
Applications of Mathematics

Ivan Hlaváček
Uncertain input data problems and the worst scenario method

Applications of Mathematics, Vol. 52 (2007), No. 3, 187–196

Persistent URL: http://dml.cz/dmlcz/134671

Terms of use:
© Institute of Mathematics AS CR, 2007

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/134671
http://dml.cz


52 (2007) APPLICATIONS OF MATHEMATICS No. 3, 187–196

UNCERTAIN INPUT DATA PROBLEMS AND THE

WORST SCENARIO METHOD*

Ivan Hlaváček, Praha

(Received August 14, 2006, in revised version January 5, 2007)

Abstract. An introduction to the worst scenario method is given. We start with an
example and a general abstract scheme. An analysis of the method both on the continuous
and approximate levels is discussed. We show a possible incorporation of the method into
the fuzzy set theory. Finally, we present a survey of applications published during the last
decade.
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1. Introduction

The progress in computational power and the promising prospects of its further

development enable us to approach reality nearer and deeper through modeling prob-
lems in technical, natural and social sciences than several decades ago. Regardless

of many achievements, modeling of real world phenomena is always burdened by
uncertainties which occur in the selection of a mathematical model, in the values

of input data, in the correctness of computer codes and in the error of numerical
results.

The accent of the present contribution is on the uncertainty in the values of input
data and on its impact on the outputs of mathematical models. In this respect,

we introduce a method of the worst scenario which is suitable even in cases when
information specifying probability distribution of input data is either not available

or is too expensive.

*This work was supported by grant 201/04/1503 from the Czech Science Foundation
and by the Academy of Sciences of the Czech Republic, Institutional Research Plan
No. AV0Z10190503

187



To illustrate the leading idea of the worst scenario method, let us start with

an example. Let us consider the following model of steady heat conduction (state
problem)

div(a(u) gradu) = f in Ω ⊂ � d ,(1)

u = 0 on ∂Ω,

where d 6 3, Ω is a bounded domain with Lipschitz boundary and a(·) is an uncertain
function.

Assume that the function a belongs to a given set Uad of admissible data and that
Uad is compact in the space C(I) of continuous functions on a bounded interval I .
Note that u denotes the temperature and a(u) stands for the conductivity.
Let us choose a criterion-functional (quantity of interest)

Φ(u) =
∫

G

u dx/(measG),

where G is a given small subdomain of Ω.
Assume that for any a ∈ Uad there exists a unique solution u(a) of the state

problem (1). (See [27] for conditions guaranteeing this assumption.) Then we define

the Worst Scenario Problem: find

(2) a0 = argmax
a∈Uad

Φ(u(a)).

2. General abstract scheme of the Worst Scenario Method

A natural generalization of the example reads as follows. Let us consider a mathe-

matical model (equations, differential or integral equation, eigenvalue problem, vari-
ational inequality, etc.), leading to a state problem

P(A; u),

where A stands for input data (coefficients, boundary values, initial values, source

terms, etc.) and u is a state variable.
Assume that

(i) a set Uad of admissible input data is given;
(ii) a criterion-functional Φ(A; u) (quantity of interest) is given;
(iii) for any A ∈ Uad there exists a unique solution u(A) of the state prob-

lem P(A; u).
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Then we define the Worst Scenario Problem: find

(3) A0 = arg max
A∈Uad

Φ(A; u(A)).

In the case of non-uniqueness we replace assumption (iii) and definition (3) as
follows:
(iiia) for any A ∈ Uad there exists a set K(A) of solutions to problem P(A; u).
Then we define

(3a) A0 = arg max
A∈Uad

( max
u∈K(A)

Φ(A; u)).

3. Analysis of the Worst Scenario Method on the continuous level

Assume that the input data belong to a Banach space U and the solution of the
problem P(A, u) is to be found in another Banach space W .

To prove the existence of a solution to problem (3), we have to establish some
continuity of the map A 7→ u(A) and {A; u} 7→ Φ(A; u). Thus, for instance, if

An ∈ Uad, An → A in U as n →∞⇒ u(An) ⇀ u(A) (weakly) in W,(4)

An ∈ Uad, An → A in U & vn ⇀ v (weakly) in W(5)

⇒ lim sup Φ(An, vn) 6 Φ(A, v),

then there exists at least one solution of problem (3) (for detailed proofs for prob-

lems (3) and (3a), see [12] or [25], [30]).

4. Numerical realization and analysis of approximate

Worst Scenario Method

Very often we have no chance to find an exact solution u(A) of the state problem,
so that approximate solutions uh(A) by finite elements, boundary elements, finite
differences, etc., are inevitable. If the input data A involve continuous functions
(like in Example (1)), the set Uad has to be discretized, as well, by sets UM

ad via finite

elements, for instance. We are led to the Approximate Worst Scenario Problem: find

(6) A0
M (h) = argmax

AM∈UM
ad

Φh(AM , uh(AM )).

A typical result of convergence analysis: Under some assumption on uniform conver-
gence of approximations with respect to A ∈ Uad there exists a function ϕ : [0, 1] →
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[0, 1], lim ϕ(h) = 0 as h → 0+, such that given a sequence {A0
M (h)} of solutions to

problem (6), where h → 0+, M → +∞, h 6 ϕ(1/M), there exists a subsequence
{A0

M ′(h′)} such that

A0
M ′(h′) → A0 in U,(7)

uh′(A0
M ′ (h′)) → u(A0) in W,(8)

Φh′(A0
M ′(h′); uh′(A0

M ′ (h′))) → Φ(A0; u(A0)).(9)

In practice, (9) is the most important result.

Since the structure of problem (6) is the same as that of problems in Optimal
Design/Control, efficient algorithms and software are available for the solution of

problem (6). We can employ classical tools of sensitivity analysis, i.e., we compute
grad Ψ(AM ), where Ψ(AM ) := Φh(AM ; uh(AM )), by means of an adjoint problem
(see e.g. [25, Section 25], [10], [33], [36]).

5. Incorporation of Worst Scenario Method into the

fuzzy set theory

In contrast to the concept of a classical set, with sharp distinction between x ∈ B

or x /∈ B, a fuzzy set is related to the degree of truth of the statement “x ∈ X belongs
to B” via a membership function µB : X → [0, 1] (see Fig. 1 and the book [38]).

x

1

Fig. 1. A membership function µB(x).

Since B ≡ Uad is given in the worst scenario method and since µB can also be
interpreted as a weight function, it is convenient to restrict ourselves to µB : B →
[0, 1] in our approach. Consequently, µB(x) > 0 will simply mean that x ∈ B.
A natural question arises: how a fuzzy set of input data propagates into a fuzzy

set of outputs (values of the criterion-functional)? Answers are proposed in [4], [8].
Let us illustrate the approach by a simple example. Assume that A is a single scalar

and let µI(A) be a given membership function of a fuzzy set I ≡ Uad of input data.
We define α-cuts Iα of the set I as (see Fig. 2)

Iα = {A : µI(A) > α}, α ∈ [0, 1];
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Ia

a

Fig. 2. An example of a-cut Ia.

and the Maximum Range Problem: find

A0 = arg max
A∈Uad

Φ(A; u(A)),(10)

A0 = arg min
A∈Uad

Φ(A; u(A)).

Let us solve problem (10) for a sequence U i
ad = Iαi , where α1 = 1, α2 = 0.9, . . .,

α10 = 0.1, α11 = 0. We obtain a sequence of intervals (ranges)

Jαi = [Ψ(Ai
0), Ψ(A0

i )],

where Ψ(A) := Φ(A; u(A)). Then we can construct an approximate membership
function µJ of the fuzzy set J of outputs by the formula

µJ(Ψ(A)) = max
i611

min{αi, χ(Jαi ; Ψ(A))},

where χ(Jαi ; ·) denotes the characteristic function of Jαi (see Fig. 3).

6. History of the worst scenario method

It seems that the first publication involving the Worst Scenario Method was the
paper [5] by Bulgakov. Fifty years later, a monograph [3] by Ben-Haim and I. Eli-

shakoff appeared, which contains the concept of the Worst Scenario Method with
convex sets Uad and numerous examples.

Other terms used for the Worst Scenario Method are: unknown but bounded
uncertainty approach; guaranteed performance approach; anti-optimization. Theory

of interval matrices in linear algebra has been employed to solve the worst scenario
problems from economics or structural mechanics.

At a suggestion of Professor Ivo Babuška, who initiated and published numer-
ous papers on uncertainties in mathematical modeling, on stochastic differential

191



J(1)

J(.9)

0.9
1

Fig. 3. Construction of approximate membership function of the fuzzy set of outputs.

equations and on validation and verification (cf. the literature and Appendix in

the book [25]), I studied the Worst Scenario Method from a general abstract view-
point [12].

The Worst Scenario Method was used in the book [2] by Y. Ben-Haim as a tool

for prediction and decision in practice.

A variety of information about approaches to uncertainty and numerous applica-
tions can be found in the book [25].

7. A survey of applications during 1996–2006

We display a series of branches of science and technology where the Worst Scenario
Method has been applied during the last decade.

• Linear elliptic PDE :
[1] uncertain coefficients;

• Quasilinear elliptic boundary value problems (like example (1)):
[12], [13], [6], [7]—uncertain coefficients and source terms;

[32] uncertain boundary condition;

• Parabolic problems :
[14] uncertain time-dependent coefficients in PDE;

[34] uncertain coefficients and uncertain obstacle in a variational inequality;
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• Elastic beams—Timoshenko model :
[24] transverse vibrations, uncertain shear correction factor;
[22] buckling, elastic foundation with uncertain stiffness and shear correction

factor;

• Thermoelastic beams—coupled model :
[37] uncertain coupling coefficient;

• Elastic pseudoplates :
[26] unilateral boundary value problems, uncertain loads, stiffness of the uni-

lateral foundation, slip limits on the boundary;

• Elastic plates—linear theory :
[23] classical boundary value problems, uncertain material coefficients and load-

ing;

• Buckling of elastic plates—von Kármán model :
[21] uncertain initial geometric imperfections;

• Shallow elastic shells :
[28] semi-coercive variational inequalities, general abstract result, applications

with uncertain coefficients, loads, slip limits;

• Unilateral contact with friction of elastic bodies :
[16] Signorini problem with given friction, uncertain Lamé coefficients, slip

limit;

[30] Coulomb friction model, non-uniqueness, uncertain coefficients;
[29] quasi-coupled thermoelasticity, uncertain conductivity, stress-strain law,

loading, slip limits;

• Hencky’s model of plasticity :
[15] Timoshenko beam, uncertain yield function;

[17] torsion problem, uncertain stress-strain law and yield function;

• Deformation theory of plasticity :
[11] monotone operator theory, uncertain material function;

• Perfect plasticity :
[18] Prandtl-Reuss model 3D-orthotropic, uncertain stress-strain law and yield

function;

• Plasticity with isotropic hardening :
[19] 3D-body, uncertain stress-strain law, yield function, initial hardening;
[20] 3D-body, formulation in strain space, uncertain stress-strain law, initial

hardening and loading;

• Plasticity with combined linear kinematic and isotropic hardening :
[25] Section 21, 3D-body, uncertain coefficients;
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• Validation of 3 elasto-plastic models :
[31] (i) perfect plasticity, (ii) isotropic hardening, (iii) kinematic hardening

models are computed with uncertain moduli E, ν, yield stress;

• Clinical biochemistry :
[9] uncertain parameters and measurements reading;

• Homogenization of elliptic boundary value problems :
[35] problems in

� N , uncertain periodic coefficients.

8. Conclusions

The worst scenario and maximum range methods are applicable even in cases when

information specifying the probability distribution or the membership function of the
input data are either not available or too expensive.

The structure of the worst scenario problem is the same as that in problems of
Optimal Design/Control. As a consequence, efficient algorithms are available.

The Worst Scenario Method can be incorporated in the fuzzy set theory or in the
probabilistic approach as a building brick.
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