
Applications of Mathematics

Haishen Lü; Donal O’Regan; Ravi P. Agarwal
On the existence of multiple periodic solutions for the vector p-Laplacian via
critical point theory

Applications of Mathematics, Vol. 50 (2005), No. 6, 555–568

Persistent URL: http://dml.cz/dmlcz/134623

Terms of use:
© Institute of Mathematics AS CR, 2005

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/134623
http://dml.cz


50 (2005) APPLICATIONS OF MATHEMATICS No. 6, 555–568
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Abstract. We study the vector p-Laplacian

(∗)
{−(|u′|p−2u′)′ = ∇F (t, u) a.e. t ∈ [0, T ],

u(0) = u(T ), u′(0) = u′(T ), 1 < p < ∞.

We prove that there exists a sequence (un) of solutions of (∗) such that un is a critical point
of ϕ and another sequence (u∗n) of solutions of (∗) such that u∗n is a local minimum point
of ϕ, where ϕ is a functional defined below.

Keywords: p-Laplacian equation, periodic solution, critical point theory

MSC 2000 : 34B15

1. Introduction and main results

Consider the second order system

(1.1)

{
−(|u′|p−2u′)′ = ∇F (t, u) a.e. t ∈ [0, T ],

u(0) = u(T ), u′(0) = u′(T ), 1 < p < ∞,

where T > 0 and F : [0, T ]× � N → � satisfies the following assumption:

*The research is supported by NNSF of China (10301033).
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(A) F (t, x) is measurable in t for every x ∈ � N and continuously differentiable

in x for a.e. t ∈ [0, T ], and there exist a ∈ C( � + , � + ), b ∈ L1(0, T ; � +) such that

|F (t, x)| 6 a(|x|)b(t), |∇F (t, x)| 6 a(|x|)b(t)

for all x ∈ � N and a.e. t ∈ [0, T ]; here � + = [0,∞).
Recently some papers have appeared discussing scalar periodic problems driven

by the one-dimensional p-Laplacian. We refer the reader to the works of Del Pino-

Manasevich-Murua [3], Fabry-Fayyad [4], Gao [5] and Dang-Oppenheimer [6]. In
all of these works the approach is degree theoretical and the existence of one solu-

tion is established. In [2], J. Mawhin generalized the Hartman-Knobloch results to
perturbations of a vector p-Laplacian ordinary operator.

For p = 2, Mawhin-Willem [1] proved the existence of solutions for the prob-
lem (1.1) under the conditions

(M1) there exists g ∈ L1(0, T ; � +) such that |∇F (t, x)| 6 g(t) for all x ∈ � N

and a.e. t ∈ [0, T ], and
(M2)

∫ T

0 F (t, x) dt → +∞ as |x| → ∞ or
∫ T

0 F (t, x) dt → −∞ as |x| → ∞.
In this paper we study the existence of periodic solutions of a vector p-Laplacian

with potential oscillating around the first eigenvalue. Our arguments are based on
a result by Habets-Manasevich-Zanolin [8] related to the two-point boundary value

problem

u′′ + u + f(t, u) = 0, u(0) = u(1) = 0.

Our main result is the following theorem.

Theorem 1.1. Suppose
(H1) there exists g ∈ Lq(0, T ; � +) (here q is the conjugate of p) such that

|∇F (t, x)| 6 g(t) for all x ∈ � N and a.e. t ∈ [0, T ],
(H2)

lim sup
R→+∞

inf
a∈ � N, |a|=R

∫ T

0

F (s, a) ds = +∞(1.2)

and

lim inf
r→+∞

sup
b∈ � N, |b|=r

∫ T

0

F (s, b) ds = −∞(1.3)

hold. Then

i) there exists a sequence (un) of solutions of (1.1) such that un is a critical point

of ϕ and lim
n→∞

ϕ(un) = +∞;
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ii) there exists a sequence (u∗n) of solutions of (1.1) such that u∗n is a local minimum
point of ϕ and lim

n→∞
ϕ(u∗n) = −∞; here ϕ is a functional defined below.

Throughout the paper, for N > 1 and I = [0, T ], we will set C = C(I, � N ),
Lp = Lp(I, � N ), W 1,p = W 1,p(I, � N ) and X = W 1,p

T = {u ∈ W 1,p; u(0) = u(T )}.
The norm in C will be defined by ‖u‖∞ = max

t∈[0,T ]
|u(t)|, the norm in Lp by

‖u‖p =
(∫ T

0

|u(t)|p dt

)1/p

,

and the norm in X by ‖u‖X = ‖u‖p +‖u′‖p. Note that for each p > 1, X is compact
embedded in C. Let Br = {x ∈ � N : |x| 6 r}.
Each u ∈ L1 can be written as u(t) = u + ũ(t) with

u :=
1
T

∫ T

0

u(t) dt,

∫ T

0

ũ(t) dt = 0.

We will use the Sobolev inequality

‖ũ‖∞ 6 T 1/q‖u′‖p for each u ∈ X (here q is the conjugate of p)

and Wirtinger’s inequality

‖ũ‖p
p 6 T p‖ũ′‖p

p for each u ∈ X.

The proof of the theorem is given in Section 3. In Section 2 we present some

preliminary results on the variational setting of p-Laplacian equations in X and the
related Palais-Smale compactness.

2. Preliminaries

We first recall some facts about the eigenvalue problem for the p-Laplacian, see [9].

A λ ∈ � is said to be an “eigenvalue” of the p-Laplacian with periodic boundary
conditions, if the problem

{
(|u′|p−2u′)′ + λ|u|p−2u = 0 a.e. on [0, T ],

u(0)− u(T ) = u′(0)− u′(T ) = 0

has a nontrivial solution u ∈ C1(I, � N ), known as the corresponding one to λ “eigen-
function”. Let S denote the set of these eigenvalues. Evidently 0 ∈ S, each element
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of S is nonnegative and 0 is the smallest (first) eigenvalue. If N = 1 (scalar case),
by direct integration of the equation we see that all the eigenvalues are

λn =
(

2πpn

T

)p

, n = 0, 1, 2, 3, . . .

where

πp = 2(p− 1)1/p

∫ 1

0

(1− tp)−1/p dt.

In the case N > 1 (vector case), {λn}n>1 ⊆ S but S contains more elements.

It follows from assumption (A) that the functional ϕ on X given by

ϕ(u) =
1
p

∫ T

0

|u′(t)|p dt−
∫ T

0

F (t, u(t)) dt

is continuously differentiable and weakly lower semicontinuous on X (the proof is
similar to the case p = 2, see [1]). Moreover, one has

〈ϕ′(u), v〉 =
∫ T

0

|u′(t)|p−2(u′(t), v′(t)) dt−
∫ T

0

(∇F (t, u(t)), v(t)) dt

for all u, v ∈ X . It is easy to see that the solutions of problem (1.1) correspond to
the critical points of ϕ.

Let us write

I(u) =
1
p

∫ T

0

|u′|p dt, G(u) =
∫ T

0

F (t, u(t)) dt, ∀u ∈ X.

Proposition 2.1. The mapping I ′ : X → X∗ is of type (S+) (see [7]), i.e. any
sequence {un} in X satisfying un ⇀ u in X and

lim
n→∞

〈I ′(un), un − u〉 6 0

contains a convergent subsequence.
 "!$#�#&%

. Assume that un ⇀ u in X and lim
n→∞

〈I ′(un), un − u〉 6 0. Then we get

lim
n→∞

〈I ′(un)− I ′(u), un − u〉 6 0,

and together with the monotonicity property of I ′ this implies

lim
n→∞

〈I ′(un)− I ′(u), un − u〉 = 0,
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i.e.,

(2.1)
∫ T

0

〈|u′n|p−2u′n − |u′|p−2u′, u′n − u′〉 dt → 0 as n →∞.

Recall that for all x, y ∈ � N the following inequalities hold:

〈|x|p−2x− |y|p−2y, x− y〉 >
(1

2

)p−1

|x− y|p when p > 2,

and

(|x|+ |y|)2−p〈|x|p−2x− |y|p−2y, x− y〉 > (p− 1)|x− y|2 when 1 < p 6 2.

Hence, by (2.1), one has that u′n converges to u′ in [0, T ] in measure. Thus there
exists a subsequence (without loss of generality assume it to be the whole sequence)

with
u′n(t) → u′(t) for a.e. t ∈ [0, T ], n →∞,

and so

(2.2)
1
p
|u′n(t)− u′(t)|p → 0 for a.e. t ∈ [0, T ], n →∞.

One also has
〈I ′(un), un − u〉 → 0 as n →∞.

Moreover,

〈I ′(un), un − u〉 =
∫ T

0

|u′n|p dt−
∫ T

0

|u′n|p−2u′nu′ dt

>
∫ T

0

|u′n|p dt−
∫ T

0

|u′n|p−1|u′| dt

>
∫ T

0

|u′n|p dt−
∫ T

0

[p− 1
p

|u′n|p +
1
p
|u′|p

]
dt

=
1
p

∫ T

0

(|u′n|p − |u′|p) dt.

Now the lower semi-continuity of I yields

lim
n→∞

1
p

∫ T

0

|u′n|p dt > 1
p

∫ T

0

|u′|p dt.

Thus
1
p

∫ T

0

|u′n|p dt → 1
p

∫ T

0

|u′|p dt as n →∞.
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Consequently, the sequence
{
p−1

∫ t

0
|u′n|p dt

}
is equi-absolutely continuous on [0, T ].

From the inequality

1
p
|u′n(t)− u′(t)|p 6 2p

p
(|u′n|p + |u′|p)

we obtain that

(2.3)

{
1
p

∫ t

0

|u′n(t)− u′(t)|p dt

}
is equi-absolutely continuous on [0, T ].

Now (2.2), (2.3) and the convergence theorem of Vitali (see [7], p. 1017) guarantee
that ∫ T

0

1
p
|u′n(t)− u′(t)|p dt → 0 as n →∞.

Thus u′n → u′ in Lp.
Also un ⇀ u in X , which implies that un → u in Lp. Hence un → u in X , and

the proof is complete. �

Since the sum of a mapping of type (S+) with a weakly-strongly continuous map-
ping is still a mapping of type (S+), we obtain the following result.

Proposition 2.2. ϕ′ : X → X∗ is a mapping of type (S+).

Proposition 2.3. Suppose that if a sequence {un} in X is such that

{ϕ(un)} is bounded and ϕ′(un) → 0

as n →∞, then {un} has a bounded subsequence. Then ϕ satisfies the PS-condition.
 "!$#�#&%

. Assume that {un} ⊂ X , {ϕ(un)} is bounded and ϕ′(un) → 0. Now
we know that {un} contains a bounded subsequence and for simplicity we denote it
again by {un}. Since X is reflexive we can extract a subsequence (again denoting it
by {un}) such that un ⇀ u in X . Since ϕ′(un) → 0, one has

〈ϕ′(un), un − u〉 → 0 as n →∞.

Since ϕ′ is a mapping of type (S+) we have that un → u in X . Hence ϕ satisfies the
PS-condition. �

3. Proofs of theorems

We shall prove Theorem 1.1 from a sequence of claims.
Consider the direct sum decomposition X = � N ⊕ V with V =

{
v ∈ X :∫ T

0 v(t) dt = 0
}
. So for all u ∈ X we can write u = u + ũ with u ∈ � N and ũ ∈ V .
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Claim 1. ϕ is coercive on V .
 "!$#�#&%

. Combining hypotheses (H1) with the Mean Value Theorem, we see that
for almost all t ∈ I and all x ∈ � N , |F (t, x)| 6 g(t)|x|. If ũ ∈ V , then

ϕ(ũ) > 1
p
‖ũ′‖p

p −
∫ T

0

g(t)|ũ(t)| dt > 1
p
‖ũ′‖p

p − ‖g‖q‖ũ‖p > 1
p
‖ũ′‖p

p − T‖g‖q‖ũ′‖p

by Wirtinger’s inequality (here q is the conjugate of p). The above inequality and

ũ ∈ V imply that ϕ(ũ) → ∞ as ‖ũ′‖p → ∞. Now it follows that ϕ(ũ) → ∞, as
‖ũ‖X → 0. �

Claim 2. There exists a sequence (Rn) such that

lim
n→∞

Rn = +∞, lim
n→∞

[
sup

a∈ � N, |a|=Rn

ϕ(a)
]

= −∞.

 "!$#�#&%
. This follows from (1.2) since

ϕ(a) = −
∫ T

0

F (t, a) dt.

�

Claim 3. There exists a sequence (rm) such that

lim
m→∞

rm = +∞, and lim
m→∞

[
inf

b∈ � N, |b|=rm, ũ∈V
ϕ(b + ũ)

]
= +∞.

 "!$#�#&%
. For any b ∈ � N , |b| = rm, and ũ ∈ V , let u = b + ũ. Note that

ϕ(u) =
1
p
‖u′‖p

p −
∫ T

0

F (t, u) dt

=
1
p
‖ũ′‖p

p −
∫ T

0

[F (t, u)− F (t, b)] dt−
∫ T

0

F (t, b) dt

=
1
p
‖ũ′‖p

p −
∫ T

0

∫ 1

0

(∇F (t, b + sũ(t)), ũ(t)) ds dt−
∫ T

0

F (t, b) dt

> 1
p
‖ũ′‖p

p −
(∫ T

0

g(t) dt

)
‖ũ‖∞ −

∫ T

0

F (t, b) dt

> 1
p
‖ũ′‖p

p − C1‖ũ′‖p −
∫ T

0

F (t, b) dt
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by Sobolev’s inequality; here C1 =
(∫ T

0
g(t) dt

)
T 1/q. Thus

inf
b∈ � N, |b|=rm, ũ∈V

ϕ(b + ũ) > inf
ũ∈V

(1
p
‖ũ′‖p

p − C1‖ũ′‖p

)

+ inf
b∈ � N, |b|=rm

(
−

∫ T

0

F (t, b) dt

)
.

On the other hand, there exists β ∈ � such that inf
ũ∈V

(p−1‖ũ′‖p
p −C1‖ũ′‖p) > β. The

claim now follows from (1.3). �

Consider now the set

Sn =
{
γ ∈ C(BRn , X), γ|∂BRn

= i|∂BRn

}

and define

(3.1) cn = inf
γ∈Sn

[
max

x∈BRn

ϕ(γ(x))
]
.

We prove that each γ intersects the hyperplane V . Let π : X → � N be the (contin-
uous) projection of X onto � N , defined by

π(u) =
1
T

∫ T

0

u dt for u ∈ X.

Let γ be any continuous map such that γ|∂BRn
= i|∂BRn

. We have to show that
0 ∈ π(γ(BRn)).
For t ∈ [0, 1], u ∈ � N define

γt(u) = tπ(γ(u)) + (1− t)u.

Note that γt ∈ C0( � N ; � N ) defines a homotopy of γ0 = id with γ1 = π◦γ. Moreover,
γt|∂BRn

= id for all t. By homotopy invariance and normalization of the degree (see
for instance Deimling [10, Theorem 1.3.1]) we have

deg(π ◦ γ, BRn , 0) = deg(id, BRn , 0) = 1.

Hence 0 ∈ π(γ(BRn)). Thus each γ intersects the hyperplane V .

Now since ϕ is coercive on V , there is a constant K such that

max
x∈BRn

ϕ(γ(x)) > inf
ũ∈V

ϕ(ũ) > K.
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Hence cn > K and, for all large values of n,

cn > sup
a∈ � N, |a|=Rn

ϕ(a).

Let us now fix such n and apply Theorem 4.3 in [1]. This proves the next claim (see
also [1, Corollary 4.3]).

Claim 4. If n is large enough there exist sequences (γk) in Sn and (vn) in X such

that

max
x∈BRn

ϕ(γk(x)) → cn (k →∞).

Then there exists a sequence (vk) in X such that

ϕ(vk) → cn, dist(vk, γk(BRn)) → 0, |ϕ′(vk)| → 0

when k →∞.

Claim 5. The sequence (vk) is bounded in X .

 "!$#�#&%
. For any k large enough,

cn 6 max
x∈BRn

ϕ(γk(x)) 6 cn + 1

and we can find wk ∈ γk(BRn) such that

(3.2) ‖vk − wk‖X 6 1.

Using Claim 3, for a fixed n ∈ ' there exists m ∈ ' such that rm > Rn. As in the

proof above, let π : X → � N be the (continuous) projection of X onto � N . Then
|π(γk(BRn))| 6 Rn. Let Hrm = {b ∈ � N : |b| = rm}+ V . Then |π(Hrm)| = rm, so

γk(BRn) cannot intersect the hyperplanes Hrm . Hence, if we write wk = wk + w̃k,
where wk ∈ γk(BRn) and w̃k ∈ V , we have

|wk| < rm.
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We also have

cn + 1 > ϕ(wk) =
1
p
‖(wk + w̃k)′‖p

p −
∫ T

0

F (t, wk(t)) dt

=
1
p
‖w̃′

k‖p
p −

∫ T

0

[F (t, wk(t))− F (t, wk)] dt−
∫ T

0

F (t, wk) dt

=
1
p
‖w̃′

k‖p
p −

∫ T

0

∫ 1

0

(∇F (t, wk + sw̃k(t)), w̃k(t)) ds dt−
∫ T

0

F (t, wk) dt

> 1
p
‖w̃′

k‖p
p −

(∫ T

0

g(t) dt

)
‖w̃k‖∞ −

∫ T

0

F (t, wk) dt

> 1
p
‖w̃′

k‖p
p − C2‖w̃′

k‖p −
∫ T

0

F (t, wk) dt

by Sobolev’s inequality; here C2 =
(∫ T

0
g(t) dt

)
T 1/q. Notice also that since |wk| <

rm, the integral
∫ T

0 F (t, wk) dt is bounded. Consequently, w̃k is bounded in X . Thus
the sequence wk is bounded and the claim follows from 3.2. �

Claim 6. cn is a critical value.

 "!$#�#&%
. From Proposition 2.3 and the last claim (recall also Claim 4) it follows

that (vk) contains a convergent subsequence, which we rename as (vk). Let un =
lim

k→∞
vk, then (see Claim 4)

ϕ′(un) = lim
k→∞

ϕ′(vk) = 0 and ϕ(un) = lim
k→∞

ϕ(vk) = cn.

�
 "!$#�#&%

of Theorem 1.1. (a) Claim 6 proves that, for each n large enough, there

exists at least one solution un of (1.1) such that ϕ(un) = cn, where cn is given
by (3.1). If 0 < rk 6 Rn and Hrk

= {b ∈ � N : |b| = rk}+ V , then for any γ ∈ Sn we

have that γ intersects the hyperplane Hrk
(the proof is similar to the above). Then

max
x∈BRn

ϕ(γ(x)) > inf
b∈ � N, |b|=rk, ũ∈V

ϕ(b + ũ).

Thus, using Claim 3, we obtain that

lim
n→∞

cn = +∞,

and (a) follows.
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(b) For n ∈ {1, 2, . . .}, define a subset Pn of X by

Pn = {u ∈ X : u = u + ũ, u ∈ � N , |u| 6 rn, ũ ∈ V }.

We note that for u ∈ Pn we have, proceeding as in Claim 3,

ϕ(u) =
1
p
‖u′‖p

p −
∫ T

0

F (t, u) dt(3.3)

> 1
p
‖ũ′‖p

p − C1‖ũ′‖p −
∫ T

0

F (t, u) dt

by Sobolev’s inequality; here C1 =
(∫ T

0
g(t) dt

)
T 1/q. Notice also that

∫ T

0
F (t, u) dt

is bounded. Thus ϕ is bounded below on Pn.
Let us set

(3.4) µn = inf
u∈Pn

ϕ(u)

and let (uk) be a sequence in Pn such that

(3.5) ϕ(uk) → µn as k →∞.

We have

uk = uk + ũk, uk ∈ � N and |uk| 6 rn.

Without loss of generality we assume that uk → u ∈ Brn . From (3.3) and (3.5) we

obtain that (uk) is a bounded sequence in X and thus passing to a subsequence,
which we rename (uk), we have that

uk ⇀ u∗n in X.

Since Pn is a convex closed subset of X , u∗n ∈ Pn.

Note that ϕ is weakly lower semi-continuous, so

µn = lim
k→∞

ϕ(uk) > ϕ(u∗n)

and, since u∗n ∈ Pn, we must have

µn = ϕ(u∗n).

Next we want to show that u∗n ∈ Int Pn for large n, where

IntPn := {u ∈ X : u = u + ũ, |u| < rn}.
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Indeed, taking

0 < Rn < rn,

it follows from Claim 2 and Claim 3 that u∗n /∈ {b+ ũ, b ∈ Y, |b| = rn} for large n and
hence u∗n ∈ Int Pn. This fact and (3.4) imply that

ϕ′(u∗n) = 0

and u∗n is a solution of (1.1).

Finally, from the fact that

ϕ(u∗n) 6 inf
a∈ � N, |a|=Rn

ϕ(a)

and from Claim 2 we obtain that

lim
n→∞

ϕ(u∗n) = −∞.

�
(*),+.-�!$/

1. Going through the above proof, it is easy to see that the existence
of critical points un still holds if assumption (1.2) is weakened to

lim sup
R→+∞

[
inf

a∈ � N, |a|=R

∫ T

0

F (s, a) ds

]
is bounded from below.

In that case, however, the existence of the minima u∗n is no longer guaranteed.

0 12-�+43657)
1. Let us consider the scalar problem

−(|u′|p−2u′)′ = a sin(ln(u2 + 1)) +
2au2

1 + u2
cos(ln(u2 + 1)) + e(t),(3.6)

u(0)− u(T ) = u′(0)− u′(T ) = 0,

where 1 < p < ∞, a > 0, e ∈ L1(0, T ) and
∫ T

0 e(t) dt = 0. In this case

F (t, u) = au sin(ln(u2 + 1)) + e(t)u

and hence ∫ T

0

F (t, x) dt = ax sin(ln(x2 + 1)).
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Let Rk =
√

e2kπ+1/2π − 1, rk = Rk =
√

e2kπ+3/2π − 1 for k = 1, 2, . . . Then

lim
k→+∞

∫ T

0

F (t, Rk) dt = lim
k→+∞

aRk sin(ln(R2
k + 1))

= lim
k→+∞

a
√

e2kπ+1/2π − 1 = +∞

and

lim
k→+∞

∫ T

0

F (t, rk) dt = lim
k→+∞

ark sin(ln(r2
k + 1))

= lim
k→+∞

−a
√

e2kπ+3/2π − 1 = −∞.

As a result, (1.2) and (1.3) are satisfied. Moreover, |F ′
u(t, u)| is clearly bounded by

3a + |e(t)| and so we have the following result:

(i) there exists a sequence (un) of solutions of (3.6) such that un is a critical point
of ϕ and lim

n→∞
ϕ(un) = +∞;

(ii) there exists a sequence (u∗n) of solutions of (3.6) such that u∗n is a local minimum
point of ϕ and lim

n→∞
ϕ(u∗n) = −∞.
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