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Abstract. In this paper, under the one-parameter closed planar homothetic motion, a
generalization of Holditch Theorem is obtained by using two different line segments (with
fixed lengths) whose endpoints move along two different closed curves.
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1. Introduction

H. Holditch [4] gave the following noteworthy classical theorem in 1858: if the
endpoints A, B of a fixed segment AB with length a + b are rotated once along

an oval (Eilinie) k in the Euclidean plane, then a given fixed point X (AX = a,
XB = b) of AB describes a closed, not necesarilly convex, curve k(X). The area F

of the Holditch-Ring bounded by the curves k and k(X) is F = � ab. Later, this
classical result was generalized by different methods [1]–[9], [11]–[13].

Let E and E′ be the moving and fixed Euclidean planes and {O; e1, e2} and
{O′; e′

1, e
′
2} their coordinate systems, respectively. By takingOO′ = u = u1e1+u1e2

for u1, u2 ∈ � , the motion defined by the transformation

(1) x′ = hx− u

is called a one-parameter planar homothetic motion and denoted by E/E ′, where h is

a homothetic scale of the motion E/E ′ and x and x′ are the position vectors with
respect to the moving and fixed rectangular coordinate systems of a point X ∈ E,

respectively. The homothetic scale h and the vectors x, x′ and u are continuously
differentiable functions of a real parameter t. Furthermore, at the initial time t = 0

87



the coordinate systems coincide. Taking ϕ = ϕ(t) as the rotation angle between e1

and e′
1, equations

e1 = cosϕe′
1 + sin ϕe′

2,(2)

e2 = − sinϕe′
1 + cosϕe′

2

can be written. If

uj(t + T ) = uj(t), j = 1, 2,(3)

ϕ(t + T ) = ϕ(t) + 2 � ν, ∀t ∈ [0, T ]

then the motion E/E′ is called a one-parameter closed planar homothetic motion

with the period T > 0 and the rotation number ν ∈ � . During a closed motion, each
of the points can pass through several times on its orbit in period [0, T ]. We call the
oriented surface area of the orbit curve multiplied by the number of passing through
(Durchlaufzahl) the orbit surface area. To avoid the cases of pure translation and

pure rotation we assume that

ϕ̇(t) = dϕ/dt 6= 0.

Under the one-parameter closed planar homothetic motions, if P = (p1, p2) is the
pole point of the motion at a time t, then the sliding velocity of a fixed point X =
(x1, x2) ∈ E with respect to E ′ is

(4) dx′ = {(x1 − p1) dh− (x2 − p2)h dϕ}e1 + {(x1 − p1)h dϕ + (x2 − p2) dh}e2.

Furthermore, the area FX described by the fixed point X , given by the Gauss area
formula [10], is

(5) FX =
1
2

∮
(x′

1 dx′
2 − x′

2 dx′
1),

where the integration is taken along the closed orbit curve of X . Then we obtain

2FX = (x2
1 + x2

2)
∫ T

0

h2(t) dϕ(t)− 2x1

∫ T

0

p1(t)h2(t) dϕ(t)(6)

− 2x2

∫ T

0

p2(t)h2(t) dϕ(t)
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+
∫ T

0

{u1(t)p1(t)h(t) dϕ(t) + u2(t)p2(t)h(t) dϕ(t) + u1(t)p2(t) dh(t)

− u2(t)p1(t) dh(t)}

+ x1

∫ T

0

{u2(t) dh(t)− 2p2(t)h(t) dh(t) + h(t) du2(t)}

+ x2

∫ T

0

{−u1(t) dh(t) + 2p1(t)h(t) dh(t)− h(t) du1(t)}.

Moreover, using the mean value theorem of integral calculus for the closed interval
0 6 t 6 T , there exists at least one point t0 ∈ [0, T ] such that

(7)
∫ T

0

h2(t) dϕ(t) =
∫ T

0

h2(t)ϕ̇(t) dt = 2h2(t0) � ν.

By taking ν 6= 0, the Steiner point S = (s1, s2) for the closed planar homothetic
motion can be written as

(8) sj =

∫ t

0
h2(t)pj(t) dϕ(t)
∫ T

0
h2(t) dϕ(t)

, j = 1, 2.

Thus, from Eqs. (6), (7) and (8) we get [3]

(9) FX = FO + h2(t0) � ν(x2
1 + x2

2 − 2x1s1 − 2x2s2) + µ1x1 + µ2x2,

where FO is the area of the origin point of the moving coordinate system and

µ1 =
1
2

∫ T

0

{−2h(t)p2(t) dh(t) + h(t) du2(t) + u2(t) dh(t)},(10)

µ2 =
1
2

∫ T

0

{2h(t)p1(t) dh(t)− h(t) du1(t)− u1(t) dh(t)}.

Eq. (9) is called the Steiner area formula for the one-parameter closed planar homo-

thetic motion E/E′.
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2. A generalization of Holditch theorem to

two different closed curves

Theorem 1. Let Ei/E′ be one-parameter closed planar homothetic motions

with the same orientation, the same number of passing through (Durchlaufzahl) and

the rotation numbers νi (i = 1, 2). Under closed homothetic motions Ei/E′, if the

endpoints Ai and Bi of lines gi = AiBi draw orbit curves kA, kB ∈ E′, respectively,

then the points Xi ∈ gi (AiXi = λia, XiBi = λib) describe orbit curves ki with orbit

surface areas Fi. The difference F = F1 − F2 of the orbit surface areas Fi depends

on the parameters a, b, λi, νi, h, while it is independent of kA and kB .
������� �

. Let AiBi (i = 1, 2) have the directions of the real axes of the moving
planes Ei. In this case we have Ai = (0, 0), Bi = (λi(a + b), 0), Xi = (λia, 0). Using
the generalization of the Holditch Theorem given by Kuruoğlu and Yüce [11], for the

orbit surface areas FAi , FBi , Fi of points Ai, Bi, Xi we get

F1 =
aFB1 + bFA1

a + b
− h2(t0) � ν1λ

2
1ab(11)

and

F2 =
aFB2 + bFA2

a + b
− h2(t0) � ν2λ

2
2ab.(12)

Hence, we obtain

(13) F = F1 − F2 =
a(FB1 − FB2) + b(FA1 − FA2)

a + b
+ (ν2λ

2
2 − ν1λ

2
1)h

2(t0) � ab.

Since the points Ai (Bi) draw the closed curves kA (kB) with the same orientation
under the homothetic motions Ei/E′, we can write FA1 = FA2 (FB1 = FB2). Then

we get

(14) F = F1 − F2 = (ν2λ
2
2 − ν1λ

2
1)h

2(t0) � νab.

Special case 1 : In the special case of the homothetic scale h ≡ 1, Eq. (14) yields

(15) F = F1 − F2 = (ν2λ
2
2 − ν1λ

2
1) � νab

which was given by Pottman [7].

Special case 2 : If kA = kB , ν2 = 1 and λ1 = 0 then Eq. (14) yields the Holditch
theorem for the closed planar homothetic motion which was given by Tutar and
Kuruoğlu [3].
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