqslant C_{1}^{2}\left\|u_{P}^{1}\right\|_{1, \Omega_{P}^{1}}^{2}+C_{2}^{2}\left\|u_{P}^{2}\right\|_{1, \Omega_{P}^{2}} \leqslant \max \left\{C_{1}^{2}, C_{2}^{2}\right\}\left\|u_{P}\right\|_{1, \Omega_{P}}^{2},
\end{aligned}
$$

which we wanted to prove.
F) The above presented method of proving can be easily extended to three dimensions. Only the case not covered by assumption (7) deserves a special attention: Let $\sigma_{1}, \ldots, \sigma_{n}$ with meas $_{2} \sigma_{i}>0(i=1, \ldots, n)$ and $\sigma_{j} \cap \sigma_{k}=\emptyset$ be the parts of Γ_{1} such that $\sigma_{i} \cap\left(\partial \Omega_{E} \cap \partial \Omega_{P}\right) \neq \emptyset(i=1, \ldots, n)$. Let $\Delta_{i}(i=1, \ldots, n)$ be parts of a three-dimensional layer (which is a three-dimensional generalization of the strip Ω_{1} appearing at the beginning of part D) such that $\bar{\Delta}_{j} \cap \bar{\Delta}_{k}=\emptyset$ and

$$
\bar{\Delta}_{i} \cap \bar{\Omega}=\sigma_{i} \quad(i=1, \ldots, n) .
$$

We define

$$
G=\Delta \cup \sigma \cup \Omega_{P}
$$

where

$$
\Delta=\bigcup_{i=1}^{n} \Delta_{i}, \quad \sigma=\bigcup_{i=1}^{n} \sigma_{i} .
$$

Hence $\bar{G}=\bar{\Delta} \cup \bar{\Omega}_{P}$ and the construction of the extension $\mathcal{P} u_{P}$ is a straightforward modification of part D3.
4. Remark. The results presented in this paper play an important role connected with the theory of electromagnetic fields in electromachines and generally in the theory of parabolic-elliptic equations (see, e.g., [4]). Without using them one cannot present correct proofs of some related results (as it happened, for example, in [7] and [8]).

References

[1] A. Kufner, O. John, and S. Fučík: Function Spaces. Academia, Prague, 1977.
[2] J. Nečas: Les Méthodes Directes en Théorie des Equations Elliptiques. Academia/Masson, Prague/Paris, 1967.
[3] J. Nečas, I. Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction. Elsevier, Amsterdam, 1981.
[4] A. Ženíšek: Finite element variational crimes in parabolic-elliptic problems. Part I. Nonlinear schemes. Numer. Math. 55 (1989), 343-376.
[5] A. Ženíšek: Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations. Academic Press, London, 1990.
[6] A. Ženíšek: On a generalization of Nikolskij's extension theorem in the case of two variables. Appl. Math. 48 (2003), 367-404.
[7] M. Zlámal: Finite element solution of quasistationary nonlinear magnetic field. RAIRO Anal. Numér. 16 (1982), 161-191.
[8] M. Zlámal: A linear scheme for the numerical solution of nonlinear quasistationary magnetic fields. Math. Comput. 41 (1983), 425-440.

Author's address: A. Ženišek, Department of Mathematics, Faculty of Mechanical Engineering VUT, Technická 2, 61669 Brno, Czech Republic, e-mail: zenisek@um.fme.vutbr.cz.

[^0]: * This work was supported by the grants No 201/00/0557 and 201/03/0570 of the Grant Agency of the Czech Republic and and by the grant MSM: 262100001.
 ** The fact that a bounded domain Ω has a Lipschitz continuous boundary will be denoted by the symbol $\Omega \in \mathcal{C}^{0,1}$.

[^1]: * This work was supported by the grants No 201/00/0557 and 201/03/0570 of the Grant Agency of the Czech Republic and and by the grant MSM: 262100001.
 ** The fact that a bounded domain Ω has a Lipschitz continuous boundary will be denoted by the symbol $\Omega \in \mathcal{C}^{0,1}$.

