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Abstract. We give an explicit expression of a two-parameter family of Flensted-Jensen’s
functions Ψµ,α on a concrete realization of the universal covering group of U(1, 1). We
prove that these functions are, up to a phase factor, radial eigenfunctions of the Landau
Hamiltonian on the hyperbolic disc with a magnetic field strength proportional to µ, and
corresponding to the eigenvalue 4α(α − 1).
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1. Introduction

In quantum mechanics, considerable attention has been paid to the physics of

a charged particle evolving in a plane under the influence of a perpendicular uni-
form magnetic field. This problem, called the planar Landau problem [1], has been

generalized to two-dimensional curved surfaces with a normal stationary magnetic
field [2].

For a charged particle evolving in the hyperbolic plane under the influence of a

uniform magnetic field, eigenfunctions and eigenvalues of the corresponding Landau
Hamiltonian have been discussed in the context of the spectral theory [3]. Eigenstates
can also be obtained as representation coefficients of the Lie group describing the

symmetry of the quantum system [4]. Spherical functions are special coefficients of
group representations, which are usually indexed by a spectral parameter.

Here our main aim is to attach to the Landau problem on the hyperbolic disc a set

of Flensted-Jensen’s (FJ’s) spherical functions [5] defined on the universal covering
group of U(1, 1). We prove that these FJ’s functions are eigenstates of the particle.
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The advantage of these functions is that they are indexed by two parameters, one of

them being proportional to the magnetic field strength while the other occurs in the
parametrization of the eigenvalue of the Hamiltonian.
The paper is organized as follows. In Section 2 we discuss the hyperbolic Landau

Hamiltonian. In Section 3, we give the general form of eigenfunctions of the Hamil-
tonian. Section 4 deals with a realization of the universal covering group of U(1, 1).
An Iwasawa decomposition corresponding to this realization is given in Section 5. In
Section 6, we give an explicit expression of a two-parameter family of FJ’s spheri-

cal functions and we show that it constitutes a family of eigenstates of the particle.
Section 7 is devoted to some concluding remarks.

2. The Landau Hamiltonian on the unit disc

Let H2
a := {ξ ∈ �

,=ξ > 0} be the upper halfplane endowed with the metric
ds2 = a2y−2(dx2 + dy2), where x = <ξ, y = =ξ, and a > 0 is the parameter
related to the curvature κ by κ = −2/a2. The area element dµa(ξ) has the form
dµa(ξ) = a2y−2 dx ∧ dy. A constant uniform magnetic field on H2

a is given by a

2-form B defined as

B =
Ba2

y2
dx ∧ dy,

where B > 0 is the field intensity. The form B can be represented as B = dA, where
A = Ba2y−1 dx is the vector potential (Landau gauge) we have chosen.
The Schrödinger operator describing a particle of charge e and mass m∗ which

lives on H2
a and interacts with the magnetic field B is given by

(2.1) Hb := − h̄2

2m∗a2

(
y2(∂2

x + ∂2
y)− 2iby∂x − b2

)

where b is the dimensionless quantity b := eBa2/h̄c. For the sake of simplicity, we
put a = e = c = h̄ = 2m∗ = 1. We denote H2 := H2

1 and will consider a slight

modification of Hb in (2.1). Actually, we will deal with the operator ([6], p. 8073):

(2.2) HB := y2(∂2
x + ∂2

y)− 2iBy∂x

with C∞
0 (H2) as its regular domain in the Hilbert spaceH := L2(H2, y−2 dx dy). The

spectrum of HB in H consists of two parts: (i) an absolutely continuous spectrum in
the interval (−∞, 0], (ii) a point spectrum consisting of a finite number of infinitely
degenerate eigenvalues of the form ([7], p. 11)

EB
m := (B −m)(B −m− 1), 0 6 m < B − 1

2
when 2B > 1.
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The Hamiltonian HB can be transferred to the unit disc � = {z ∈ � : |z| < 1} by
means of the Cayley transform C : H2 → � defined by w 7−→ C(w) = (w− i)(w+i)−1

as
∆Bf(z) := 4

(w − i
w + i

)−B

HB

(w − i
w + i

)B

f(C(w))

where f ∈ C2( � ) and z = C(w) ∈ � , w ∈ H2. Explicitly,

(2.3) ∆B = 4(1− |z|2)
(
(1− |z|2) ∂2

∂z∂z
+Bz

∂

∂z
−Bz

∂

∂z
+B2

)
.

This describes the motion of a charged particle moving in the hyperbolic disc under

the influence of a uniform magnetic field of strength proportional to B.

3. Eigenfunction of ∆B

Now, let α ∈ � be a fixed complex number and let ψ : � → �
be an eigenfunction

of the operator ∆B given in (2.3) corresponding to the eigenvalue E(α) := 4α(α−1),
i.e.,

(3.1) ∆Bψ = E(α)ψ

since the differential operator ∆B is elliptic on � , the function ψ is C∞ on � and
can be expanded into its Fourier series as

(3.2) ψ(%eiθ) =
∑

k∈ �
γk(%)eikθ,

0 6 % < 1, 0 6 θ 6 2π, where %→ γk(%) is C∞ on [0, 1[ for each k ∈ � . Writing ∆B

in polar coordinates (%, θ)

∆B = (1− %2)
∂2

∂%2
+ (1− %2)2

1
%

∂

∂%
+ (1− %2)2

1
%2

∂2

∂θ2
+ 4iB(1− %2)

∂

∂θ
+ 4B2(1− %2)

and inserting the expansion (3.2) of ψ(%eiθ) into Eq. (3.1), we obtain for every k ∈ �
the differential equation

%2(1− %2)2γ′′k (%) + (1− %2)2%γ′k(%)(3.3)

+
[
4α(1− α)%2 + 4B2%2(1− %2)− k2(1− %2)2 − 4kB%2(1− %2)

]
γk(%) = 0.

Changing the function and reducing Eq. (3.3) to a standard hypergeometric equation,

we find after some calculation that γk(%) is given, up to a multiplicative constant,
by

2F1

(
α+B +

1
2
(|k|+ k), α−B +

1
2
(|k| − k), 1 + |k|, %2

)
(1− %2)α%|k|
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where 2F1 is the Gauss hypergeometric function ([8]). Consequently, there exists a

family of complex numbers (cB,α,k)k∈ � such that

ψ(%eiθ) = (1− %2)α(3.4)
∑

k∈ �
cB,α,k 2F1

(
α+B +

|k|+ k

2
, α−B +

|k| − k

2
, 1 + |k|, %2

)
%|k|eikθ.

4. The universal covering group of U(1, 1)

For ξ, ζ ∈ � 2 , ξ = (ξ1, ξ2) and ζ = (ζ1, ζ2) let 〈ξ, ζ〉 = ξ1ζ1 − ξ2ζ2. The
group U(1, 1) is defined by

U(1, 1) := {g ∈ GL(2,
�
), 〈gξ, gζ〉 = 〈ξ, ζ〉, for all ξ, ζ ∈ � 2}.

The elements of this group are matrices

(
a b

c d

)
∈ GL(2,

�
), |a|2 − |c|2 = 1, |d|2 − |b|2 = 1 and āb = c̄d.

Note that every element g of U(1, 1) decomposes to

g =
(
a b

c d

)
= |d|

(
1 bd−1

b̄(d̄)−1 1

) (
a|a|−1 0

0 d|d|−1

)
.

From this decomposition we see that the Lie group U(1, 1) is diffeomorphic to the
manifold � × � × � , where � = [0, 2π]. Indeed, setting bd−1 = z, d|d|−1 = eiθ and
a|a|−1 = ei(θ+ϕ), we can write the elements of U(1, 1) as

g =
eiθ

√
1− |z|2

(
1 z

z 1

) (
eiϕ 0
0 1

)

with z ∈ � , ϕ ∈ � and θ ∈ � . As a realization of the universal cover group of U(1, 1)

we consider the 4-dimensional real analytic manifold
�
U(1, 1) := � × � × � endowed

with the group law

(ϕ1, θ1, z1) · (ϕ2, θ2, z2)

=
(
ϕ1 + ϕ2 − 2 Arg(1 + z1z2eiϕ1), θ1 + θ2 + Arg(1 + z1z2eiϕ1),

z1 + z2eiϕ1

1 + z1z2eiϕ1

)
.
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One can verify that this product is well defined, associative and (0, 0, 0) is the identity.
The inverse of an element (ϕ, θ, z) is (−ϕ,−θ,−ze−iϕ). Furthermore, the projection

map P from
�
U(1, 1) onto U(1, 1) defined by

(ϕ, θ, z) → P ((ϕ, θ, z)) =
eiθ

√
1− |z|2

(
1 z

z 1

) (
eiϕ 0
0 1

)

is a morphism of groups whose kernel coincides with the fundamental group
of U(1, 1). Indeed, we have

P−1

((
1 0
0 1

))
= 2π � × 2π � × {0}.

�	��
�����
3.1. An explicit realization of the universal cover group of the subgroup

SU(1, 1) = {g ∈ U(1, 1), det g = 1} can be found in [9, p. 260–261).

5. An Iwasawa decomposition of

�
U(1, 1)

Now, to give an Iwasawa decomposition we need first to define some subgroups
of U(1, 1). Let

K =
{(

eiϕ 0
0 1

)
, ϕ ∈ �

}
, L =

{(
eiθ 0
0 eiθ

)
, θ ∈ �

}
,

A =
{(

cosh t sinh t
sinh t cosh t

)
, t ∈ �

}
, N =

{(
1 + is −is

is 1− is

)
, s ∈ �

}
.

Then the product map K ×L×A×N → U(1, 1) is a diffeomorphism. We lift these

subgroups to the universal cover group
�
U(1, 1) and denote by K̃, L̃, Ã and Ñ the

connected components of the identity (0, 0, 0) in their lifting. Precisely, we have

P−1(K) = � × 2π � × {0}, K̃ = {(ϕ, 0, 0), ϕ ∈ � },
P−1(L) = 2π � × � × {0}, L̃ = {(0, θ, 0), ϕ ∈ � },

P−1(A) = 2π � × 2π � × ]−1, 1[, Ã = {(0, 0, r), r ∈ ]−1, 1[},

P−1(N) =
{(

− arg(is− 1),
arg(is− 1)

2
,

is
is− 1

)
, s ∈ �

}
, Ñ = P−1(N).

We can show that the product map K̃×L̃×Ã×Ñ →
�
U(1, 1) is also a diffeomorphism.

Now, let us consider the subgroup A1 := L̃ · Ã. Explicitly,

A1 = {(0, θ, z), θ ∈ � , −1 < z < 1}.
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A1 is an Abelian Lie group whose Lie algebra A1 is isomorphic to � 2 = {(x, y), x, y ∈
� }. The exponential map exp from A1 onto A1 is given by exp: (x, y) → (x, tanh y).

Using direct computation, we obtain that any element (ϕ, θ, z) of
�
U(1, 1) admits

an Iwasawa decomposition of type K̃A1Ñ given by the product

(ϕ, θ, z) =
(
ϕ− 2 Arg(1 + zeiϕ), 0, 0

)

×
(
0, θ + Arg(1 + zeiϕ),

|1 + zeiϕ|2 + |z|2 − 1
|1 + zeiϕ|2 − |z|2 + 1

)

×
(
−2 arg

(3
2
− 1 + |z|2 + 2zeiϕ

2|1 + zeiϕ|2
)
, arg

(3
2
− 1 + |z|2 + 2zeiϕ

2|1 + zeiϕ|2
)
,

ze−iϕ − zeiϕ

2(1 + |z|2) + zeiϕ + 3ze−iϕ

)
.

6. Flensted-Jensen’s spherical functions

Let (A1)∗� denote the complex dual of A. The Flensted-Jensen’s spherical functions
are functions Φµ,λ on

�
U(1, 1) parametrized by numbers (µ, λ) ∈ (A1)∗� and defined

by the integral ([5], Theorem 5.1)

Φµ,λ((ϕ, θ, z)) =
∫

K̃ � M̃

exp
(
〈i(µ, λ)− %,H1((ϕ, θ, z)−1k̃)〉

)
d[k̃]

where M̃ denotes the centralizer of A1 in K̃, [k̃] is the class of k̃ modulo M̃ and
H1(ψ, ω, w) ∈ A1 is the unique element such that (ψ, ω, w) ∈ K̃ exp(H1(ψ, ω, w))M̃ .
Explicitly, we have that

• K̃ � M̃ = � ≡ [0, 2π],
• (ϕ, θ, z)−1k̃ = (χ− ϕ,−θ,−ze−iϕ), k̃ = (χ, 0, 0) ∈ K̃,
• H1((ϕ, θ, z)−1k̃) =

(
−θ + Arg(1− zeiχ),− 1

2 Log
(
(1− |z|2)/|1− zeiχ|2

))

• % = (0, 1).
Note that the function H1 is a 2π-periodic function with respect to ϕ. Therefore,

the FJ’s functions read

Φµ,λ(θ, z) =
∫ 2 �

0

exp
(
−iµθ + iµArg(1− zeiχ)− (iλ− 1)

2
Log

( 1− |z|2
|1− zeiχ|2

))
dχ.

These functions can also be written as

Φµ,λ(θ, z) = e−iµθ(1− |z|2) 1
2 (1−iλ)

∫ 2 �
0

(1− zeiχ)
1
2 (iλ−1)+ 1

2 µ(1− ze−iχ)
1
2 (iλ−1)− 1

2 µ dχ.
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Setting µ = 2B = µ(B) and λ = i(2α − 1) = λ(α) and making use of the binomial
formula

(1− x)−β =
+∞∑

j=0

Γ(β + j)
Γ(β)

xj

j!

we obtain that

Φµ(B),λ(α)(θ, z) = e−2Biθ(1− |z|2)α

∫ 2 �
0

(1− zeiχ)−(α−B)(1− ze−iχ)−(α+B) dχ

= e−2Biθ(1− |z|2)α
∑

m,l>0

Γ(α− B +m)
Γ(α−B)

Γ(α+B + l)
Γ(α+B)

zmzl

m! l!

∫ 2 �
0

ei(m−l)χ dχ.

By virtue of ∫ 2 �
0

ei(m−l)χ dχ = 2πδm,l

we obtain

Φµ(B),λ(α)(θ, z)

= 2πe−2Biθ(1− |z|2)α
∑

m>0

Γ(α−B +m)
Γ(α−B)

Γ(α+B +m)
Γ(α+B)

Γ(1)
Γ(1 +m)

(|z|2)m

m!
.

Recalling the expression for the Gauss hypergeometric function 2F1 ([8]), we get that

Φµ(B),λ(α)(θ, z) = 2πe−2Biθ(1− |z|2)α
2F1(α−B,α+B, 1; |z|2).

Finally, taking into account Eq. (3.4), we see that the function z 7−→ Φµ(B),λ(α)(θ, z)
is, up to a phase factor, a radial eigenfunction of the Hamiltonian with the eingen-
value 4α(α− 1).

7. Concluding remarks

When dealing with a particle moving on the hyperbolic disc under the influence

of a normal uniform magnetic field (hyperbolic Landau problem) we have attached
to this problem a set of Flensted-Jensen’s (FJ’s) spherical functions defined on the

universal covering group of U(1, 1). We have proved that the constructed FJ’s func-
tions are, up to a phase factor, radial eigenfunctions of the Hamiltonian. On the

one hand these functions present an advantage since they are indexed by two pa-
rameters which contain two important pieces of information. Indeed, one of these

parameters is proportional to the magnetic field strength while the other occurs in
the parametrization of the eigenvalue of the Hamiltonian. On the other hand, the
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above established connection indicates the possibility to look at the FJ’s functions

in the context of quantum mechanics.
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