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Abstract. In one if his paper Luo transformed the problem of sum-fuzzy rationality
into artificial learning procedure and gave an algorithm which used the learning rule of
perception. This paper extends the Luo method for finding a sum-fuzzy implementation
of a choice function and offers an algorithm based on the artificial learning procedure with
fixed fraction. We also present a concrete example which uses this algorithm.
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1. Introduction

The choice theory is of great interest in many problems of practice. Those who
have contributed essentially to the development of the theory of choice functions

were the economists. There is a large number of classical choice functions proposed
in literature.

The concept of rationality of a choice function was introduced by Richter [7]. If

we consider a set X and a set P (X) of nonempty subsets of X , the choice function
represents a mechanism which indicates choice sets for a given preference relation R

over a set of alternatives.

Human thinking and preferences are inherently imprecise. Their vague character

is modelled by fuzzy theory. The first who pointed out the importance of fuzzy
preference relations was Orlovsky [6]. He was also the one who extended the concept

of rationality to the concept of fuzzy rationality. Afterwards, the domain has been
studied by many other researchers, see [1], [2], [6], [8].
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In this paper we deal with the sum-fuzzy rational choice function which was in-

troduced by Luo et al [4]. Sum-fuzzy implementation of a choice function consists
in finding the matrix representation of the fuzzy binary relation which describes the
preference relation.

Based on the artificial learning rule with fixed fraction, we give an algorithm for
finding a sum-fuzzy implementation of a choice function and, in the conclusion, offer

an example.
In the following section, we introduce some basic concepts and notation related

to sum-fuzzy rational choice functions. Section 3 deals with relationships between
sum-fuzzy rational choice functions and decision functions from the artificial learning

procedures. Section 4 presents the learning rule with fixed fraction. Section 5 offers
a new algorithm for finding sum-fuzzy implementation. The paper ends with some

remarks.

2. Notation and definitions

Let X be a finite set of objects called “alternatives” with at least two elements

X = {x1, x2, . . . xn}.

Let R be a binary relation on X , i.e. R ⊆ X ×X .

Definition 1. Let X be a set and P (X) a set of nonempty subsets of X . A

choice function C on X is a function from P (X) to P (X) such that C(S) ⊆ S for
all S ∈ P (X) and it is a rational choice function if there exists a binary relation R

on X such that
C(S) = fR(S)

for all S ∈ P (X), where

fR(S) = {x ∈ S : (x, y) ∈ R for all y ∈ S}.

Definition 2. A fuzzy binary relation on X is a function

rR : X ×X → [0, 1]

which associates each ordered pair of alternatives (x, y) ∈ X2 with an element of

[0, 1] such that
rR(x, y) ∈ (0, 1] if (x, y) ∈ R

and
rR = 0 if (x, y) /∈ R.
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The matrix

M(rR) =




rR(x1, x1) rR(x1, x2) . . . rR(x1, xn)
rR(x2, x1) rR(x2, x2) . . . rR(x2, xn)

...
...

...
...

rR(xn, x1) rR(xn, x2) . . . rR(xn, xn)




is the matrix representation of the fuzzy binary relation rR.

Definition 3. Let rR be a fuzzy binary relation on X . Barret et al. [2] defined

SF (x) =
∑

y∈S−{x}
rR(x, y)

with the corresponding choice set

SF (S, R) = {x ∈ S : SF (x) = max
x∈S

SF (x)}.

They called this choice function max-SF .

Luo et al. [4] proposed a choice function called the sum-fuzzy choice function on rR.
Is is denoted by fR.

Definition 4. The sum-fuzzy choice function on rR is

fR(S) =
{

x ∈ S :
∑

z∈S

rR(x, z) >
∑

z∈S

rR(y, z) for all y ∈ S

}
.

Definition 5. If there exists a fuzzy binary relation rR such that a choice func-

tion C on X is the sum-fuzzy choice function on rR, i.e. C = fR, then C is called
sum-fuzzy rational.

The sum-fuzzy rational function is one of preference-based choice functions pro-

posed by Barrett et al, because C is sum-fuzzy rational if, and only if, C is max-
SF [5].
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3. Artificial learning and the sum-fuzzy rational choice function

Let l(S) = {l : xl ∈ S} be the index set for all units which belong to S. Define a

function

δlk
ij (S) =





1 if i = l and j ∈ l(S),

−1 if i = k and j ∈ l(S),

0 otherwise

for any S ∈ P (X) and for any l, k ∈ l(S), l 6= k and i, j = 1, 2, . . . , n. Let us consider

a vector z ∈ � n2
,

z = (z11, z12, . . . , z1n; z21, z22, . . . , z2n; . . . zn1, zn2, . . . , znn)

and a choice function C on X .

Luo [5] defined

U [C(S)] =
⋃

l∈l(C(S))

⋃

k∈l(S)−l

{z ∈ � n2
: zij = δlk

ij (S) for i, j = 1, 2, . . . , n}

and

U [C+(S)] =
⋃

l∈l(C(S))

⋃

k∈l(S)−l(C(S))

{z ∈ � n2
: zij = δlk

ij (S) for i, j = 1, 2, . . . , n},

U [C] =
⋃

S∈P (X)

U [C(S)]

and

U+[C] =
⋃

S∈P (X)

U+[C(S)].

Theorem 1. A choice function C on X is sum-fuzzy rational if and only if there

exists w ∈ � n2
such that wzT > 0 for all z ∈ U [C] and wzT > 0 for all z ∈ U+[C].

In the proof, Luo [5] defined the matrix

W =




w∗
11 w∗

12 . . . w∗
1n

w∗
21 w∗

22 . . . w∗
2n

...
...

...
...

w∗
n1 w∗

n2 . . . w∗
nn




where w∗
ij = (wij − w)/(w −w) for i, j = 1, 2, . . . , n and w and w are the maximum

and the minimum of components of w.
Theorem 1 makes it possible to transform the problem of sum-fuzzy rationality into

the artificial learning procedure. In the forthcoming sections we use the procedure
with fixed fraction.
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4. Learning rule with fixed fraction

The procedure with fixed fraction is an artificial learning procedure for neural

network. The two classes of methods presented by Dumitrescu [3] use the linear
decision function

g :
� n → �

,

g(z) = wT z

where

w = (w1, w2, . . . , wn)T

is a weight vector and

z = (z1, z2, . . . , zn)T

is an input vector.

This procedure starts with an arbitrary weight vector and constructs a sequence
which converges to a solution weight vector. This vector describes a decision function

which classifies in a proper way any object z.

The method represents a training method based on error correction. Correction
is achieved by modifying the weight vector in case of an incorrect classification.

So, the correction rule is: Modify w into w − c(wT z/‖z‖2)z if wT z 6 0, where
c > 0.
In the case of correct classification the weight vector remains unchanged.

5. An algorithm which uses the learning rule with fixed fraction

We present an algorithm for finding a sum-fuzzy implementation of a choice func-

tion. This algorithm finds the matrix representation using one of the artificial learn-
ing rules in neural network, namely the procedure with fixed fraction.

The algorithm is:

Step 1. Set the value of wij at random for all i, j = 1, 2, . . . n.

Step 2. Calculate U [C] and wT z =
∑

wijzij .

Step 3. If wT z = 0 when z ∈ U [C]−U+[C] and wT z > 0 when z ∈ U+[C] then go
to Step 5; otherwise go to Step 4.

Step 4. Modify wij to wij − c(wT z/‖z‖2)z with 0 < c < 1.
Step 5. Go to Step 2 until w is stable.

Step 6. Let w∗
ij = (wij − w)/(w − w) with w = min wij and w = maxwij .

Step 7. Write W .
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I made some calculations in Microsoft Excel for the case when X = {x1, x2, x3}
and the choice function on X is given in Tab. 1.

P (X) x1 x2 x3 x1x2 x2x3 x1x3 x1x2x3

C x1 x2 x3 x1 x3 x1 x1

Table 1. The choice function on X = {x1, x2, x3}.

Note that a choice function such that C(S) is a singleton for each S ∈ P (X) is
called single-valued.
With the above algorithm, the sum-fuzzy implementation is

W =




1.00 0.21 0.47
0.11 0.40 0.47
0.39 0.80 0.40


 .

From the performance point of view, for this peculiar example, our algorithm
seems to be similar to Luo’s algorithm [5]. The number of the algorithm repetitions is

approximately the same (27 for our algorithm and 24 for Luo’s algorithm). However,
our algorithm can be used as an alternative method in practical cases.
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