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Abstract. In this paper, we are interested in the dynamic evolution of an elastic body,
acted by resistance forces depending also on the displacements. We put the mechanical
problem into an abstract functional framework, involving a second order nonlinear evolution
equation with initial conditions. After specifying convenient hypotheses on the data, we
prove an existence and uniqueness result. The proof is based on Faedo-Galerkin method.
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1. Introduction

Numerous problems in physics such as the perturbation of pressure of the gas in
acoustics, the variation of potential in electromagnetism, the vibration of rods and

beams in elasticity and viscoelasticity, or the motion of particles in quantum rela-
tivity are described by the propagation of waves and lead to second order evolution

equations in time of the form

ü(t) + Au(t) + Bu̇(t) = f(t).

This explains the importance to study such problems and the literature in this field
is rather extensive, see e.g. [7], [18], [19], [20]. In these papers, the operator B is

nonlinear in general, and the operator A attached to the solution is assumed to be
linear. Important pioneering works and abstract results to extend the linearity to

nonlinear results have been obtained, and can be found in [1], [3], [4], [11], [12], [17].
In particular in [1], semigroup and monotone operators theory have been used.
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In the present work, we are interested in the dynamic evolution of an elastic body.

The new feature here is that the body motion is driven by forces which depend also on
the displacements. This leads to a new mathematical model involving second-order
nonlinear evolution equation of the form

ü(t) + Au(t) + Cu(t) + Bu̇(t) = f(t) + g a.e. on (0, T ),

with the initial conditions

u(0) = u0, u̇(0) = v0.

The main novelty concerns then different assumptions on the second member g, and

on the operator C which represents a nonlinear perturbation of A, in order to obtain
an existence and uniqueness result.

The paper is organized as follows. In the next Section 2, we set the problem
in an abstract framework of evolution triple, where we specify assumptions on the

operators and spaces. Then we state an existence and uniqueness result, Theorem 1.
Similar results in various framework are known and can be found in the literature

mentioned below. For the convenience of the reader, and following [11], the proof
is presented in Section 3; it is based on Galerkin approximations, hemi-continuity

and coercivity. Finally in Section 4, we show how to apply the abstract result
to the existence and uniqueness of weak solution to the original contact problem,

Theorem 2.

2. Statement of the problem

Let V and H be two separable Hilbert spaces. We denote in the sequel by V ′ the

dual space of V . Identifying H with its own dual, we assume an evolution triple

V ⊂ H ⊂ V ′,

where the inclusions are dense and continuous. We use the notation 〈·, ·〉V ′×V to

represent the duality pairing between V ′ and V . Then we have

(2.1) 〈u, v〉V ′×V = (u, v)H ∀u ∈ H, v ∈ V.

We make the following assumptions.

u0 ∈ V, v0 ∈ H ;(2.2)

f ∈ L2(0, T ; H);(2.3)

g ∈ V ′ is independent of time.(2.4)
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Let

A : V → V ′ be linear, continuous, symmetric(2.5)

and satisfying the following coercivity condition:

〈Au, u〉V ′×V > cA‖u‖2
V , ∀u ∈ V,

for some constant cA > 0.
Consider the perturbation operator

C : V → H,(2.6)

‖Cu− Cv‖H 6 θ(‖u‖V , ‖v‖V ) ‖u− v‖V , ∀u, v ∈ V,

where θ :
� + × � + → � + maps bounded subsets of

� + × � + into bounded subsets
of
� + . We remark that the last property implies that

u ∈ L∞(0, T ; V ) =⇒ Cu ∈ L∞(0, T ; H),

where

(Cu)(t) = C(u(t)), a.e. t ∈ (0, T ).

Then we suppose that for all sequences vn ∈ V and v ∈ V ,

vn ⇀ v weakly in V(2.7)

=⇒ Cvn ⇀ Cv weakly in H for some subsequence.

Moreover, we suppose that

(2.8) There exists a differentiable function G : V → �
satisfying

(i) For all sequences vn ∈ V and v ∈ V ,

vn ⇀ v weakly in V =⇒ lim inf
n→∞

G(vn) > G(v);

(ii) ∃ cG, dG ∈ � , ∀v ∈ V, G(v) > cG‖v‖V + dG;

(iii) (Cu(t), u′(t))H =
d
dt

G(u(t)), ∀u ∈ W 1,2(0, T ; V ), a.e. t ∈ (0, T ).

Let B : H → H satisfy

B is monotone;(2.9)

B is hemicontinuous,(2.10)
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i.e. for all u, v and w in H ,

(B(u + λv), w)H −→ (Bu, w)H , λ → 0;

v ∈ L2(0, T ; H) =⇒ Bv ∈ L2(0, T ; H),(2.11)

where

(Bv)(t) = B(v(t)), a.e. t ∈ (0, T );

(2.12) B : L2(0, T ; H) → L2(0, T ; H) is bounded,

i.e. B maps bounded subsets in L2(0, T ; H) into bounded subsets in L2(0, T ; H).

For example, if B is continuous and ‖Bv‖H 6 c(1 + ‖v‖H), ∀v ∈ H , then the last
three properties are satisfied.

Let us now consider the following abstract second order evolution problem.
�������	��

�

P1. Find u : [0, T ] → V such that

(2.13) u′′(t) + Au(t) + Cu(t) + Bu′(t) = f(t) + g a.e. on (0, T ),

with the initial conditions

(2.14) u(0) = u0, u′(0) = v0,

and satisfying the regularity

u ∈ L∞(0, T ; V ), u′ ∈ L∞(0, T ; H),(2.15)

d2u

dt2
∈ L∞(0, T ; V ′).

Our main result concerning the problem P1 is stated as follows and is proved in the
next section.

Theorem 1. Assume that (2.2)–(2.12) hold, then there exists a unique solution u

satisfying (2.13)–(2.15). Moreover,

(2.16) u : [0, T ] → V and u′ : [0, T ] → H are continuous.

3. Proof of Theorem 1

We are going to give the proof, first the uniqueness part then the existence part.
Uniqueness. We use the following well known lemma (the energy inequality).
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Lemma 1. Let A satisfying (2.5), w ∈ L∞(0, T ; V ), w′ ∈ L∞(0, T ; H), and
h ∈ L2(0, T ; H) satisfy

(3.1) w′′ + Aw = h, w(0) = 0, w′(0) = 0.

Then we have

(Aw(t), w(t))V ′×V + ‖w′(t)‖2
H 6 2

∫ t

0

(h(s), w′(s))H ds a.e. t ∈ (0, T ).

���������
. The main ideas of the proof can be found for example in [11, p. 22] for

a slightly different framework. �

Now let u and v be two solutions satisfying (2.13), (2.14) and (2.15). Put w =
u − v and h = −(Cu − Cv + Bu′ − Bv′). Then w satisfies the hypotheses in
Lemma 1, thus

(Aw(t), w(t))V ′×V + ‖w′(t)‖2
H 6 2

∫ t

0

(h(s), w′(s))H ds a.e. t ∈ (0, T ).

By (2.5), (2.6) and (2.9), we deduce that for some constant c and a.e. t ∈ (0, T ),

‖w(t)‖2
V + ‖w′(t)‖2

H 6 c

∫ t

0

‖w(s)‖V ‖w′(s)‖H ds

6 c

2

∫ t

0

(‖w(s)‖2
V + ‖w′(s)‖2

H) ds.

We conclude by Gronwall’s lemma that w = 0, which completes the uniqueness part
in Theorem 1.

Existence. We follow again here the main ideas in [11, p. 8 and p. 38].

Let {en, n > 1} be a Hilbert basis of V . Using the Theorem of Caratheodory (see
e.g. [20, p. 1044), we can define the sequence

un(t) =
n∑

j=1

cnj(t)ej , cnj ∈ W 2,2(0, T ), ∀ t ∈ [0, T ], ∀n > 1

which satisfies

(u′′n(t), ej)V ′×V + (A un(t), ej)V ′×V + (Cun(t), ej)V ′×V + (Bu′n(t), ej)V ′×V(3.2)

= (f(t), ej)H + (g, ej)V ′×V , ∀ j = 1, . . . , n, ∀n > 1,
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and

(3.3) un(0) := un0 → u0 strongly in V, u′n(0) := vn0 → v0 strongly in H.

Then we have

(u′′n(t), w)V ′×V + (Aun(t), w)V ′×V + (Cun(t), w)V ′×V + (Bu′n(t), w)V ′×V(3.4)

= (f(t), w)H + (g, w)V ′×V , ∀w ∈ span(e1, . . . , en), ∀n > 1.

Putting then w = u′n(t) in (3.4), we get

(u′′n, u′n)V ′×V + (Aun, u′n)V ′×V + (Cun, u′n)V ′×V + (Bu′n, u′n)V ′×V

= (f , u′n)H + (g, u′n)V ′×V , ∀n > 1.

Now using (2.3), (2.5), (2.8) and (2.11), we integrate the last relation over (0, t), and
obtain for all t ∈ [0, T ],

1
2
‖u′n‖2

H − 1
2
‖vn0‖2

H +
1
2
(Aun(t), un(t))V ′×V − 1

2
(Aun0, un0)V ′×V(3.5)

+G(un(t))−G(un0) +
∫ t

0

(Bu′n(s), u′n(s))H ds

=
∫ t

0

(f(s), u′n(s))H ds + (g, un(t))V ′×V − (g, un(0))V ′×V .

By (2.9), we have

1
2
‖u′n‖2

H − 1
2
‖vn0‖2

H +
1
2
(Aun(t), un(t))V ′×V − 1

2
(Aun0, un0)V ′×V(3.6)

+ G(un(t))−G(un0)

6
∫ t

0

(f(s), u′n(s))H ds−
∫ t

0

(B(0), u′n(s))H ds

+ (g, un(t))V ′×V − (g, un(0))V ′×V .

Using then

(f(s), u′n(s))H 6 1
2
(‖f(s)‖2

H + ‖u′n(s)‖2
H),

and

−(B(0), u′n(s))H 6 1
2
(‖B(0)‖2

H + ‖u′n(s)‖2
H),

234



and by (2.5), (2.8) and (3.3), we deduce after some algebra that for some constant

c > 0,

‖u′n(t)‖2
H + ‖un(t)‖2

V 6 c + c

∫ t

0

‖u′n(s)‖2
H ds.

Thus by Gronwall’s inequality,

(3.7) ‖u′n(t)‖H 6 c, ‖un(t)‖V 6 c, ∀ t ∈ [0, T ].

Then for a subsequence,

un ⇀ u in L∞(0, T ; V ) weakly star,(3.8)

u′n ⇀ u′ in L∞(0, T ; H) weakly star.

Now letting ϕ ∈ D(0, T ), putting w = ϕ(t)ej in (3.4) and integrating the relation
over (0, T ), we have for all n > 1,

−
∫ T

0

(u′n(t), ϕ′(t)ej)V ′×V dt +
∫ T

0

(Aun(t), ϕ(t)ej)V ′×V dt(3.9)

+
∫ T

0

(Cun(t), ϕ(t)ej)V ′×V dt +
∫ T

0

(Bu′n(t), ϕ(t)ej)V ′×V dt

=
∫ T

0

(f(t), ϕ(t)ej)H dt +
∫ T

0

(g, ϕ(t)ej )V ′×V dt.

By (2.5) and (3.8), we have

−
∫ T

0

(u′n(t), ϕ′(t)ej)V ′×V dt = −
∫ T

0

(u′n(t), ϕ′(t)ej)H dt

→ −
∫ T

0

(u′(t), ϕ′(t)ej)H dt,

∫ T

0

(Aun(t), ϕ(t)ej)V ′×V dt =
∫ T

0

(ϕ(t)Aej , un(t))V ′×V dt

→
∫ T

0

(Au(t), ϕ(t)ej)V ′×V dt.

Now from (3.7) and (3.8), it can be shown that a.e. t ∈ [0, T ],

(3.10) un(t) ⇀ u(t) weakly in V, u′n(t) ⇀ u′(t) weakly in H.

Thus using (2.6), (2.7) and Lebesgue’s dominated convergence, we deduce that
∫ T

0

(Cun(t), ϕ(t)ej)V ′×V dt =
∫ T

0

(Cun(t), ϕ(t)ej )H dt

→
∫ T

0

(Cu(t), ϕ(t)ej )V ′×V dt.
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On the other hand, by (3.7) and (2.12), (Bu′n) is bounded in L2(0, T ; H), thus

(3.11) Bu′n ⇀ χ weakly in L2(0, T ; H).

This implies

∫ T

0

(B u′n(t), ϕ(t)ej)V ′×V dt →
∫ T

0

(χ(t), ϕ(t)ej)V ′×V dt.

Now passing to the limit in (3.9) when n → +∞, we obtain ∀ j > 1, ∀ϕ ∈ D(0, T ),

−
∫ T

0

(u′(t), ϕ′(t)ej)V ′×V dt +
∫ T

0

(Au(t), ϕ(t)ej)V ′×V dt

+
∫ T

0

(Cu(t), ϕ(t)ej)V ′×V dt +
∫ T

0

(χ(t), ϕ(t)ej)V ′×V dt

=
∫ T

0

(f(t), ϕ(t)ej )H dt +
∫ T

0

(g, ϕ(t)ej)V ′×V dt,

or
(
−

∫ T

0

u′(t)ϕ′(t) dt, ej

)

V ′×V

+
(∫ T

0

Au(t)ϕ(t) dt, ej

)

V ′×V

+
(∫ T

0

Cu(t)ϕ(t) dt, ej

)

V ′×V

+
(∫ T

0

χ(t)ϕ(t) dt, ej

)

V ′×V

=
(∫ T

0

f(t)ϕ(t) dt, ej

)

H

+
(∫ T

0

ϕ(t)g dt, ej)V ′×V .

This means that

u′′ + Au + Cu + χ = f + g in D′(0, T ; V ′).

Thus

u′′ ∈ L2(0, T ; V ′),

and then

(3.12) u′′ + Au + Cu + χ = f + g a.e. in (0, T ).

Let us verify now the initial conditions

u(0) = u0 and u′(0) = v0.
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From (3.8), we see that

un(t) ⇀ u(t) weakly in H, ∀ t ∈ [0, T ].

Thus by (3.3) and the continuous imbedding V ⊂ H , we obtain

un(0) ⇀ u(0) weakly in H and un(0) → u0 strongly in H,

which shows that u(0) = u0.

To continue, let ϕ ∈ C1([0, T ]) be such that ϕ(T ) = 0, put w = ϕ(t)ej in (3.4)
and integrate the relation over (0, T ); this gives for all n > 1,

− (u′n(0), ϕ(0)ej)V ′×V −
∫ T

0

(u′n(t), ϕ′(t)ej)V ′×V dt

+
∫ T

0

(Aun(t), ϕ(t)ej )V ′×V dt +
∫ T

0

(Cun(t), ϕ(t)ej )V ′×V dt

+
∫ T

0

(Bu′n(t), ϕ(t)ej )V ′×V dt

=
∫ T

0

(f(t), ϕ(t)ej )H dt +
∫ T

0

(g, ϕ(t)ej )V ′×V dt.

Using (2.5), (2.7) and (3.8), and letting n → +∞, we get

− (v0, ϕ(0)ej)H −
∫ T

0

(u′(t), ϕ′(t)ej)V ′×V dt +
∫ T

0

(Au(t), ϕ(t)ej)V ′×V dt

+
∫ T

0

(Cu(t), ϕ(t)ej)V ′×V dt +
∫ T

0

(Bu′(t), ϕ(t)ej)V ′×V dt

=
∫ T

0

(f(t), ϕ(t)ej )H dt +
∫ T

0

(g, ϕ(t)ej)V ′×V dt.

Using now (3.12), multiplying by ϕ(t)ej and integrating over (0, T ), we get

− (u′(0), ϕ(0)ej)H −
∫ T

0

(u′(t), ϕ′(t)ej)V ′×V dt +
∫ T

0

(Au(t), ϕ(t)ej)V ′×V dt

+
∫ T

0

(Cu(t), ϕ(t)ej )V ′×V dt +
∫ T

0

(Bu′(t), ϕ(t)ej )V ′×V dt

=
∫ T

0

(f(t), ϕ(t)ej )H dt +
∫ T

0

(g, ϕ(t)ej)V ′×V dt.

Thus for all ϕ ∈ C1([0, T ]) such that ϕ(T ) = 0, we have

(u′(0), ϕ(0)ej)H = (v0, ϕ(0)ej)H ,

which implies clearly that u′(0) = v0. �
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The last step which now remains is to show that χ = Bu′, then the conclusion

in Theorem 1 follows immediately from (3.12). Then by (3.10) and (3.5) we deduce
that

1
2
‖u′(t)‖2

H − 1
2
‖v0‖2

H +
1
2
(Au(t), u(t))V ′×V − 1

2
(Au0, u0)V ′×V(3.13)

+ G(u(t))−G(u0) + lim inf
n→+∞

∫ t

0

(Bu′n(s), u′n(s))H ds

6
∫ t

0

(f(s), u′(s))H ds + (g, u(t))V ′×V − (g, u0)V ′×V .

We now use a well known result (the energy inequality), which in fact improves
Lemma 1 in the uniqueness part, and is given as follows (see e.g. [14]).

Lemma 2. Let A satisfy (2.5), w ∈ L∞(0, T ; V ), w′ ∈ L∞(0, T ; H), h ∈
L2(0, T ; H), L ∈ V ′, w0 ∈ V , and w1 ∈ H satisfy

(3.14) w′′ + Aw = h + L, w(0) = w0, w′(0) = w1.

Then we have

w : [0, T ] → V is continuous,

w′ : [0, T ] → H is continuous,

and for all t ∈ [0, T ],

1
2
(Aw(t), w(t))V ′×V +

1
2
‖w′(t)‖2

H

=
1
2
(Aw0, w0)V ′×V +

1
2
‖w1‖2

H +
∫ t

0

(h(s), w′(s))H ds

+ (L, w(t))V ′×V − (L, w0)V ′×V .

Applying Lemma 2 to the function u, we obtain (2.16) and

1
2
(Au(t), u(t))V ′×V +

1
2
‖u′(t)‖2

H

=
1
2
(Au0, u0)V ′×V +

1
2
‖v0‖2

H

+
∫ t

0

(f(s) − χ− Cu(s), u′(s))H ds

+ (g, u(t))V ′×V − (g, u0)V ′×V , ∀ t ∈ [0, T ].
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From (3.13) and (3.15), we deduce that

lim inf
n→+∞

∫ T

0

(Bu′n(s), u′n(s))V ′×V ds 6
∫ T

0

(χ(s), u′(s))H ds a.e. t ∈ (0, T ).

Then by (3.8) and (3.11), we have for all v ∈ L2(0, T ; H),

0 6 lim inf
n→+∞

∫ T

0

(Bu′n(s)−Bv(s), u′n(s)− v(s))V ′×V ds

6
∫ T

0

(χ(s)−Bv(s), u′(s)− v(s))H ds.

Taking now v = u′ − λw, w ∈ L2(0, T ; H), λ > 0, we have

∫ T

0

(χ(s)−B(u′(s)− λw(s)), w(s))H ds > 0.

Letting λ → 0, we get by (2.10)

∫ T

0

(χ(s)−Bu′(s), w(s))H ds > 0,

this for all w ∈ L2(0, T ; H).
Clearly the last inequality implies that χ = Bu′. �

4. Application to contact problem

We now give an application in elastic contact mechanics. Situations of contact be-
tween deformable bodies are very common in industry and everyday life. In particu-

lar, the study of dynamic contact problems concerns the existence and uniqueness of
solutions of second-order evolution equations, and necessitates abstract tools such as

maximal monotone operators, fixed points and variational methods. Because of the
importance of the contact problems, there exists an extensive literature on various

aspects of the subject, including mathematical and numerical analysis, see e.g. [5],
[6], [8], [9], [10], [13], [15], [16]. In particular, a dynamic problem with adhesive

contact was studied in [5], and unilateral dynamic contact problems for viscoelastic
and thermo-viscoelastic bodies were analyzed in [9], [10].

Here, we study the dynamic evolution of an elastic body, which is acted by forces
depending also on the displacements. The weak formulation of this mechanical prob-

lem leads to an abstract second-order evolution equation that we met in the previous
section.
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Let us describe now the mechanical contact problem. An elastic body occupies

a domain Ω ⊂ � d with Lipschitz boundary Γ and unit outer normal vector ν. The
boundary is divided into three disjoint measurable parts Γ1, Γ2 and Γ3 such that
meas(Γ1) > 0. Let T > 0 and [0, T ] be the time interval of interest. The body is
clamped on Γ1 × (0, T ). There are volume forces of density f0 − α j(u) − β b(u̇)
acting in Ω× (0, T ), with f0 which is independent of the displacement u, i.e. which

corresponds to a dead load, whereas −α j(u) and −β b(u̇) express a resistance to
the motion. A surface traction of density f2 independent of time acts on Γ2. The

body may come into contact with a foundation, over the potential contact surface Γ3.
Consider then the following mechanical problem.
�������	��

�

P2. Find a displacement field u : Ω× [0, T ] → � d such that

% ü = DivAε(u) + f0 − α j(u)− β b(u̇) in Ω× (0, T ),(4.1)

u = 0 on Γ1 × (0, T ),(4.2)

σν = f2 on Γ2 × (0, T ),(4.3)

σν = −kuν , στ = T on Γ3 × (0, T ),(4.4)

u(·, 0) = u0, u̇(·, 0) = v0 in Ω.(4.5)

Here the dots above a quantity represent derivatives of the quantity with respect to

the time variable, |·| is the Euclidean norm on � d , and the summation convention over
repeated indices is adopted. We recall that (4.1) represents the dynamic equation of

the motion, where % = %(x) > 0 is the mass density, ε(u) = (εij(u))16i, j6d, with
εij(u) = 1

2 (∂ui/∂xj + ∂uj/∂xi) denotes the linearized strain tensor, A the elastic
stress tensor, Div the divergence operators, defined by Div σ = (∂σij/∂xj)16i6d,
for any second order symmetric tensors σ = (σij)16i, j6d on

� d , α j(u) represents
a spring tension with coefficient α = α(x) > 0, the latter may be for instance
proportional to a power of the displacement, and β u̇ is a resistance to the motion

proportional to the velocity with coefficient β = β(x) > 0. The equations (4.2)
and (4.3) recall the fixed and the surface boundary conditions. The equation (4.4)

represents the contact condition on Γ3, where the normal stress σν is proportional
to the normal displacement uν with coefficient k = k(x) > 0, and the tangential
traction στ is defined by T = T (x), which is supposed to be independent of time.
Finally in (4.5), u0 = u0(x) denotes the initial displacement and v0 = v0(x) the
initial velocity field.

In order to give the variational formulation of the problem P2 and to study the
existence and uniqueness of weak solutions, we now introduce different spaces, oper-

ators and make assumptions on the data. Consider

H = L2(Ω)d, Q = {σ = (σij), 1 6 i, j 6 d | σij = σji ∈ L2(Ω)},
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with the canonical inner product (·, ·)H and (·, ·)Q,

V = {v ∈ [H1(Ω)]d | v = 0 on Γ1}.

In the evolution triple

V ⊂ H ⊂ V ′,

the spacesH and V are endowed with the following inner product (since measΓ1 > 0,
Korn’s inequality holds, see e.g. [16, p. 79):

((u, v))H = (%u, v)H , (u, v)V = (ε(u), ε(v))Q,

where we assume

(4.6) % ∈ L∞(Ω), %(x) > %∗ > 0 a.e. x ∈ Ω.

Consider now A : V → V ′ defined by

(A u, w)V ′×V = (Aε(u), ε(w))Q +
∫

Γ3

kuνwν dΓ,

where the elastic tensor A = (aijkh) : Ω × Sd → Sd, with Sd the space of second

order symmetric tensors on
� d , satisfies

(4.7)





(a) aijkh ∈ L∞(Ω);

(b) Aσ · τ = σ · Aτ ∀σ, τ ∈ Sd, a.e. in Ω;

(c) there exists mA > 0 such that

Aτ · τ > mA‖τ‖2 ∀ τ ∈ Sd, a.e. in Ω,

and

(4.8) k ∈ L∞(Γ3), k > 0.

Let us define B : H → H by: for all v ∈ H ,

B(v)(x) =
β(x)b(v(x))

%(x)
, a.e. x ∈ Ω,

with

(4.9) β ∈ L∞(Ω), β > 0,
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and b :
� d → � d satisfies for some constant cb > 0,

(4.10) b is continuous monotone and |b(v)| 6 cb(1 + |v|), ∀v ∈ � d .

Define C : V → H by

C(v)(x) =
α(x) j(v(x))

%(x)
, a.e. x ∈ Ω, ∀v ∈ V,

where

(4.11) α ∈ L∞(Ω), α > 0,

and j :
� d → � d is assumed to be (Fréchet) differentiable and satisfies

(4.12) ‖dj(v)‖L( � d) 6 c2 + c2|v|m, ∀v ∈ � d ,

for some constant c2 > 0 (recall that the linear mapping dj(v) ∈ L(
� d ) is the Fréchet

derivative of j at v) and m satisfies

(4.13)





0 6 m if d = 1 or d = 2;

0 6 m 6 2
d− 2

if d > 2.

Moreover, assume that there exists J :
� d → �

(Fréchet) differentiable satisfying

(4.14)

{
∃ cJ , dJ ∈

�
, ∀v ∈ � d , J(v) > cJ |v|+ dJ ;

∇J(v) = j(v), ∀v ∈ � d ,

where ∇J(v) stands for the gradient of J at v.

Let us note that from (4.12) there exist some constants c3 > 0 and c4 > 0 satisfying

(4.15) |j(v)| 6 c3(1 + |v|+ |v|m+1), ∀v ∈ � d ,

and

(4.16) |j(v1)− j(v2)| 6 c4|v1 − v2|(1 + |v1|m + |v2|m), ∀v1, v2 ∈
� d .

Then using Sobolev embeddings (see e.g. [2, p. 168]) and (4.15), we check that for
all v ∈ V , C(v) ∈ H .
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Let us also mention that from (4.12) and (4.15) there exists some constant c5 > 0
satisfying

(4.17) |J(v)| 6 c5 + c5|v|(1 + |v|+ |v|m+1), ∀v ∈ � d .

For the special case of d = 1, we remark that the assumption (4.14) becomes

∃ cJ ∈
�
, ∀t ∈ � ,

∫ t

0

j(s) ds > cJ and j′(t) > 0,

where we take

J(t) =
∫ t

0

j(s) ds, ∀ t ∈ � .

Finally an example of a function j for which the assumptions (4.12) and (4.14)
are verified is given by

j(v) = |v|mv, ∀v ∈ � d ,

where we define

J(v) =
|v|m+2

m + 2
, ∀v ∈ � d .

To continue, define

f(t) =
f0(t)

%
,

with

(4.18) f0 ∈ L2(0, T ; H).

Finally, define

(g, w)V ′×V =
∫

Γ2

f2w dΓ +
∫

Γ3

Twτ dΓ,

where

f2 ∈ L2(Γ2)d,(4.19)

T ∈ L2(Γ3)d.(4.20)

Keeping the above notation, multiplying in the problem P2 by test functions
v ∈ V , we deduce the following weak formulation of the problem P2:
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�������	��

�
PV2. Find u : [0, T ] → V such that

((ü(t), v))H + (Au(t), v)V ′×V + ((Cu(t), v))H + ((Bu̇(t), v))H

= ((f(t), v))H + (g, v)V ′×V , on (0, T ), ∀v ∈ V,

with the initial conditions

u(0) = u0, u̇(0) = v0.

We recognize here a second order evolution problem studied in Section 2. Rewrite

then the hypotheses on initial data

(4.21) u0 ∈ V, v0 ∈ H.

Applying again Theorem 1, we have then the following statement.

Theorem 2. Assume that the assumptions (4.6)–(4.14) and (4.18)–(4.21) hold,
then there exists a unique solution u to the problem PV2 with the regularity

u ∈ L∞(0, T ; V ), u′ ∈ L∞(0, T ; H),
d2u

dt2
∈ L∞(0, T ; V ′).

���������
. We have to check now the assumptions (2.5)–(2.12).

Assumption (2.5) follows from (4.7) and Korn’s inequality (see e.g. [16], p. 79).

Assumption (2.6). From the definition of the operator C and (4.16), we get for

some constant c, for all u, v ∈ V , a.e. x ∈ Ω,

|Cu(x)− Cv(x)|2 6 c|u(x)− v(x)|2(1 + |u(x)|m + |v(x)|m)2.

By Hölder’s inequality, we have

‖Cu− Cv‖H 6 c‖u− v‖L2p(Ω)(1 + ‖|u|m‖L2q(Ω) + ‖|v|m‖L2q(Ω)),

where p−1 + q−1 = 1.
Now consider the case of d > 2, by using the continuous embedding H1(Ω) ⊂

L2∗(Ω) and 0 6 m 6 2
d−2 , and taking p = 2∗

2 = d
d−2 (then q = d

2 ), we obtain

‖Cu− Cv‖H 6 c‖u− v‖V (1 + ‖u‖m
V + ‖v‖m

V ).
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For the case of d = 2, we can suppose that m > 0, using the continuous embedding
H1(Ω) ⊂ Lq(Ω), q > 2, and the fact that there exists p > 1 such that m > 1

q = 1− 1
p ,

we deduce that

‖Cu− Cv‖H 6 c‖u− v‖V (1 + ‖u‖m
V + ‖v‖m

V ).

Finally for the last case of d = 1, the same previous inequality holds by using the
continuous embedding H1(Ω) ⊂ L∞(Ω).
This completes the verification of (2.6).

����� � ���	�������
(2.7). Let vn ⇀ v weakly in V . By the Sobolev compact em-

bedding V ⊂ H (see e.g. [2, p. 169]), we have vn → v strongly in H for some
subsequence, then Cvn(x) → Cv(x) a.e. in Ω, as ‖Cvn‖H is bounded, we conclude
by classical arguments that Cvn ⇀ Cv weakly in H .

����� � ���	�������
(2.8). Define now

G(v) =
∫

Ω

α(x)J(v(x)) dx, ∀v ∈ V.

As for the operator C, using (4.17), Hölder’s inequality, and the Sobolev continuous

embedding, we verify that for all v ∈ V ,

∫

Ω

|α(x)J(v(x))| dx 6 c + c‖v‖V (1 + ‖v‖V + ‖v‖m+1
V ).

Thus the function G : V → �
is well defined and bounded. Clearly, from (4.14) and

Fatou’s lemma, the assumptions (2.8 (i))–(2.8 (iii)) are satisfied.

For example for (2.8 (i)), let vn ⇀ v weakly in V ; we have vn → v strongly in H

for some subsequence, thus vn(x) → v(x) a.e. in Ω, and by the continuity of J ,
J(vn(x)) → J(v(x)) a.e. in Ω. Since G is bounded and vn bounded in V , we can

apply Fatou’s lemma and obtain the desired result.

Finally, assumptions (2.9)–(2.11) follow immediately from the definition of B and
(4.9). �
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