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Abstract. In this work we derive a pair of nonlinear eigenvalue problems corresponding
to the one-band effective Hamiltonian accounting for the spin-orbit interaction governing
the electronic states of a quantum dot. We show that the pair of nonlinear problems
allows for the minmax characterization of its eigenvalues under certain conditions which
are satisfied for our example of a cylindrical quantum dot and the common InAs/GaAs
heterojunction. Exploiting the minmax property we devise an efficient iterative projection
method simultaneously handling the pair of nonlinear problems and thereby saving about
25% of the computation time as compared to the Nonlinear Arnoldi method applied to
each of the problems separately.
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1. Introduction

The recent technological progress made the spin of the electron more than only a
theoretical property. The new type of electronic devices utilizes the spin of an elec-

tron along with its charge. This development makes it necessary to incorporate the
spin effects into the mathematical models, and in fact spin-orbit interaction has been

found to significantly affect the electronic states of various quantum structures and
semiconductor nanostructures. The latter have been an object of intensive research

in the past few years because of their unique physical properties and their potential
for applications in micro-, optoelectronic and only recently also spintronics devices.

In semiconductor nanostructures, the free carriers are confined to a small region of
space by potential barriers, and if the size of this region is less than the electron
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wavelength, the electronic states become quantized at discrete energy levels. The

ultimate limit of low dimensional structures is the quantum dot, in which the free
carriers are confined in all three directions of space. Such an energy quantization is
an intrinsic property of an atom, which makes the quantum dot an interesting model

for investigating the properties of systems at the atomic level.

Modeling quantum dots by the one-band Hamiltonian with nonparabolic effective
mass approximation including the spin-orbit interaction one arrives at a stationary

Schrödinger equation which is nonlinear with respect to the eigenvalue parameter.
It can be further transformed into a form where the spin dependence only dwells

in the boundary conditions [6], [14] resulting in two Schrödinger equations which
differ only on the interface conditions between the quantum dot and the surrounding

bulk material. Numerical experiments demonstrating the influence of the spin-orbit
splitting on the relevant energy levels for rotationally symmetric quantum dots are

contained in [9], [10], [15], [16], [17], where the Schrödinger equations are discretized
by finite differences, and the resulting nonlinear eigenproblem is solved by the full

approximation method.

In this paper we propose to include the interface contribution corresponding to the

spin dependent interface condition directly into the nonlinear eigenvalue problem in
variational formulation. This leads to a pair of nonlinear eigenvalue problems. We

derive a sufficient condition for the physically relevant eigenvalues of both the prob-
lems to satisfy the minmax principle [21]. This condition holds for the InAs/GaAs

heterojunction in our example. Exploiting the minmax property we develop an
efficient iterative method which simultaneously handles the pair of the nonlinear

problems considerably reducing the overall computational time.

Our paper is organized as follows. In Section 2 we introduce the one band effec-

tive Hamiltonian with spin-orbit interaction which models the electronic behavior of
quantum dots. The derivation of the corresponding pair of rational eigenvalue prob-

lems and their analysis is provided in Section 3. Discretization by a Galerkin method
yields in both cases a sparse rational matrix eigenvalue problem. Section 4 briefly

describes the iterative projection method introduced already in [20] and asserts its
scope of application. Further, the solution of the projected rational eigenproblems by

safeguarded iteration is expounded in detail. Section 5 demonstrates the efficiency
of our method on a numerical example, and it describes how the iterative projection

methods can be modified to simultaneously handle the pair of nonlinear eigenvalue
problems. The conclusions and some ideas for future research are summarized in the

last section.
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2. One-band effective Hamiltonian with spin-orbit interaction

We consider the one-band effective Hamiltonian for electrons in the conduction
band [8], [11]

(2.1) H = H0 +Hso.

In equation (2.1) H0 denotes the Hamiltonian without the spin-orbit interaction,

(2.2) H0 = − h̄
2

2
∇ ·

( 1
m(λ, x)

∇
)

+ V (x),

where h̄ is the reduced Planck constant, m(λ, x) is the position and energy dependent
electron effective mass, V is the confinement potential, and ∇ denotes the spatial
gradient. Assuming nonparabolicity for the electron’s dispersion relation, the elec-
tron effective mass m(λ, x) is constant on the dot Ωq and on the surrounding bulk

material Ωb for every fixed energy level λ, and is taken as [2], [5]

(2.3)
1

mj(λ)
:=

1
m(λ, x)

∣∣∣
x∈Ωj

=
P 2

j

h̄2

( 2
λ+Eg,j − Vj

+
1

λ+Eg,j − Vj + ∆j

)

for j ∈ {b, q}. Here the confinement potential Vj := V |Ωj is piecewise constant, and
Pj , Eg,j and ∆j are the momentum matrix element, the band gap, and the spin-

orbit splitting in the valence band for the quantum dot (j = q) and the bulk material
(j = b) called a matrix, respectively.
The spin-orbit interaction in equation (2.1) is described by [6], [14]

(2.4) Hso = i∇α(λ, x) · [σ ×∇],

where σ is the vector of Pauli matrices and α(λ, x) is the spin-coupling parameter

αj(λ) := α(λ, x)|x∈Ωj(2.5)

=
P 2

j

2

( 1
λ+Eg,j − Vj

− 1
λ+Eg,j + ∆j − Vj

)
, j ∈ {b, q}

with the materials parameters defined above. Analogously to the effective mass, for
a fixed energy level λ, α(λ, x) is a piecewise constant function.
From now on for the sake of simplicity we focus on a cylindrical quantum dot, but

the ideas presented herein are applicable to dots of arbitrary shapes. We consider

a cylindrical quantum dot of radius Rq and height Zq centrally embedded into a
cylindrical matrix of radius Rb and height Zb (see Fig. 2.1). To determine the
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Figure 2.1. Cylindrical quantum dot centrally embedded into a cylindrical matrix.

relevant energy states and the corresponding wave functions Φ we have to solve the
governing stationary Schrödinger equation in cylindrical coordinates (r, θ, z):

(2.6)
−h̄2

2mj(λ)

[1
r

∂

∂r

(
r
∂Φ
∂r

)
+

1
r2
∂2Φ
∂θ2

+
∂2Φ
∂z2

]
+ VjΦ = λΦ, j ∈ {b, q}.

In the modeling of quantum dots the knowledge of the positive eigenvalues smaller

than the confinement potential is the key issue. These are also called the confined
states since the corresponding wave functions mainly live on the quantum dot and

rapidly decay outside of the dot. Thus it is reasonable to assume homogeneous
Dirichlet conditions Φ = 0 on the outer boundary of the matrix.
On the interface ∂Ωint between the dot and the matrix the electron wave function Φ

is continuous, and the spin-dependent Ben Daniel-Duke boundary condition

(2.7)
{ h̄2

2m(λ, x)
− iα(λ, x)[σ ×∇]

}
n̄
Φ(x) = const, x ∈ ∂Ωint

is satisfied [10].
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Due to the rotational symmetry of the problem we make the following ansatz for

the solution:

(2.8) Φ(r, θ, z) = ϕ(r, z)ψ(θ),

and separating the variables we obtain two independent equations

h̄2

2mj(λ)

[ ∂
∂r

(
−r ∂ϕ(r, z)

∂r

)
− r

∂2ϕ(r, z)
∂z2

+
l2

r
ϕ(r, z)

]
+ r(Vj − λ)ϕ(r, z) = 0,(2.9)

∂2ψ(θ)
∂θ2

+ l2ψ(θ) = 0.(2.10)

The solution of the latter equation (2.10) is well known to be a plane wave

(2.11) ψl(θ) = eilθ, l = 0,±1,±2, . . .

while the first equation is a nonlinear eigenvalue problem in the plane defined by r
and z.

On the outer boundary of the matrix ∂Ωb homogeneous Dirichlet conditions are
inherited from the three dimensional problem. On the rotational axis ∂Ω2

rot we

assume for continuity reasons homogeneous Neumann conditions ∂ϕ/∂r = 0 for
l = 0 and homogeneous Dirichlet conditions ϕ = 0 for l 6= 0. On the interface ∂Ωint

we obtain from (2.7)

1
mb

∂ϕ(r, z)
∂z

∣∣∣
z=±Zq/2

− 1
mq

∂ϕ(r, z)
∂z

∣∣∣
z=±Zq/2

= 0, r 6 Rq,(2.12)

1
mb

∂ϕ(r, z)
∂r

∣∣∣
r=Rq

− 1
mq

∂ϕ(r, z)
∂r

∣∣∣
r=Rq

+
2σz(αb − αq)

h̄2

l

Rq
ϕ(Rq , z) = 0, |z| 6 Zq

where σz = ±1 is the third component of the vector of Pauli matrices σ in cylindrical
coordinates. Since the latter equation depends exclusively on lσz we end up with

two distinguished cases, ±|lσz|.
The eigenvalues of the three dimensional problem (2.6) are the ordered eigenvalues

of the series of the two dimensional problems (2.9) for σz |l| = 0,±1,±2, . . . and the
eigenfunctions are

Φ(r, θ, z) = ϕl(r, z)eilθ,

where ϕl(r, z) is the corresponding eigenfunction of the plane problem. The spin
dependent boundary conditions (2.12) result in a pair of Schrödinger equations to

solve for each |l| 6= 0 which differ only in the interface condition.
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3. Variational characterization of eigenvalues

We already pointed out that the eigenvalues of physical relevance are the ones
not exceeding the confinement potential. We gage the potential to Vq = 0 and
characterize the eigenvalues of the Schrödinger equation in the interval J = (0, Vb)
as minmax values of Rayleigh functionals. To this end we rewrite it in variational

form.
Let Ω := (0, Rb)×(−Zb/2, Zb/2), Ωq := (0, Rq)×(−Zq/2, Zq/2), Ωb := Ω\Ωq . For

l = 0 where the interface conditions (2.12) do not depend on the spin-orbit splitting
it is appropriate to describe the problem in the weighted spaces

H := {ϕ : r|∇ϕ|2 ∈ L1(Ω), ϕ(r,±Zb/2) = 0, 0 6 r 6 Rb,

ϕ(Rb, z) = 0, −Zb/2 6 z 6 Zb/2}

with a scalar product 〈ϕ, ψ〉H :=
∫
Ω r∇ϕ · ∇ψ d(r, z), and W := {ϕ : rϕ2 ∈ L1(Ω)}

with 〈ϕ, ψ〉W :=
∫
Ω
rϕψ d(r, z). Then H is compactly embedded in W (cf. [13,

Thm. 7.13]).
Multiplying equation (2.9) by ψ ∈ H and integrating by parts, we obtain the

variational form of the Schrödinger equation for l = 0:
Find ϕ ∈ H , ϕ 6= 0 and λ ∈ J such that

a0(ϕ, ψ;λ) :=
h̄2

2mq(λ)

∫

Ωq

r∇ϕ · ∇ψ d(r, z)(3.1)

+
h̄2

2mb(λ)

∫

Ωb

r∇ϕ · ∇ψ d(r, z) + Vb

∫

Ωb

rϕψ d(r, z)

= λ

∫

Ω

rϕψ d(r, z) =: λb(ϕ, ψ) for every ψ ∈ H.

We assume that Eg,j −Vj > 0 for j ∈ {b, q}. Then the functions λ 7→ 1/mj(λ) are
defined for λ > 0, and are positive and monotonically decreasing.
The quadratic form b(·, ·) obviously is bilinear, positive, and bounded on W , and

a0(·, ·;λ) is symmetric and bounded (cf. Thm. 1.14 in [13]) on H for every fixed
λ ∈ J , and from

a0(ϕ, ϕ;λ) > min
( h̄2

2mq(Vb)
,

h̄2

2mb(Vb)

)∫

Ω

r|∇ϕ|2 d(r, z)

it follows that a0(·, ·) is H-elliptic. Hence, if we fix λ on the left-hand side of (3.1)
then the linear eigenproblem

Find µ and ϕ ∈ H, ϕ 6= 0 with a0(ϕ, ψ;λ) = µb(ϕ, ψ) for every ψ ∈ H
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has a countable set of eigenvalues 0 < µ0
1 6 µ0

2 6 . . . which can be characterized as

minmax values of its Rayleigh quotient (cf. [1]):

µ0
j = min

dimV =j
max

ϕ∈H, ϕ6=0

a0(ϕ, ϕ;λ)
b(ϕ, ϕ)

.

For l 6= 0 the following setting is appropriate. Let H be the weighted Sobolev
space

H = H1
0 (Ω, r, 1/r) := {ϕ : r|∇ϕ|2 ∈ L1(Ω),

1
r
ϕ2 ∈ L1(Ω), ϕ = 0 on ∂Ω}

with a scalar product

〈ϕ, ψ〉 :=
∫

Ω

(
r∇ϕ · ∇ψ +

1
r
ϕψ

)
d(r, z)

and set W as before. Then by [13, Thm. 18.12 and Exmpl. 18.15], H is compactly
embedded in W . The variational form of (2.9), (2.12) reads

Find ϕ ∈ H , ϕ 6= 0 and λ ∈ J such that

a±(ϕ, ψ;λ) :=
h̄2

2mq(λ)

∫

Ωq

(
r∇ϕ · ∇ψ +

l2

r
ϕψ

)
d(r, z)(3.2)

+
h̄2

2mb(λ)

∫

Ωb

(
r∇ϕ · ∇ψ +

l2

r
ϕψ

)
d(r, z)

+ Vb

∫

Ωb

rϕψ d(r, z)± |l|β(λ)
∫ Zq/2

−Zq/2

ϕ(Rq , z)ψ(Rq, z) dz

= λ

∫

Ω

rϕψ d(r, z) =: λb(ϕ, ψ) for every ψ ∈ H,

where β(λ) = αq(λ)− αb(λ).
The following lemma contains a sufficient condition for a±(·, ·;λ) to be H-elliptic

such that the linear eigenvalue problem

(3.3) Find µ and ϕ ∈ H, ϕ 6= 0 with a±(ϕ, ψ;λ) = µb(ϕ, ψ) for every ψ ∈ H

has a countable set of eigenvalues which can be characterized by the minmax principle
of Poincaré.
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Lemma 3.1. Let κmin be the minimal eigenvalue of the Steklov type eigenvalue

problem

c(ϕ, ψ) :=
∫

Ω

(r∇ϕ · ∇ψ +
l2

r
ϕψ) d(r, z)(3.4)

= κ

∫ Zq/2

−Zq/2

ϕ(Rq , z)ψ(Rq, z) dz for every ψ ∈ H.

If

(3.5) min
{ h̄2

2mq(λ)
,

h̄2

2mb(λ)

}
>
|lβ(λ)|
κmin

for every λ ∈ J,

then a±(·, ·;λ) is H-elliptic for every fixed λ ∈ J .
���������

. For ϕ ∈ H we have

a±(ϕ, ϕ;λ) > min
{ h̄2

2mq(λ)
,

h̄2

2mb(λ)

}
c(ϕ, ϕ)− |lβ(λ)|

∫ Zq/2

−Zq/2

ϕ(Rq , z)2 dz

>
(
min

{ h̄2

2mq(λ)
,

h̄2

2mb(λ)

}
− |lβ(λ)|

κmin

)
c(ϕ, ϕ)

> 1
l2

(
min

{ h̄2

2mq(λ)
,

h̄2

2mb(λ)

}
− |lβ(λ)|

κmin

)
‖ϕ‖2.

�

The variational characterizations for a linear eigenproblem a(ϕ, ψ) = λb(ϕ, ψ) em-
ploy the Rayleigh quotient R(ϕ) := a(ϕ, ϕ)/b(ϕ, ϕ) which is the unique solution of
the real equation F (λ;ϕ) = λb(ϕ, ϕ) − a(ϕ, ϕ). More generally, a variational char-
acterization of real eigenvalues of a nonlinear eigenvalue problem like (3.1) or (3.2)

requires the existence of a Rayleigh functional, which is a solution of the correspond-
ing equation

(3.6) f�(λ;ϕ) := λb(ϕ, ϕ) − a�(ϕ, ϕ;λ) = 0, � ∈ {0,+,−}.

We observe that f0(·, ϕ) is monotonically increasing, and f0(0, ϕ) = −a0(ϕ, ϕ; 0) < 0
for every ϕ 6= 0. Hence, f0(·, ϕ) = 0 has at most one solution, and therefore defines
a Rayleigh functional p0 on a subset D0 of H .

The following lemma contains a sufficient condition for the existence of Rayleigh

functionals for the cases � ∈ {+,−}.
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Lemma 3.2. Assume that the conditions of Lemma 3.1 hold, and

(3.7) − h̄
2

2
max

(( 1
mq(λ)

)′
,
( 1
mb(λ)

)′)
> |lβ′(λ)|

κmin
for every λ ∈ J

where κmin denotes the minimal eigenvalue of the Steklov type eigenvalue prob-

lem (3.4).

Then for every ϕ ∈ H , ϕ 6= 0 each of the real equations

f±(λ;ϕ) := λb(ϕ, ϕ)− a±(ϕ, ϕ;λ) = 0

has at most one solution p±(ϕ) ∈ J .
���������

. We prove that f±(0, ϕ) < 0 and ∂
∂λf±(λ, ϕ) > 0 for every ϕ ∈ H , ϕ 6= 0

and every λ ∈ J .
First, f±(0, ϕ) = −a±(ϕ, ϕ; 0) < 0 follows immediately from the ellipticity of

a±(·, ·; 0). Second,

∂

∂λ
f±(λ;ϕ) =

∫

Ω

rϕ2 d(r, z)−
( h̄2

2mq(λ)

)′ ∫

Ωq

(
r|∇ϕ|2 +

l2

r
ϕ2

)
d(r, z)

−
( h̄2

2mb(λ)

)′ ∫

Ωb

(
r|∇ϕ|2 +

l2

r
ϕ2

)
d(r, z)

± |lβ′(λ)|
∫ Zq/2

−Zq/2

ϕ(Rq , z)2 dz

> min
{
−

( h̄2

2mq(λ)

)′
,−

( h̄2

2mb(λ)

)′}
c(ϕ, ϕ)

− |lβ′(λ)|
∫ Zq/2

−Zq/2

ϕ(Rq , z)2 dz

>
(

min
{
−

( h̄2

2mq(λ)

)′
,−

( h̄2

2mb(λ)

)′}
− |lβ′(λ)|

κmin

)
c(ϕ, ϕ) > 0.

�

Under the conditions of Lemma 3.2, for each of the eigenvalue problems in (3.1)
and (3.2) a Rayleigh functional

p� : H ⊃ D� → J

is defined. The general conditions of the minmax theory for nonlinear eigenvalue

problems in [21] are satisfied, and Theorems 2.1 and 2.9 of [21] imply the following
characterization of eigenvalues of (3.1) and (3.2) in the interval J .
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Theorem 3.3. Assume that the conditions of Lemma 3.2 are satisfied. Then
each of the three Schrödinger equations in (3.1) and (3.2) has a finite number of
eigenvalues in J , and

(i) the kth smallest eigenvalue can be characterized by

(3.8) λ�k = min
dimV =k, V ∩D� 6=∅

max
ϕ∈V ∩D�

p�(ϕ);

(ii) the minimum in (3.8) is attained for the subspace which is spanned by the

eigenelements corresponding to the k smallest eigenvalues of the linear eigen-

problem

a�(ϕ, ψ, λ�k) = µb(ϕ, ψ) for every ψ ∈ H.

Discretizing the Schrödinger equations by a Galerkin method (finite elements, e.g.)

one gets rational matrix eigenvalue problems

(3.9) S�(λ)x := λMx− h̄2

2mq(λ)
Kqx−

h̄2

2mb(λ)
Kbx−Mbx± |l|β(λ)Dx = 0,

where for j ∈ {b, q}

Kj =
(∫

Ωj

r∇ϕk · ∇ϕn +
l2

r
ϕkϕn d(r, z)

)

k,n

,

D =
(∫ Zq/2

−Zq/2

ϕk(Rq , z)ϕn(Rq , z) dz
)

k,n

,

M =
(∫

Ω

rϕkϕn d(r, z)
)

k,n

,

and

Mb = Vb

(∫

Ωb

rϕkϕn d(r, z)
)

k,n

,

and ϕi denotes a basis of the ansatz space.
It is obvious that for the discretized problem (3.9) discrete versions of the con-

ditions of Lemma 3.2 are sufficient for the existence of Rayleigh functionals q� cor-
responding to S� on the interval J , and that the eigenvalues of S� in J are min-

max values of q�. Moreover, it follows from the minmax characterization that the
kth smallest eigenvalue of S� is an upper bound of the corresponding eigenvalue

of (3.1) and (3.2).
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4. Solving the discretized problem

In this section we consider the problem to compute a few eigenvalues and the

corresponding eigenvectors at the lower end of the spectrum of the discretization (3.9)
of the Schrödinger equation. Since the methods apply to all three problems S�(λ)x =
0 we omit the subscript in this section.
For linear sparse eigenproblems S(λ) = λB − A very efficient methods are the

iterative projection methods like the Lanczos, the Arnoldi, and the Jacobi-Davidson
method, e.g., where approximations to the wanted eigenvalues and eigenvectors are
obtained from projections of the eigenproblem to subspaces of small dimension which

are expanded in the course of the algorithm.
Let V ∈ � n×k be an (orthonormal) basis of the current search space V ⊂ � n ,

assume that (θ, y), y ∈ � k is an eigenpair of the projected eigenvalue problem

(4.1) V TS(λ)V y = 0,

and denote by x := V y the corresponding Ritz vector. To obtain an improved

approximation it is reasonable to expand V by a direction with a high approximation
potential for the eigenvector wanted next.

There are two approaches in literature for expanding the search space, both ap-
proximating the inverse iteration: a Jacobi-Davidson type method [4] and the Arnoldi

method [19] based on the residual inverse iteration. Here we restrict ourselves to the
latter.

Residual inverse iteration (introduced by Neumaier [12]) suggests the expansion

(4.2) v = S(σ)−1S(θ)x

of the search space V , where σ is a fixed parameter close to the wanted eigenvalues.
For a linear eigenproblem S(λ) = A−λB this is exactly the Cayley transformation

with pole σ and zero θ, and since (A−σB)−1(A−θB) = I+(σ−θ)(A−σB)−1B and
the Krylov spaces are shift-invariant the resulting projection method expanding V
by v is nothing else but the shift-and-invert Arnoldi method.
If the linear system S(σ)v = S(θ)x is too expensive to solve for v we may choose

as a new direction v = K−1S(θ)x with K ≈ S(σ), and for the linear problem we
obtain an inexact Cayley transformation or a preconditioned Arnoldi method. The

resulting iterative projection method given in Algorithm 1 is therefore called the
nonlinear Arnoldi method, although no Krylov space is constructed and no Arnoldi

recursion holds.
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Algorithm 1. Nonlinear Arnoldi Method
1: start with an initial pole σ and an initial orthonormal basis V , V TV = I

2: determine preconditioner K ≈ S(σ), σ close to the smallest eigenvalue
3: k = 1
4: while k 6 number of wanted eigenvalues do
5: compute the kth smallest eigenvalue µ and the corresponding normalized

eigenvector y of the projected problem V TS(µ)V y = 0
6: determine Ritz vector u = V y and residual r = S(µ)u
7: if ‖r‖ < ε then

8: accept eigenvalue λk = µ, and eigenvector xk = u,

9: choose new pole σ and update preconditioner K ≈ S(σ) if indicated
10: restart if necessary

11: k = k + 1
12: end if

13: solve Kv = r for v

14: v = v − V V T v, ṽ = v/‖v‖, V = [V, ṽ]
15: reorthogonalize if necessary

16: end while

There are many details that have to be considered when implementing the non-

linear Arnoldi method concerning the choice of the initial basis, when and how to
update the preconditioner, and how to restart the method. A detailed discussion is

given in [19].

A crucial point in iterative projection methods for general nonlinear eigenvalue
problems when approximating more than one eigenvalue is to inhibit the method
from converging to the same eigenvalue repeatedly. For linear eigenvalue problems

this is easy to do by using Schur forms or generalized Schur forms for the projected
problem and then locking or purging certain eigenvectors. For nonlinear problems,

however, such normal forms do not exist and this presents one of the most difficult
tasks in achieving good convergence.

For symmetric nonlinear eigenproblems satisfying a minmax characterization, how-

ever, its eigenvalues can be computed safely one after the other. The minimum
in (3.8) is attained by the invariant subspace of S(λk) corresponding to the k largest
eigenvalues, and the maximum by every eigenvector corresponding to the eigen-
value 0. This suggests the safeguarded iteration for computing the kth small-
est eigenvalue which is presented in Algorithm 2 for the projected eigenproblem
P (λ)y := V TS(λ)V y = 0:
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Algorithm 2. Safeguarded iteration
1: Start with an approximation µ1 to the kth smallest eigenvalue of P (λ)y = 0
2: for l = 1, 2, . . . until convergence do
3: determine an eigenvector u corresponding to the kth largest eigenvalue of the

matrix P (µl)
4: evaluate µl+1 = p(u), i.e. solve uTP (µl+1)u = 0 for µl+1

5: end for

The safeguarded iteration has the following convergence properties [18]: It con-
verges globally to the smallest eigenvalue λ1. The (local) convergence to simple

eigenvalues is quadratic. If P ′(λ) is positive definite, and u in Step 3 of Algorithm 2
is replaced by an eigenvector of P (µl)u = µP ′(µl)u corresponding to the kth largest
eigenvalue, then the convergence is even cubic. Moreover, a variant exists which is
globally convergent also for higher eigenvalues.

5. Numerical experiments

We consider a cylindrical InAs quantum dot of radius 5 nm and height 9 nm cen-

trally embedded into a GaAs cylindrical matrix of radius 10 nm and height 13.5 nm
and we assume the one-band effective Hamiltonian with spin-orbit interaction (2.1).

Following [10] we use the semiconductor band structure parameters Pq = 0.7509,
Eg,q = 0.42, ∆q = 0.48, and Vq = 0 for InAs, and Pb = 0.7848, Eg,b = 1.52,
∆b = 0.34, and Vb = 0.77 for GaAs.
Problems of this type have been computationally treated by Li, Voskoboynikov,

Lee, Liu, Sze and Tretyak in [9], [10], [17] using the so called Full Approximation
Method, where each eigenvalue is targeted separately and where each iteration step
requires the solution of a linear eigenproblem. Hence, for reasonably fine discretiza-

tions S�(λ)x = 0 this method is much too expensive.
Using FEMLAB [7] we discretized the Schrödinger equations by the finite element

method with quadratic Lagrangian elements on a triangular grid. The matrix D
in (3.9) corresponding to the interface integrals was directly computed from the mesh

data, which can be extracted from the FEMLAB model. The physically interesting
energy levels are the ones which are confined to the dot. Since the envelope functions

are mainly concentrated on the quantum dot and since they decay very rapidly
outside the dot, we chose a non-uniform grid which is the finest on the dot-matrix

interface, fine on the dot and quite coarse on the matrix.

All the computations were performed under MATLAB 7.1.0 on an Intel Pentium D
processor with 4GByte RAM and 3.2GHz. As a preconditioner for the iterative
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projection methods we used the incomplete LU decomposition with threshold 0.01
of S±(0.1) but without the splitting term. We initialized the methods with a constant
vector on Ωq ∪ Ωb which is far away from an eigenvector, and we terminated the
iteration for an eigenvalue provided the residual norm was less than 10−6.

To guarantee the nonlinear Arnoldi method to work we need to fulfil condi-

tions (3.5) and (3.7) for the discrete problem S±, where κmin is the smallest eigenvalue
of the corresponding discretized Steklov type problem

(5.1) Kx = κDx,

where K depends on l.

The minimal eigenvalues of the Steklov type problem (5.1) are displayed in Tab. 5.1

for |l| = 1, 2, 3. For |l| > 4 no confined states of the one-band Hamiltonian (2.1) exist.
Condition (3.5) is equivalent to

κmin >
|lβ(λ)|

min
{

h̄2

2mq(λ) ,
h̄2

2mb(λ)

} for every λ ∈ J,

and since λ → 1/mj(λ), j ∈ {b, q} are monotonically decreasing functions and
|β(λ)| is monotonic,

(5.2) κmin >
|l|max{|β(0)|, |β(Vb)|}
min

{
h̄2

2mq(Vb)
, h̄2

2mb(Vb)

} ,

is sufficient for (3.5). Tab. 5.1 demonstrates that (5.2) is satisfied for all relevant l.

|l| 1 2 3
κmin 3.5189 4.976 6.6932
RHS 0.40411 0.80821 1.2123

Table 5.1. Minimal eigenvalues of (5.1) for |l| = 1, 2, 3.

Fig. 5.1 shows that (3.7) is also satisfied for |l| = 1, 2, 3 in the interval of interest
J = (0, Vb).
Tab. 5.2 displays all confined states of the problems S� where we used a dis-

cretization with about 70000 degrees of freedom. The high dimension of the problem
is necessary in order to guarantee correct capturing of the spin-orbit effect which

is of the order of meV. Column 4 shows the CPU times needed for solving S0, and
S+, S− for |l| = 1, 2, 3 by the nonlinear Arnoldi method. The CPU times are given
for every individual eigenvalue, though the eigenvalues of each plane problem S� for
fixed l are computed in one run.
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Figure 5.1. Condition (3.7) for |l| = 1, 2, 3 in the interval J = (0, Vb).

±|l| local order λ time [s] time [s] (simultaneous)
0 1 0.2341 29.5

−1 1 0.4000 33.7 16.5
0 2 0.4029 37.1
1 1 0.4031 34.5 33.2

−1 2 0.5382 37.9 16.8
1 2 0.5402 37.7 29.9

−2 1 0.5725 33.7 13.0
2 1 0.5784 34.0 33.4
0 3 0.6195 30.3
0 4 0.6255 29.1

−2 2 0.6885 33.4 19.4
2 2 0.6927 32.0 32.8

−1 3 0.7285 27.3 11.0
1 3 0.7296 27.3 25.3
0 5 0.7345 26.1

−3 1 0.7453 36.6 9.6
3 1 0.7531 36.5 36.2

Table 5.2. Confined states of a cylindrical quantum dot of radius 5 nm and height 9 nm
and the CPU times for their simultaneous and separate computation for a given
eigenvalue.

The physical background of the pair of the nonlinear eigenvalue problems S± is
the energy level splitting in the internal magnetic field, which suggests that they

are strongly correlated. This is reflected by the mathematical model, since the pair
differs only by an interface contribution, which for a discrete problem corresponds

to a low rank matrix. Because of the local nature of this contribution it is justified
to expect the eigensubspaces of both the problems to be close to each other. Indeed,
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if X l
− and X

l
+ denote the subspaces spanned by the eigenvectors corresponding to

the three smallest eigenvalues of S− and S+ for l = 1, 2, 3, respectively, then the
singular values of the matrix [X l

−, X
l
+] for l = 1, 2, 3 show a clear gap between the

largest three singular values and the remaining ones (cf. Tab. 5.3), which indicates

an overlap of the eigenspaces spanned by X l
− and X

l
+.

|l| σ1 σ2 σ3 σ4 σ5 σ6

1 1.6975 1.4142 1.0575 0.0063532 0.0063432 0.0027425
2 1.6125 1.4142 1.1831 0.0091780 0.0089219 0.0038084
3 1.5575 1.4142 1.2547 0.0095062 0.0087885 0.0042112

Table 5.3. Singular values of [X l
−, Xl

+], for l = 1, 2, 3.

This experiment suggests that the solution of one problem can benefit from the

solution of the other one, and leads us to the following approach. We apply an
iterative projection method, such as described in the last section, to the pair of

problems S±(λ)x = 0 simultaneously in such a way that they both use the same
search subspace V .

Figure 5.2. Convergence of the nonlinear Arnoldi method for S−, l = 1 (left), and of the
simultaneous computation for problems S±, l = 1 (right).

The left subplot in Fig. 5.2 shows the convergence history of the nonlinear Arnoldi
method for S− and l = 1 (where we computed one more eigenvalue than required
since we do not know a priori the number of confined states). For S+ the picture
looks very similar. We solved the problems S+ and S− for fixed l = 1, 2, 3 simulta-
neously, i.e. after having found λ+

k the Arnoldi method aimed at λ
−
k , and thereafter

at λ+
k+1, etc. The convergence history for l = 1 is shown in the right subplot of

Fig. 5.2. It demonstrates that the computation of λ−k requires less iterations than
the computation of λ+

k . The last column of Tab. 5.2 shows that the total computing
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time is reduced by approximately 25% by this simultaneous computation of confined

states.

The same approach can also be used with the Jacobi Davidson subspace expansion.
In [3] we compared the robustness of the Jacobi Davidson and nonlinear Arnoldi

subspace expansion subject to the quality of the preconditioner. We found that
the Jacobi Davidson subspace expansion is favorable if the size of the problem does

not allow for a good quality preconditioner. Otherwise the residual inverse type
expansion as in nonlinear Arnoldi is more efficient. In this work we focused on

the latter since for two dimensional problems a good quality preconditioner can be
obtained inexpensively.

6. Conclusions

We directly included the spin-orbit interaction into the one-band Hamiltonian

with nonparabolic effective mass in weak form, which results in a pair of rational
eigenproblems. We derived a minmax characterization of its eigenvalues allowing

to compute the confined states efficiently by an iterative projection method like the
nonlinear Arnoldi or the Jacobi-Davidson method. Handling a pair of problems with

opposite spin simultaneously the CPU time can be further reduced by approximately
25%. We plan to extend the ideas presented in this work to problems where the

energy level splitting originates from the external magnetic field.
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