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INSTABILITY OF OSCILLATIONS IN CABLE-STAYED BRIDGES*
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Abstract. In this paper the stability of two basic types of cable stayed bridges, suspended
by one or two rows of cables, is studied. Two linearized models of the center span describing
the vertical and torsional oscillations are investigated. After the analysis of these models, a
stability criterion is formulated. The criterion expresses a relation between the eigenvalues
of the vertical and torsional oscillations of the center span. The continuous dependence
of the eigenvalues on some data is studied and a stability problem for the center span is
formulated. The existence of a solution to the stability problem is proved. Some other
qualitative results concerning the stability/instability of oscillations are studied as well.

Keywords: cable stayed bridge, vertical and torsional oscillations, eigenvalues and eigen-
functions of center span

MSC 2000 : 35P10, 35Q80, 35B27

1. Introduction

Cable stayed bridges are quite popular because of their economic efficiency and
relatively easy way of erection. The characteristic feature of the cable stayed bridge
construction is the fact that road beds are suspended by one or two rows of cables
which are fixed to pylons. The construction of cable stayed bridges is similar to the
construction of suspension bridges whose road bed is suspended by cables as well, but
these cables are not fixed to pylons but to main cables and the main cables are fixed
to the pylons. Suspension bridges have been studied in many papers, for instance [1]–
[5], [7]–[11], [16], where main attention has been paid to vertical oscillation of the
center span, which is the part of the road bed between the pylons. The center span
is modeled as a bending beam suspended by nonlinear strings.
In [12], [13] two models of the center span suspended by one and two rows of

cables were studied. The models include vertical and torsional oscillations and the

*This work was supported by Grant ASCR K1019101.
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nonlinear behaviour of the cables. The two basic types of cable-stayed bridges are
depicted in Figs. 1 and 2.

Vertical and torsional oscillations in the models are connected through the cables
and the effect of wind. The effect of wind generally depends not only on its power
but also on the torsional twisting of the center span. The non-linearity of cables is as
follows: the restoring force due to a cable is such that it resists expansion, but does
not resist compression. The oscillations of the center span from small to medium
amplitudes are linear, which means that the cables do not loosen.

cables

pylons

road bed

Figure 1.

cables

pylons

road bed

Figure 2.

In this paper we deal with some simplified models which lead to a linear system
of differential equations. After analyzing the equations, we formulate a criterion
of stability. The criterion is based on certain relations between the eigenvalues
corresponding to the vertical and torsional oscillations of the center span. Then
we study the continuous dependence of the eigenvalues on some bridge parameters
(position of cables, additional loads).

A homogenization procedure, which makes it possible to describe the cable sys-
tem with a usual function, is proposed. Relations between the eigenvalues of the
homogenized problem and the original problem are studied. An optimal problem
which makes it possible to maximize the stability of the center span in wind with
respect to the parameters mentioned above is formulated. Some qualitative results
concerning the relation between the length and the stability of the center span are
discussed as well as some connections between the construction of the center span,
the way the center span is suspended, and the stability of the whole system.

2. Setting of the basic problems

In this section we will formulate two basic models which describe the behaviour of
the center span suspended by one and two rows of cables. The reader can find more
information about the models in [12], [13].
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The models depicted in Figs. 3 and 4 correspond to the cable-stayed bridges in
Figs. 1 and 2. The models describe the behaviour of the center span in wind properly
if the pylons are sufficiently stiff. The behaviour of the center span can be described
by two functions u(x, t), ϕ(x, t) defined on 〈0, L〉 × 〈0, T 〉. The function u(x, t)
corresponds to the downward bending of the longitudinal axis at the position x and
the time t and ϕ(x, t) corresponds to the torsional twisting of the cross section at x
and t, which is depicted in Fig. 5.
Let us define bilinear forms

m1(u, v) =

∫ L

0

M1uv dx, m2(ϕ, ψ) =

∫ L

0

M2ϕψ dx,

k1(u, v) =

∫ L

0

K1
∂2u

∂x2

∂2v

∂x2
dx, k2(ϕ, ψ) =

∫ L

0

K2
∂ϕ

∂x

∂ψ

∂x
dx,

(u, v) =

∫ L

0

uv dx, b(u, v) =

8∑

i=1

kiu(xi)v(xi),

whereM1,M2, K1, K2 ∈ L∞((0, L)), ki ∈ 
 , ki > 0, i = 1, . . . 8, and the assumptions

(2.1) M1(x) > ε, M2(x) > ε, K1(x) > ε, K2(x) > ε

are satisfied for all x ∈ (0, L), where ε is a positive constant. The bilinear forms
k1(·, ·), k2(·, ·) are connected with the deformation energy of the bending and twisting
of the central span.

l

Lx1

x2

x3

x4

x5

x6

x7

x8

immovable points

center span

Figure 3.

Lx1

x2

x3

x4

x5

x6

x7

x8

immovable points

center span

Figure 4.

The bilinear form b(·, ·) corresponds to the deformation energy of one row of cables
as it is depicted in Figs. 3 and 4, where xi are the points at which the cables are
fixed to the center span. The bilinear forms m1(·, ·), m2(·, ·) are connected with the
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kinetic energy of vertical and torsional oscillations and the functions M1, M2 are
defined as follows:

(2.2) M1(x) =

∫

Ax

%(x, y, z) dy dz, M2(x) =

∫

Ax

%(x, y, z)(y2 + z2) dy dz,

where %(x, y, z) is the density of the center span and Ax is the cross section at x
perpendicular to the longitudinal axis (see Fig. 5).

z
z′

y

y′

u(x, t)
ϕ(x, t)

Figure 5.

We can see that M1(x) corresponds to the mass of the unit length of the center
span at x and M2(x) to the cross-section moment of inertia with respect to the
longitudinal axis at x.

Let us formulate variational equations for the two basic types of cable-stayed
bridges. We start with the equations describing the behaviour of the center span
suspended by two rows of cables. The equations read

m1

(∂2u

∂t2
, v

)
+ k1(u, v) + b((u+ lϕ)+, v) + b((u− lϕ)+, v)(2.3)

= (F1 + P1(ϕ), v),

m2

(∂2ϕ

∂t2
, ψ

)
+ k2(ϕ, ψ) + lb((u+ lϕ)+, ψ)− lb((u− lϕ)+, ψ)

= (F2 + P2(ϕ), ψ),

where u, ϕ are sufficiently smooth and defined on 〈0, L〉×〈0, T 〉 and the functions v,
ψ are sufficiently smooth and defined on 〈0, L〉. The symbol u+ stands for max{0, u}
and corresponds to the process of loosening cables which occurs if the center span
achieves a certain height at the points, where the cables are fixed. The number l is
the distance between the rows of cables and the axis (see Fig. 3).
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The equations (2.3) are fulfilled for all t ∈ 〈0, T 〉 and v, ψ and the following
boundary and initial conditions

u(0, t) = u(L, t) = ϕ(0, t) = ϕ(L, t) = 0, t ∈ 〈0, T 〉,(2.4)

v(0) = v(L) = ψ(0) = ψ(L) = 0,

u(x, 0) = u0(x),
∂u(x, 0)

∂t
= u1(x), x ∈ 〈0, L〉,

ϕ(x, 0) = ϕ0(x),
∂ϕ(x, 0)

∂t
= ϕ1(x), x ∈ 〈0, L〉

hold, where u0, u1, ϕ0, ϕ1 are some fixed functions.
The expressions (F1 +P1(ϕ), v), (F2 +P2(ϕ), ψ) correspond to the energy of gravi-

tation and wind, respectively. The functions F1(x), F2(x) defined on 〈0, L〉 represent
the gravitational forces and the moment of gravitational forces per a unit length of
the center span. If there are no additional weights placed along the center span, then
F2(x) = 0 due to the symmetry of the center span.
The functions P1(y, x, t), P2(z, x, t) defined on 
 × 〈0, L〉 × 〈0, T 〉 represent the

same quantities of wind forces. These quantities generally depend on ϕ as is depicted
in Fig. 6. In detail the model is studied in [12], where damping forces are considered.
These forces are small and we neglect them in our considerations.

t

u
wind

ϕ
lift

ϕ

ϕ

Figure 6.

If the center span is not under the influence of wind and is motionless, it can be
described by the steady state equations

k1(u, v) + b((u+ lϕ)+, v) + b((u− lϕ)+, v) = (F1, v),(2.5)

k2(ϕ, ψ) + lb((u+ lϕ)+, ψ)− lb((u− lϕ)+, ψ) = (F2, v),

where u, v, ϕ, ψ defined on 〈0, L〉 are sufficiently smooth. The functions u, v are a
solution to (2.5) if the equations are fulfilled for all v, ψ and the boundary conditions

(2.6) u(0) = u(L) = v(0) = v(L) = ϕ(0) = ϕ(L) = ψ(0) = ψ(L) = 0

hold.
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The cable stayed bridge is constructed so that if the center span is exposed to
gravitation and is motionless, then the cables are tightened and the solution to (2.5),
(2.6) satisfies the relations

(2.7) u(xi)∓ lϕ(xi) > ε, i = 1, . . . 8,

where xi are the points at which the cables are fixed to the center span and ε is
a positive constant. Then u, ϕ are solutions of the linear system of variational
equations

k1(u, v) + 2b(u, v) = (F1, v),(2.8)

k2(ϕ, ψ) + 2l2b(ϕ, ψ) = (F2, v),

where u, ϕ, v, ψ satisfy (2.6).
Wind forces are usually much weaker than gravitational forces. The magnitude of

wind is described in [13] by the special norm for P1(y, x, t), P2(y, x, t). We can say
that if the velocity of the wind is small and the wind slowly changes in time, then
the above norm is small too.
If P1, P2 are sufficiently small in the norm mentioned above and the initial condi-

tions do not differ very much from the conditions

u(x, 0) = u0(x),
∂u(x, 0)

∂t
= 0, x ∈ 〈0, L〉,(2.9)

ϕ(x, 0) = ϕ0(x),
∂ϕ(x, 0)

∂t
= 0, x ∈ 〈0, L〉,

where u0, ϕ0 are solutions to (2.8), then the cables do not loosen, which is expressed
by the inequalities

(2.10) u(xi, t)± lϕ(xi, t) > 0, i = 1, . . . 8, t ∈ 〈0, T 〉.

Moreover, the solutions u, ϕ to (2.3) satisfy the linearized system

m1

(∂2u

∂t2
, v

)
+ k1(u, v) + 2b(u, v) = (F1 + P1(ϕ), v),(2.11)

m2

(∂2ϕ

∂t2
, ψ

)
+ k2(ϕ, ψ) + 2l2b(ϕ, ψ) = (F2 + P2(ϕ), ψ)

with the corresponding boundary and initial conditions.
The above problem was studied in [13] for the model with one row of cables, but

everything remains correct for the model with two rows of cables.
Similar problems for some models of suspension bridges were studied in [2], [3],

[10].
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In the sequel we will cope with a simpler problem described by the equations (2.11)
with the right-hand sides

F1(x) = F (x), P1(ϕ, x, t) = B(x)ϕ,(2.12)

F2(x) = 0, P2(ϕ, x, t) = 0,

where F ∈ L2((0, L)) and B ∈ L∞((0, L)). Such expressions for forces are realistic for
many concrete center spans (see [8]). Moreover, we can say that P1 is small in the
norm mentioned above if B is small in the norm in L∞((0, L)).
The problem (2.11), (2.12) describes the behaviour of the center span suspended

by two rows of the cables which do not loosen, the state of the center span at t = 0

does not differ very much from (2.9), and the wind does not change in time.
We will look for the sources of the instabilities connected with the linear behaviour

and that is why we will deal with the linear problem (2.11), (2.12) which we analyze
in the sections below.
Similar problems can be studied for the model of the center span suspended by

one row of cables. For this model the equations (2.3) have to be changed to

m1

(∂2u

∂t2
, v

)
+ k1(u, v) + b(u+, v) = (F1 + P1(ϕ), v),(2.13)

m2

(∂2ϕ

∂t2
, ψ

)
+ k2(ϕ, ψ) = (F2 + P2(ϕ), ψ)

and the equations (2.5) to

k1(u, v) + b(u+, v) = (F1, v),(2.14)

k2(ϕ, ψ) = (F2, v).

The shape of the linear steady state equations connected with (2.8) is clear and
the inequalities (2.7), (2.10) have to be changed to

u(xi) > ε, i = 1, . . . 8,(2.15)

u(xi, t) > 0, i = 1, . . . 8, t ∈ 〈0, T 〉.

The linear equations (2.11) have to be changed to

m1

(∂2u

∂t2
, v

)
+ k1(u, v) + b(u, v) = (F1 + P1(ϕ), v),(2.16)

m2

(∂2ϕ

∂t2
, ψ

)
+ k2(ϕ, ψ) = (F2 + P2(ϕ), ψ)

with the right-hand sides (2.12). The corresponding boundary and initial conditions
remain the same for the modified equations.
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3. Analysis of the linear equations and a criterion of stability

The main goal of this section is to analyze solutions to the equations (2.11), (2.12)
which describe the behaviour of the center span in a stable and relatively weak wind.
Let us denote

V1 = H2((0, L)) ∩H1
0 ((0, L)), V2 = H1

0 ((0, L)),

where H1
0 ((0, L)), H2((0, L)) are the Sobolev spaces of functions from L2((0, L)) whose

first and second derivatives belong to L2((0, L)). The fact that u ∈ H1
0 ((0, L)) means

u(0) = u(L) = 0. V1 and V2 are Hilbert spaces equipped with scalar products

〈u, v〉V1 =

∫ L

0

{uv + u′v′ + u′′v′′} dx,

〈ϕ, ψ〉V2 =

∫ L

0

{ϕψ + ϕ′ψ′} dx.

By virtue of (2.1) and the Poincaré inequality (see [6]) we have

(3.1) C‖u‖2
V1

6 k1(u, u), C‖ϕ‖2
V2

6 k2(ϕ, ϕ),

where C is a positive constant independent of u, ϕ.
Let us formulate the eigenvalue problems connected with the differential equa-

tions (2.11), (2.12). The eigenvalue problem for (2.11) reads

αm1(u, v) = k1(u, v) + 2b(u, v),(3.2)

βm2(ϕ, ψ) = k2(ϕ, ψ) + 2l2b(ϕ, ψ).

We look for real numbers α, β and functions u, ϕ from V1, V2 such that the equa-
tions (3.2) are fulfilled for all v, ψ from V1, V2.

Theorem 3.1. There exist two sequences of eigenvalues 0 < α1 6 α2 . . ., 0 <

β1 6 β2 . . . and eigenfunctions un, ϕn of the system (3.2) satisfying

m1(um, un) = k1(um, un) + 2b(um, un) = 0,

m2(ϕm, ϕn) = k2(ϕm, ϕn) + 2l2b(ϕm, ϕn) = 0

if m 6= n, and
m1(un, un) = m2(ϕm, ϕm) = 1.

Moreover, un is a basis in V1, L2((0, L)) and ϕn is a basis in V2, L2((0, L)).
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���������
. We will prove the results of the theorem for the first equation

in (3.2). The proof for the second equation is similar. Let us define an opera-
tor A : L2((0, L)) → V1 such that A(u) = z which is a solution to the variational
equation

(3.3) k1(z, v) + 2b(z, v) = m1(u, v).

The equation (3.3) is uniquely solvable, which follows from (3.1) and the continuity
of k1(·, ·), b(·, ·) on V1. The continuity of b(·, ·) follows from its definition and the
fact that H1((0, L)) is continuously embedded into C1(〈0, L〉). Hence the operator A
is linear and continuous. The restriction of A onto V1 is a compact operator, which
follows from the compactness of the embedding of V1 into L2((0, L)). If we replace
the usual scalar product on V1 with the equivalent bilinear form k1(·, ·) + 2b(·, ·), we
have

k1(A(u), v) + 2b(A(u), v) = m1(u, v),(3.4)

k1(A(v), u) + 2b(A(v), u) = m1(v, u).

The equations (3.4) hold for all u, v ∈ V1 and the bilinear forms k1(·, ·), b(·, ·) are
symmetric and positive, which yields that the operator A is self-adjoint and positive.

If we apply the theory of linear compact operators (see [19]) and notice that α is
an eigenvalue of (3.2) if and only if 1/α is an eigenvalue of A, we obtain the desired
result. �

We can formulate the eigenvalue problem connected with vertical and torsional
oscillations of the center span suspended by one row of cables and prove a theorem
similar to Theorem 3.1.

If we look at the equations (2.11) with the right-hand sides (2.12) and take into
account Theorem 3.1, we see that the solution of the second equation can be written
as the sum

(3.5)
∞∑

i=1

ai sin
(√

βit+ θi

)
ϕi,

where βi, ϕi are the eigenvalues and eigenfunctions of torsional vibrations and
the numbers ai, θi can be obtained from the initial conditions by the Fourier
method (see [17]).

The expressions in the sum (3.5) generate the periodic forces

ai sin
(√

βit+ θi

)
Bϕi
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which act on the center span in the vertical direction due to the structure of the
right-hand side (2.12).
If βi is an eigenvalue of torsional vibrations which is equal or very near to an

eigenvalue αj of vertical vibrations, the resonance can take place. On the other
hand, the resonance depends on the number ai in the sum (3.5). If the number
vanishes, the resonance does not take place. We see that the instability by stable
wind at the jth vertical mode depends on the initial conditions which are generally
the result of a gust of wind.
The same analysis can be made for the model with one row of cables.
A dangerous situation seems to occur if there are eingenvalues βi, αj among the

first m, n eingevalues of torsional and vertical vibrations, respectively. The values
of m, n should be discussed with an expert, but the most dangerous situation seems
to correspond to m = n = 1.
Keeping the above analysis in mind, we can formulate the following stability cri-

terion.
� ������������� �

S. The larger the numbers

(3.6)
|αi − βj |
αi + βj

for i = 1, . . .m, j = 1, . . . n are, the more stable the center span is.

4. Some auxiliary results

Before we start dealing with the relationship of eigenvalues and eigenfunctions to
some parameters of the center span and the cables, let us prove some facts about
compact, self-adjoint, positive linear operators on Hilbert spaces.
Let V be a vector space equipped with a sequence of scalar products 〈·, ·〉i, i =

0, 1, . . .. The space V with these products forms a sequence of Hilbert spaces Vi

whose norms we denote by ‖ · ‖i. Let Ai be a sequence of compact, self-adjoint,
positive linear operators on Vi which satisfy the following assumptions:
1. ∃C1, C2 > 0 ∀ i ∈ 1, 2 . . . ∀u ∈ V :

C1‖u‖0 6 ‖u‖i 6 C2‖u‖0.

2. ∀u ∈ V :
lim

i→∞
‖Ai(u)−A0(u)‖0 = 0.

3. Let ui in V , i = 1, 2 . . . be a sequence bounded in ‖ · ‖0, then for any subse-
quence ul of ui there exists a subsequence uj of ul such that

lim
j→∞

‖Aj(uj)−A0(uj)‖0 = 0.
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Before we formulate the main theorem about the operators Ai, let us prove three
auxiliary lemmas.

Lemma 4.1. Let A be a compact, self-adjoint, positive linear operator on the
Hilbert space V with the scalar product 〈·, ·〉 and the norm ‖ ·‖. Let u ∈ V , ‖u‖ = 1,
µ ∈ 
 , and let the inequality

(4.1) ‖A(u)− µu‖ 6 d

hold, where 0 < d < 1. Then there exists an eigenvalue λi such that

(4.2) |λi − µ| 6
√
d.

If J ⊂ N is the set of all i’s such that λi satisfy the inequality (4.2), then there
exist αi ∈ 
 such that the estimate

(4.3)
∥∥∥u−

∑

i∈J

αiui

∥∥∥ 6
√
d

holds, where ui are the eigenvectors corresponding to λi.
���������

. If A is a compact, self-adjoint, positive linear operator, there exist
eigenvalues λ1 > λ2 . . . > 0 and eigenvectors ui which form an orthonormal basis.
Then we have

(4.4) d2 > ‖A(u)− µu‖2 =

∥∥∥∥
∞∑

i=1

λi〈ui, u〉ui − µ〈ui, u〉ui

∥∥∥∥
2

=

∞∑

i=1

(λi − µ)2〈ui, u〉2.

If the inequality |λi − µ| >
√
d holds for all i, then (4.4) implies

(4.5) d2 > d

∞∑

i=1

〈ui, u〉2 = d.

The relation (4.5) contradicts the facts that ‖u‖ = 1 and 0 < d < 1. From (4.4) and
the definition of J we obtain

(4.6) d2 > d
∞∑

i∈N−J

〈ui, u〉2 = d
∥∥∥u−

∑

i∈J

〈ui, u〉ui

∥∥∥
2

.

If we substitute 〈ui, u〉 for αi in (4.3) we have the desired result. �
Let λi

k, N
i
k denote the kth eigenvalue of A

i and the subspace of all eigenfunctions
corresponding to this eigenvalue. Moreover, let the inequalities

λi
1 > λi

2 > . . . > 0

hold, where multiplicity is taken into account. Thus if for s, i, k the relations
λi

k−1 > λi
k = . . . = λi

k+s > λi
k+s+1 are fulfilled, then N

i
k = . . . = N i

k+s.
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Lemma 4.2. Let a sequence Ai, i = 0, 1 . . . of operators fulfill Assumptions 1–3.
If α is an eigenvalue of A0, then there exists a sequence λi

ki
such that

(4.7) lim
i→∞

λi
ki

= α.

���������
. Let α be an eigenvalue and u an eigenvector of A0, then Assumption 2

yields

(4.8) lim
i→∞

‖Ai(u)− αu‖0 = 0.

From Lemma 4.1, Assumption 1, and (4.8) the existence of a sequence λi
ki
which

satisfies (4.7) follows. �

Lemma 4.3. Let a sequence Ai, i = 0, 1 . . . of operators fulfill Assumptions 1–3.
If λi

ki
is a sequence of eigenvalues of Ai and α is a limit point of this sequence, then

α is an eigenvalue of A0.
���������

. Let α be a limit point of λi
ki
, then there exists a subsequence λj

kj
such

that

(4.9) lim
j→∞

λj
kj

= α.

Assumption 3 yields the existence of a subsequence λl
kl
and the corresponding

eigenvectors ul such that

(4.10) lim
l→∞

‖λl
kl
ul −A(ul)‖0 = 0.

From (4.9), (4.10), and Lemma 4.1 the assertion of the lemma follows. �

Theorem 4.1. If Ai is a sequence of operators on V satisfying Assumptions 1–3,
then for any k the limit relation

(4.11) lim
i→∞

λi
k = λ0

k

holds.
���������

. First, we prove (4.11) for k = 1. From Lemma 4.2 it follows that
there exists a sequence λi

ki
which converges to λ0

1. If we notice that λ
i
1 > λi

ki
, then

Lemma 4.3 implies that the sequence λi
1 has a single limit point λ

0
1 and converges

to λ0
1.
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Second, let (4.11) hold for all k 6 n, then we prove (4.11) for k = n+ 1. We will
study two different cases λ0

n+1 < λ0
n and λ

0
n+1 = λ0

n.
Let us start with the case λ0

n+1 < λ0
n. Lemma 4.2 yields that there exists a

sequence λi
ki
which converges to λ0

n+1.
The inequality λ0

n+1 < λ0
n yields that n+ 1 6 ki for all sufficiently large i. From

the last inequality and Lemma 4.3 it follows that the sequence λi
n+1 has at most two

limit points λ0
n, λ

0
n+1.

We prove indirectly that λi
n+1 converges to λ

0
n+1. Let us assume that there exists

a subsequence λj
n+1 of λ

i
n+1 which converges to λ

0
n and the relations

(4.12) λ0
m > λ0

m+1 = . . . = λ0
n

hold for some m such that m < n. Then the convergence of λj
n+1 to λ

0
n and the

relations (4.12) yield that there exist sequences uj
k for k = m+1, . . . , n+1 such that

(4.13) uj
k ∈ N

j
k , ‖uj

k‖j = 1, 〈uj
k, u

j
l 〉j = 0

if k 6= l, k, l = m+ 1, . . . , n+ 1.
Moreover, if we take into account Assumption 3, we can choose sequences such

that the limit relations

(4.14) lim
j→∞

‖Aj(uj
k)−A0(uj

k)‖0 = 0, k = m+ 1, . . . , n+ 1

hold.
From the limits (4.14) and Lemma 4.1 it follows that there exist sequences vj

k,
k = m+ 1, . . . , n+ 1 from N0

n such that the limit relations

(4.15) lim
j→∞

‖uj
k − vj

k‖0 = 0, k = m+ 1, . . . , n+ 1

hold.
If we take into account Assumption 1, (4.13) and (4.15), we see that the dimension

of N0
n is n+ 1−m, which is a contradiction.
Let us continue with the case λ0

n+1 = λ0
n. We will prove (4.11) indirectly again.

Let us assume that the sequence λi
n+1 does not converge to λ

0
n+1, then there exists

a subsequence λj
n+1 of λ

i
n+1 such that

(4.16) lim
j→∞

λj
n+1 = α < λ0

n+1.

Let us assume that the relations

(4.17) λ0
m > λ0

m+1 = . . . λ0
n = λ0

n+1

hold for some m, where m < n.
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If we take any u ∈ N0
n+1 and note that lim

i→∞
‖Aj(u)−A0(u)‖0 = 0, which follows

from Assumption 2, then Lemma 4.1 and (4.16) yield the existence of a sequence vj

which satisfies

(4.18) vj ∈ N j
m+1 + . . .+N j

n, lim
j→∞

‖u− vj‖j = 0.

From (4.17), (4.18), and Assumption 1 it follows that the dimension of N 0
n+1 is

equal to the dimension N j
m+1 + . . . +N j

n for sufficiently large j, which is a contra-
diction. �

5. Continuous dependence of eigenvalues on some parameters
and one optimal problem

We will exploit the results from Section 4 to express the relationship between the
stability of the center span in wind and some parameters connected with the center
span and the cables. Let us consider that we can change the positions and stiffness
of the cables and place some additional weights along the center span as is depicted
in Fig. 7.

additional weights

Figure 7.

We see that additional weights change the functions M1, M2, while the func-
tions K1, K2 remain unchanged. Let us consider sequences M i

1, M
i
2, k

i
j , x

i
j , j =

1, . . . 8, i = 1, 2 . . . such that ki
j > 0, xi

j ∈ 〈0, L〉 and denote the corresponding
bilinear forms by mi

1(·, ·), mi
2(·, ·), bi(·, ·).

Let αi
l , β

i
l denote the eigenvalues of the variational equations

αmi
1(u, v) = k1(u, v) + 2bi(u, v),(5.1)

βmi
2(ϕ, ψ) = k2(ϕ, ψ) + 2l2bi(ϕ, ψ).
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The eigenvalues are ordered increasingly with respect to l. Then the following
theorem holds.

Theorem 5.1. Let C1, C2 be positive constants satisfying

(5.2) C1 6 M i
1, M i

2 6 C2

and moreover, let

M i
1 ⇀M0

1 , M i
2 ⇀M0

2 in L2((0, L)),

ki
j → k0

j , xi
j → x0

j , j = 1, . . . 8 in 
 ,

where the symbol ⇀ denotes the weak convergence. Then

(5.3) αi
l → α0

l , βi
l → β0

l , l = 1, 2 . . .

if i→∞.
���������

. We will prove the theorem for the eigenvalues αi
l of the first equation

in (5.1).
Define operators Li : L2((0, L)) → V1 by Li(u) = v, where v is the unique solution

to the variational equation

(5.4) k1(v, w) + 2bi(v, w) = mi
1(u,w)

which is satisfied for all w ∈ V1. The existence, uniqueness, and continuous depen-
dence of v on u follow from the Lax-Milgram theorem. Let us define Ai = P iLi,
where P i is the embedding from V1 into L2((0, L)) with the scalar product given
by mi

1(·, ·). Since the embedding P i is compact (see [6]), the operators Ai are com-
pact as well.
For any u, v ∈ L2((0, L)) we have the equations

k1(L
i(u), Li(v)) + 2bi(Li(u), Li(v)) = mi

1(u,A
i(v)),(5.5)

k1(L
i(v), Li(u)) + 2bi(Li(v), Li(u)) = mi

1(v,A
i(u)).

Since the bilinear forms k1(·, ·) + 2bi(·, ·) are symmetric on V1, the formulas (5.4)
yield that Ai are self-adjoint, non-negative operators on L2((0, L)) equipped with the
scalar products mi

1(·, ·). From the definition of Ai it follows that αi
l are eigenvalues

of the first equation in (5.1) if and only if 1/αi
l are eigenvalues of A

i.
Theorem 4.1 yields that the assertions of this theorem would be proved if the

sequence Ai satisfies Assumptions 1–3.
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Assumption 1 follows from the inequalities (5.2).
Let us prove Assumption 2. If vi is a sequence of solutions to the variational

equations

(5.6) k1(v
i, w) + 2bi(vi, w) = mi

1(u,w)

which hold for all w ∈ V1, then the inequalities (3.1) and the equations (5.6) yield
the existence of a constant C independent of i such that the estimate

(5.7) C‖vi‖2
V1

6 k1(v
i, vi) + 2bi(vi, vi) = mi

1(u, v
i)

holds. From (5.7) we obtain the estimate ‖vi‖V1 < C, where C is a constant inde-
pendent of i.
Thus there exists a subsequence vj of vi which weakly converges to v∗ in V1. If

we take into account that V1 is compactly embedded in C(〈0, L〉) (see [15]), then the
definitions of bi(·, ·) yield

(5.8) bi(vi, w) → b0(v∗, w),

which holds for any w ∈ V1.
From M i

1u ⇀ M0
1u in L

2((0, L)), (5.8) and vi ⇀ v∗ in V1 it follows that v∗ is a
solution to the variational equation

(5.9) k1(v
∗, w) + 2b0(v∗, w) = m0

1(u,w).

This implies that v∗ is equal to the unique solution v0 to the equation (5.9). More-
over, the whole sequence vi weakly converges to v0 in V1.
Thus Li(u) ⇀ L0(u) in V1 for all u in L2((0, L)) and the definitions of Ai, A0

yield that Ai(u) → A0(u) in L2((0, L)) with the scalar product m0(·, ·), which proves
Assumption 2.
Let us prove Assumption 3. If ui is a bounded sequence in L2((0, L)), then there

exists a subsequence uj which weakly converges to u0 in L2((0, L)). Consequently,
M j

1u
j ⇀M0

1u
0 in L2((0, L)).

Let us consider the sequences vj , zj from V1 which consist of the solutions to the
variational equations

k1(v
j , w) + 2bj(vj , w) = mj

1(u
j , w),(5.10)

k1(z
j , w) + 2b0(zj , w) = m0

1(u
j , w).

Then if we follow the ideas of the proof of Assumption 2, we can prove that the
sequences vj , zj of solutions to (5.10) weakly converge to v0 in V1 which is the
solution to the variational equation (5.9), where u is substituted for u0.
The last fact yields Lj(uj) ⇀ L0(u0), L0(uj) ⇀ L0(u0) in V1. The definitions

of Aj , A0 yield Aj(uj) → A0(u0), A0(uj) → A0(u0) in L2((0, L)), which proves
Assumption 3. �
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The above theorem shows that the eigenvalues continuously depend on the posi-
tions and stiffness of cables and on the additional weights.
We will solve an optimal problem in which we look for the parameters of cable

systems and the values of additional weights which could guarantee a certain stability
in wind.
Let

K1 ⊂ 〈0, L〉 × . . .× 〈0, L〉 ⊂ 
 8 , K2 ⊂ 〈0,K〉 × . . .× 〈0,K〉 ⊂ 
 8

be sets which are compact and whose elements are denoted by x = (x1, . . . , x8),
k = (k1, . . . , k8). Moreover, let

U1 ⊂ L2((0, L)), U2 ⊂ L2((0, L))

be convex, closed sets of functions from L2((0, L)) which satisfy the inequalities (5.2).
Functions M1, M2 from these sets correspond to the permissible values of additional
weights. For m, n from N we can define the functional

Jm,n(M1,M2, x, k) = min
16i6m,
16j6n

|αi − βj |
αi + βj

.

Now we can solve the optimal problem

(5.11) max
M1∈U1, M2∈U2,

x∈K1, k∈K2

Jm,n(M1,M2, x, k).

The number (5.11) corresponds to Criterion S and minimizes some instabilities of
the behaviour of the center span in wind.

Theorem 5.2. There exist M1 ∈ U1, M2 ∈ U2, x ∈ K1, k ∈ K2 which maximize
the functional Jm,n.
���������

. Let M i
1, M

i
2, x

i, ki be maximization sequences for Jm,n. By virtue of
the definitions of U1, U2, K1, K2, we can select subsequences M j

1 , M
j
2 , x

j , kj such
that M j

1 ⇀M0
1 , M

j
2 ⇀M0

2 in L
2((0, L)) and xj → x0, kj → k0 in 
 8 and moreover,

M0
1 ∈ U1, M0

2 ∈ U2, x0 ∈ K2, k0 ∈ K2. Theorem 5.1 yields that Jm,n achieves its
maximum at M0

1 , M
0
2 , x

0, k0. �
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6. Homogenization of cable systems

So far we have studied the central span suspended by one or two rows of cables
and each row contained eight cables. In reality the center span is suspended by much
greater number of cables placed densely along the center span.
There is a question whether it is possible to change the cables to a continuous

medium. This process can be described by the b-h convergence proposed in [12],
[13]. Let us recall the definition, but first of all let us define a bilinear form

h(u, v) =

∫ L

0

Guv dx,

where G ∈ L∞((0, L)).

Definition 6.1. Let ni be an increasing sequence of natural numbers, let
{xi

j}ni

j=1, {ki
j}ni

j=1 satisfy 0 6 xi
1 6 xi

2 6 . . . xi
ni

6 L, ki
j > 0 for all i = 1, 2 . . .,

j = 1, . . . , ni and let G from L∞((0, L)) satisfy G(x) > 0 for all x in (0, L). Then
{xi

j}ni

j=1, {ki
j}ni

j=1 b-h converge to G if the relation

lim
i→∞

ni∑

j=1

ki
jf(xi

j) =

∫ L

0

Gf dx

holds for all f ∈ C(〈0, L〉). Moreover, let us denote

bi(u, v) =

ni∑

j=1

ki
ju(x

i
j)v(x

i
j ).

This definition describes the process of gradual substitution of one cable system
by another one with a greater number of thinner cables. Let us consider the sequence
of variational equations

k1(u
i, v) + 2bi(ui, v) = (F1, v),(6.1)

k2(ϕ
i, ψ) + 2l2bi(ϕi, ψ) = (F2, ψ),

where F1, F2 ∈ L2((0, L)). Then ui, ϕi from V1, V2 are solutions to (6.1) if these
equations are fulfilled for all v, ψ from V1, V2. Further, let us consider the variational
equations

k1(u, v) + 2h(u, v) = (F1, v),(6.2)

k2(ϕ, ψ) + 2l2h(ϕ, ψ) = (F2, ψ).

The relation between the solutions of (6.1) and the solution of (6.2) is given by the
following theorem whose proof can be found in [12].
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Theorem 6.1. Let {xi
j}ni

j=1, {ki
j}ni

j=1 b-h converge to G. If u
i, ϕi are solutions

to (6.1) and u0, ϕ0 are a solution to (6.2), then

ui → u0 in V1,

ϕi → ϕ0 in V2.

We can study the variational equations

k1(u, v) + 2bi(u, v) = αm1(u, v),(6.3)

k2(ϕ, ψ) + 2l2bi(ϕ, ψ) = βm2(ϕ, ψ)

for the eigenvalue problems with the individual cables and the variational equations

k1(u, v) + 2h(u, v) = αm1(u, v),(6.4)

k2(ϕ, ψ) + 2l2h(ϕ, ψ) = βm2(ϕ, ψ)

for the eigenvalue problem with the homogenized cable system.
Let αi

k, β
i
k denote the eigenvalues of (6.3) and α

0
k, β

0
k the eigenvalues of (6.4).

Then we have the following theorem.

Theorem 6.2. Let {xi
j}ni

j=1, {ki
j}ni

j=1 b-h converge to G. Then

αi
k → α0

k, βi
k → β0

k

for all k.
���������

. We restrict ourselves to eigenvalues αi
k. Let us assume that L

2((0, L))

is equipped with the norm given by the scalar product m1(·, ·). The proof of this
theorem is parallel to the proof of Theorem 5.1. The sequence of Hilbert spaces in
the proof of Theorem 5.1 is replaced by the constant sequence of L2((0, L)) with the
norm derived from the scalar product m1(·, ·). The sequence of the operators Ai is
defined by the relation Ai = PLi, where P is the imbedding of V1 into L2((0, L)) and
Li : L2((0, L)) → V1 assigns u ∈ L2((0, L)) to the unique solution v of the variational
equation

k1(v, w) + 2bi(v, w) = m1(u,w).

The operator A0 is defined by the relation A0 = PL0, where P is the same imbed-
ding from V1 to L2((0, L)) as above and L0 : L2((0, L)) → V1 assigns u ∈ L2((0, L)) to
the unique solution v of the variational equation

k1(v, w) + 2h(v, w) = m1(u,w).

If we apply Theorem 4.1, we can follow the proof of Theorem 5.1. �
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7. Two special examples

In this section we will deal with two special model problems connected with the
two basic models of the center span suspended by one or two rows of cables. Let us
assume that the cables are distributed with sufficient density so that the homogenized
model from Section 6 can be applied. Moreover, the functionsM1(x), M2(x), K1(x),
K2(x), G(x) which characterize the center span and the cables are constant and we
denote them by M1, M2, K1, K2, G.
Let us start with the model of the center span suspended by two rows of cables,

then the system (6.4) can be rewritten to the system of ordinary differential equations

K1u
(4)

M1
+

2Gu

M1
= αu,(7.1)

−K2ϕ
′′

M2
+

2l2Gϕ

M2
= βϕ

with the boundary conditions

u(0) = u(L) = u′′(0) = u′′(L) = 0,(7.2)

ϕ(0) = ϕ(L) = 0.

The eigenvalues and eigenfunctions can be explicitly calculated and we have

αn =
K1π4n4

M1L4
+

2G

M1
, un(x) = sin

(πnx
L

)
,(7.3)

βn =
K2π2n2

M2L2
+

2l2G

M2
, ϕn(x) = sin

(πnx
L

)
.

The model of the center span suspended with one row of cables is described by
the system of ordinary differential equations

K1u
(4)

M1
+
Gu

M1
= αu,(7.4)

−K2ϕ
′′

M2
= βϕ

with the boundary conditions (7.2)
The eigenvalues and eigenfunctions can be explicitly calculated again and we have

αn =
K1π4n4

M1L4
+

G

M1
, un(x) = sin

(πnx
L

)
,(7.5)

βn =
K2π2n2

M2L2
, ϕn(x) = sin

(πnx
L

)
.
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cables

A2A1

l l

Figure 8.

Let us have a look at Fig. 8 which describes a usual shape of a center span sus-
pended by two rows of cables (see [18]).
If we assume that the mass of the center span is distributed so that the values

ofM1, M2 can be approximated as if the mass were concentrated along the lines run
through the points A1, A2 and the density of that concentrated mass is M , then we
have

(7.6) M1(x) = 2M, M2(x) = 2l2M,

which follows from (2.2).
If we consider (7.3), (7.6) and Criterion S for m = n = 1, we have

(7.7)
|α1 − β1|
α1 + β1

=

∣∣∣∣
K1π4

2ML2
− K2π2

2l2M

∣∣∣∣

L2

(
2G

M
+

K1π4

2ML4
+

K2π2

2l2ML2

) .

From 7.7 we obtain the limit

(7.8) lim
L→∞

|α1 − β1|
α1 + β1

= 0.

The limit (7.8) indicates that the behaviour of sufficiently long center spans could
be instable, which is possibly due to the special distribution of mass along the center
spans. The technology of cable stayed bridges makes it possible to erect bridges
with long center spans whose properties given by M1, M2, K1, K2, G are relatively
independent of their length; then the limit (7.8) indicates a certain instability of such
center spans.
If we explicitly calculate the expression (7.7) applying (7.5) and study the

limit (7.8) for the new values, we see that this limit cannot vanish for any spe-
cial distribution of mass.
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This fact seems to indicate that the center span suspended by one row of cables
could be more stable in wind.

8. Conclusion

In some technical papers the instability of cable-stayed and suspension bridges
is being explained by their aerodynamic properties. The wind passing by the span
induces a periodic force, which is connected with the shape of the cross section and
its Strouhal’s number (see [14]). If the speed of the wind achieves a certain value,
the frequency of the wind-induced force corresponds to an eigenvalue of the bridge,
which can result in violent oscillations and then in loosening of the cables.
Such an explanation was criticized in [8], where the authors opposed arguing that

the frequency of oscillations of the Tacoma Narrows suspension bridge was indepen-
dent of the speed of wind.
In this paper we have tried to present an explanation based on a certain rela-

tion between the eigenvalues of the vertical and torsional oscillations of the center
span. Consequently, our explanation is based on some properties connected with the
construction of bridges and is independent of the speed of wind.
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