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Abstract. We study a 2D model of the orientation distribution of fibres in a paper machine
headbox. The goal is to control the orientation of fibres at the outlet by shape variations.
The mathematical formulation leads to an optimization problem with control in coefficients
of a linear convection-diffusion equation as the state problem. Existence of solutions both
to the state and the optimization problem is analyzed and sensitivity analysis is performed.
Further, discretization is done and a numerical example is shown.
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1. Introduction

A simplified mathematical model describing the orientation of fibres moving

through a paper machine headbox slice channel was derived in [12]. The slice chan-

nel is a contracting nozzle accelerating the mixture of water and wood fibres to a

machine speed. In this paper we continue the study of an optimal control problem

formulated in [11]. The goal of the optimization problem is to obtain prescribed

fibre orientation distribution at the outlet of the slice channel by changing its shape.

For more results on modelling and optimization of a paper machine headbox see

e.g. [5], [6], [8].

*This research was supported by the Charles University Grant Agency under Con-
tract 6/2005/R, MSM 0021620839 (MŠMT ČR), and the Academy of Finland, Grant
#204741.
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The geometry of a planar contracting nozzle (one-dimensional headbox) is de-

scribed by a Lipschitz continuous function α (see Fig. 1). For simplicity, one-di-

mensional steady flow u = (u1(x1), 0) is assumed. The model further considers the

distribution ψ = ψ(x1, ϕ) of the projected angle ϕ of the fibre only along the central

streamline.

α(x1)

x1

Figure 1. Geometry of the planar contraction.

The distribution ψ is modelled by a linear convection-diffusion equation. This

type of problems was analysed e.g. in [9] or [10]. It does not generally possess unique

solution, therefore it is desirable to verify that our problem is well posed.

The text is organized as follows. Section 2 deals with existence of a solution to

the state problem. Section 3 is devoted to the formulation of an optimal control

problem, the existence of its solution, sensitivity analysis and optimality conditions.

In Section 4 we describe an approximation of the problem and present a numerical

example.

2. Convection-diffusion equation

The probability distribution ψ is given by the solution of the linear convection-

diffusion problem in the domain Ω = (0, 1) × (− 1
2π, 1

2π):

(P(α))







− div(A∇ψ) + bα · ∇ψ + cαψ = 0 in Ω,

ψ = ψD := π
−1 on Γ1,

A∇ψ · ν = 0 on Γ2 ∪ Γ3.

Here A is a constant positive definite matrix, ν denotes the unit outward normal

vector to ∂Ω and the coefficients bα, cα are given by

(1) bα(x1, ϕ) =
(

u1,− sin(2ϕ)
∂u1

∂x1

)

, cα(x1, ϕ) = −2 cos(2ϕ)
∂u1

∂x1
.
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The symbols Γ1, Γ2, Γ3 denote the following parts of ∂Ω: Γ1 = {0} × (− 1
2π, 1

2π),

Γ2 = {1} × (− 1
2π, 1

2π), Γ3 = (0, 1) × {− 1
2π, 1

2π}.

In order to eliminate the flow field from the model, we assume that the flow

is one-dimensional, i.e. u = (u1(x1), 0). The continuity of the flow then implies

u1(x1) = β/α(x1), where β > 0. Consequently the coefficients of the equation are of

the form

(2) bα(x1, ϕ) =
( β

α(x1)
,
βα′(x1)

α2(x1)
sin(2ϕ)

)

, cα(x1, ϕ) =
2βα′(x1)

α2(x1)
cos(2ϕ).

Here α′ denotes the derivative of α w.r.t. x1. Further, let α belong to the system of

admissible functions

(3) Uad := {α ∈ C1,1([0, 1]); α̂ 6 α 6 ˆ̂α, |α′| 6 L1, |α
′′| 6 L2 a.e. in (0, 1)},

where C1,1 denotes the space of functions whose first derivatives are Lipschitz con-

tinuous, α̂ and ˆ̂α are Lipschitz continuous functions and 0 < αmin 6 α̂, implying

that bα ∈ (L∞(Ω))2 and div bα, cα ∈ L∞(Ω).

For a weak formulation we assume that there exists an extension of the Dirichlet

boundary condition ψD ∈ W 1,2(Ω). This is obvious because ψD is constant on Γ1.

Further, we define the bilinear form aα and the linear form fα as follows:

aα(v, w) =

∫

Ω

(A∇v) · ∇w dx+

∫

Ω

(bα · ∇v + cαv)w dx,(4)

〈fα, w〉 = −aα(ψD, w),(5)

and the space of test functions V := {v ∈ W 1,2(Ω); Tr v|Γ1
= 0}, where Tr stands

for the trace mapping. In what follows we denote by ‖ · ‖p and ‖ · ‖k,p the norm

of Lp(Ω), and W k,p(Ω), respectively.

Definition 1. The function ψ ∈ W 1,2(Ω) is said to be a weak solution of (P(α))

if ψ0 := ψ − ψD is an element of V and satisfies

(6) aα(ψ0, v) = 〈fα, v〉 ∀ v ∈ V.

Lemma 1. There exists a constant C > 0 independent of α ∈ Uad such that

(7) |aα(v, w)| 6 C‖v‖1,2‖w‖1,2, |〈fα, w〉| 6 C‖w‖1,2

hold for all α ∈ Uad and all v, w ∈W 1,2(Ω).
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Lemma 2. Let α ∈ Uad and let any of the following conditions hold:

(i) cα − 1
2 div bα > 0 a.e. in Ω,

(ii) ‖cα − 1
2 div bα‖∞C

2
F < γ, where CF is the constant from Friedrichs’ inequality

on V and γ is the smallest eigenvalue of A.

Then aα is elliptic on V .

P r o o f. We rewrite the convective term using Green’s formula:

(8)

∫

Ω

(bα · ∇v)v dx =

∫

∂Ω

bα · ν
v2

2
dS −

∫

Ω

div bα
v2

2
dx > −

1

2

∫

Ω

div bαv
2 dx.

From this we see that

(9) aα(v, v) > γ‖∇v‖2
2 +

∫

Ω

(

cα −
1

2
div bα

)

v2 dx

holds for every v ∈ V .

(i) In this case aα(v, v) > γ‖∇v‖2
2 for all v ∈ V .

(ii) We estimate the last term from (9) using Hölder’s and Friedrichs’ inequalities,

which yield

(10) aα(v, v) >
(

γ −
∥
∥
∥cα −

1

2
div bα

∥
∥
∥
∞

C2
F

)

‖∇v‖2
2.

�

Unfortunately, the assumption (i) of Lemma 2 can not be used in our case. A

direct computation shows that

(11) cα −
1

2
div bα =

βα′

2α2
(1 + 2 cos(2ϕ)),

as follows from (2), which cannot be positive for any α ∈ Uad. Therefore only (ii) will

be used.

R em a r k 1. Since Ω is a rectangle, it is easy to verify that Friedrichs’ inequality

on V holds with the constant CF := meas Ω = π.

Theorem 3 (Existence and uniqueness). Let ψD ∈ W 1,2(Ω) and let

(12)
3

2
π
2 βL1

α2
min

< γ.

Then for each α ∈ Uad there exists a unique weak solution ψ := ψ(α) of (P(α)). In

addition,

(13) ‖ψ‖1,2 6 C‖ψD‖1,2,

where C > 0 does not depend on α.
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P r o o f. If (12) is satisfied, then the assumption (ii) of Lemma 2 holds, as

follows from (11). Thus aα is elliptic with a constant of ellipticity being independent

of α. Existence and uniqueness of ψ satisfying (6) and (13) then follows from the

Lax-Milgram lemma. �

The previous theorem assures solvability of (P(α)) only in the case of a dominating

diffusion. At the end of this section we mention a more general existence (but

not uniqueness) result based on Fredholm’s theorem for linear compact mappings.

Nevertheless it will not be used anywhere in this article.

Theorem 4. Let α ∈ Uad and ψD ∈ W 1,2(Ω). Then there exists at least one

weak solution of (P(α)) if and only if

(14) 〈fα, x〉 = 0

for all x ∈ V solving the homogeneous adjoint problem: ∀ y ∈ V , aα(y, x) = 0.

We refer to [3] for further details concerning solvability of convection-diffusion

problems.

3. Shape optimization problem

In what follows we will assume that the parameters of the model are chosen in such

a way that (12) holds. Further we will denote by ψ(α) the weak solution of (P(α)).

Let us define the cost function

(15) J(α) :=

∫

Γ2

|ψ(α) − ψopt|
2 dS,

where ψopt ∈ L2(Γ2) is the desired distribution function on the outlet Γ2. The shape

optimization problem reads as follows:

(P) Find α∗ ∈ Uad such that J(α∗) = min
α∈Uad

J(α).

Let us remark that in fact (P) is an optimal control problem since ψ(α) is computed

on the fixed domain Ω and the control α appears only in the coefficients of the state

equation.

3.1. Existence of optimal shape

We will show that (P) has a solution using the classical Bolzano-Weierstrass the-
orem for continuous functions on compact sets.
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Definition 2. We define the convergence in Uad as follows:

(16) αn  α
def
⇔ αn ⇉ α in [0, 1] and α′

n ⇉ α′ in [0, 1].

From the well known Arzelà-Ascoli theorem it follows that Uad is compact with

respect to above defined convergence.

Lemma 5. Let αn  α in Uad. Then

(17) ψ(αn) → ψ(α) strongly in W 1,2(Ω).

P r o o f. It is easy to see that bαn
⇉ bα and cαn

⇉ cα in Ω. From Theorem 3 it

follows that the solutions ψn := ψ(αn) of (P(αn)) are bounded:

(18) ‖ψn‖1,2 6 C‖ψD‖1,2,

where C is independent of αn. Therefore a subsequence {ψnk
} exists and converges

weakly to some ψ in W 1,2(Ω). Moreover ψ − ψD ∈ V , ank
(ψnk

, ϕ) → aα(ψ, ϕ) for

all ϕ ∈ V , i.e. ψ = ψ(α) is the solution of (P(α)). Since this solution is unique, the

whole sequence {ψn} tends weakly to ψ(α). Finally we use the ellipticity of an and

Rellich’s theorem to obtain strong convergence:

C‖ψn − ψ(α)‖2
1,2 6 an(ψn − ψ(α), ψn − ψ(α)) = an(ψn, ψn − ψ(α))

︸ ︷︷ ︸

=0

(19)

−

∫

Ω

(A∇ψ(α)) · ∇(ψn − ψ(α))
︸ ︷︷ ︸

⇀0 in L2(Ω)

+ (bn · ∇ψ(α) + cnψ(α)
︸ ︷︷ ︸

bounded in L2(Ω)

(ψn − ψ(α))
︸ ︷︷ ︸

→0 in L2(Ω)

dx.

�

Lemma 6. J is continuous on Uad.

P r o o f. Let αn ⇉ α in [0, 1]. From Lemma 5 it follows that ψ(αn) → ψ(α)

in W 1,2(Ω). The continuous imbedding of W 1,2(Ω) into L2(Γ2) yields

(20) Trψ(αn)|Γ2
→ Trψ(α)|Γ2

in L2(Γ2)

and consequently J(αn) → J(α). �
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Theorem 7 (Existence). Problem (P) has a solution.

P r o o f. Since J is continuous and Uad is compact, the Bolzano-Weierstrass

theorem says that J attains its minimum on Uad. �

3.2. Sensitivity analysis

We have proved that the mappings α 7→ ψ(α) and α 7→ J(α) are continuous

on Uad. In this subsection their differentiability will be studied using the Implicit

Function Theorem and the adjoint equation technique. Finally we derive the opti-

mality condition for (P).

Lemma 8. The mapping α 7→ ψ(α) is continuously (Fréchet) differentiable

on Uad.

P r o o f. Let us define the function F : Uad × V → V ∗ by

(21) F (α, ψ) := Aα(ψ) − fα = Aα(ψ + ψD),

where Aα ∈ L(W 1,2(Ω), V ∗), 〈Aα(ψ), ϕ〉 = aα(ψ, ϕ) ∀ψ ∈ W 1,2(Ω), ϕ ∈ V . Then

F (α, ψ(α) − ψD) = 0 for all α ∈ Uad and the Implicit Function Theorem yields

(22) ψ′(α)h = −A−1
α

(∂Aα

∂α
(ψ(α))h

)

for any h ∈ C1,1([0, 1]).

Indeed, Aα is a bounded linear mapping of W
1,2(Ω) onto V ∗, thus A−1

α is bounded,

too. Since bα and cα are continuously differentiable with respect to α, so is Aα and

(23)
〈∂Aα

∂α
(ψ)h, ϕ

〉

=

∫

Ω

(∂bα
∂α

h · ∇ψ +
∂cα
∂α

hψ
)

ϕdx

for h ∈ C1,1([0, 1]). �

We are interested in differentiability of the cost function J . In order to express J ′,

let us denote J (ψ) :=
∫

Γ2

|ψ − ψopt|
2 dS and introduce the adjoint state p ∈ V :

(24) 〈Aα(ϕ), p〉 = 2

∫

Γ2

(ψ(α) − ψopt)ϕdS for all ϕ ∈ V.

Note that (24) is uniquely solvable since aα is elliptic and the right-hand side is a

bounded linear functional on V .
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Lemma 9. J is continuously (Fréchet) differentiable on Uad and

(25) J ′(α)h = −
〈∂Aα

∂α
(ψ(α))h, p

〉

, h ∈ C1,1([0, 1]),

where p is a solution of (24).

P r o o f. Since J does not depend explicitly on α, its derivative is

(26) J ′(α)h = J ′(ψ(α))ψ′(α)h = 〈Aα(ψ′(α)h), p〉 = −
〈∂Aα

∂α
(ψ(α))h, p

〉

,

as follows from (24) and (22). Continuity of J ′ on Uad follows from Lemma 8. �

Theorem 10 (Optimality condition). Let α∗ ∈ Uad be a solution of (P). Then

(27)

∫

Ω

(∂bα∗

∂α
(α̃ − α∗) · ∇ψ(α∗) +

∂cα∗

∂α
(α̃− α∗)ψ(α∗)

)

p dx 6 0

holds for all α̃ ∈ Uad, where p is a solution of (24) with α := α∗.

4. Approximation and numerical solution

We shall solve numerically an approximate optimization problem. Therefore we

discretize the state problem and the set of admissible functions.

Let Un
ad be a set of Bézier functions of the order n+ 1 such that Un

ad ⊂ Uad. With

each element of Un
ad of the form

αn(x1) :=
n+1∑

i=0

ai

(
n+ 1

i

)

xi
1(1 − x1)

n+1−i

we associate the vector a := (a1, . . . , an)T ∈ Un. (Since the ends of the curves αn are

fixed, a0 and an+1 are also fixed). Here U
n is chosen so that a ∈ Un ⇔ αn ∈ Un

ad.

4.1. State problem

The state problem (6) with fixed α is solved using the Finite Element Method

(FEM). Let Th denote a partition of Ω into triangles. We define the finite dimensional

subspace of V :

(28) Vh := {vh ∈ V ; vh|T ∈ P1(T ) ∀T ∈ Th}.

398



Instead of the standard Galerkin FEM approximation we use a stabilized variant,

namely the streamline upwind Petrov-Galerkin (SUPG) method. The discrete state

problem is then defined as the following:

(Ph(α))







Find ψh := ψh(α) ∈ W 1,2(Ω) such that ψh − ψD ∈ Vh and

aα(ψh, vh) +
∑

T∈Th

∫

T

τT (bα · ∇ψh + cαψh)bα · ∇vh dx = 0 ∀ vh ∈ Vh.

Here τT is a positive upwind parameter depending on the local Peclet number.

Let {ωi}
N
i=1 be the Lagrangean basis of Vh. Then ψh =

N∑

i=1

qiωi, where q := q(a) :=

(q1, . . . , qN )T contains the nodal values of ψh. Using this notation, (Ph(α)) can be

rewritten as the system of linear algebraic equations

(29) R(a, q(a)) = 0,

which is assembled elementwise in the following way:

R(a, q) =
∑

T∈Th

RT (a, q),(30)

(RT )i(a, q) =

∫

T

(A∇ψh) · ∇ωi + (bαn
· ∇ψh + cαn

ψh)ω̃i dx,(31)

ω̃i := ωi + τT bαn
· ∇ωi.(32)

The sparse linear system (29), with a ∈ Un fixed, is solved with help of the package

SuperLU (see [2] for documentation).

4.2. Optimization problem

The algebraic form of the cost function reads as

(33) Jh(q) :=

∫

Γ2

( N∑

i=1

qiωi − ψopt

)2

dS.

We solve numerically the following mathematical programming problem:

(Ph) Find a∗ ∈ Un such that Jh(q(a∗)) = min
a∈Un

Jh(q(a)),

where q(a) is the solution of (29) with a given a. Since Un is compact and Jh is

clearly continuous, Ph has a solution.

For the numerical minimization we use the package KNITRO which uses trust

region method based on interior point techniques (see [1] for algorithm description).
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The minimization method requires the evaluation of ∇Jh(q(a)) at a given point a.

The exact partial derivatives of Jh are computed using the adjoint equation tech-

nique:

(34)
∂Jh(q(a))

∂ak

= −pT
(∂R(a, q(a))

∂ak

)

, k = 1, . . . , n,

where p := p(a) is the solution of the adjoint equation

(35)
(∂R(a, q(a))

∂q

)T

p =
∂Jh(q(a))

∂q
.

Note that equations (34), (35) remain valid for nonlinear state problems, too. As the

hand-coding of the partial derivatives appearing in (34) and (35) is time consuming

and error-prone, we compute them with the aid of automatic differentiation.

4.3. Automatic differentiation

Automatic differentiation (AD) technique is based on the chain rule of differen-

tiation, and it exploits the fact that every computer program (including our finite

element code) executes a sequence of elementary arithmetic operations (see e.g. [4],

[7] for details).

The automatic differentiation works as follows. A set of independent variables

w1, . . . , wM is defined in the beginning of the computation. In this case, the inde-

pendent variables are the nodal values of the FEM solution q1, . . . , qN and the design

parameters a1, . . . , an.

Consider now an elementary function Φ(y1, . . . ym) whose arguments depend on

(some of) the independent variables: yi = yi(w1, . . . wM ). For our finite element

code it was sufficient to implement only the basic elementary functions like +, −, ∗

and /, for which it holds that m 6 2. Chain rule of differentiation applied to the

assignment z = Φ(y1, . . . ym) gives

(36)
∂z

∂wj

=

m∑

k=1

∂Φ

∂yk

∂yk

∂wj

.

The partial derivatives ∂Φ/∂yk of these functions are readily obtained, and thus

the partial derivatives ∂z/∂wj can be computed as long as the partial derivatives

∂yk/∂wj are known.

Our implementation of the AD is as follows. We define a composite data type CVar,

which holds the value of a real variable and its partial derivatives with respect to the

independent variables w1, . . . , wM . We can now represent the variables y1, . . . , ym, z
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with this data type, and implement the function Φ such that it computes both the

result z and its partial derivatives.

A unique global identification number is assigned to each independent variable.

In the following we assume that the identification number of wi is i. The object of

type CVar representing a generic real variable x includes a vector of integers Vind and

a vector of real numbers d. The vector Vind holds the set nz(x) = {i : ∂x/∂wi 6= 0}

in increasing order, and d holds the values d(j) = ∂x/∂wVind(j).

We initialize the partial derivatives ∂wi/∂wi = 1 for the objects representing the

independent variables, and apply the automatic differentiation procedure at every

step while assembling the residual and performing the cost functional evaluation.

Eventually, the objects representing the residual components and the cost functional

value include all the necessary partial derivatives.

Possible source of inefficiency lies in the fact that typically M is large, so that

many partial derivatives might have to be computed. But in FEM, each residual

component depends only on few degrees of freedom. The same holds also for all

the intermediate variables generated in the execution chain of the residual assembly.

We notice that j /∈ nz(yi) for all i ∈ 1 . . .m =⇒ ∂z/∂wj = 0. Therefore, we only

need to go through those indices that belong to nz(yi) for some i. The fact that the

array Vind is ordered enables us to build an implementation where we only have to go

through the vectors Vind and d of each yi once during the computation of ∇z. The

total computational complexity of the gradient evaluation is thus O
( m∑

i=1

#nz(yi)
)

.

We used the operator overloading property of C++ to “hide” the implementation

of the AD from the user. The elementary operators were overloaded so that the user

can simply write for example z = y1 + y2, where z, y1 and y2 are of type CVar,

and the compiler takes care of calling the appropriate function implementing the

automatic differentiation.

4.4. Numerical examples

In the following numerical example the matrix A is of the form

(
DT 0

0 DR

)

,

where DT is the translational dispersion coefficient and DR the rotational dispersion

coefficient. We made two computations with DT = 10−5 and with different values

of DR. The velocity coefficient β is set to 0.1. Due to symmetry of the coefficients

and boundary conditions, the state problem is solved only in the subdomain (0, 1)×

(0, 1
2π). The finite element mesh is structured and consists of 2552 linear triangle

elements. In the vicinity of the point [1, 0] the mesh is refined due to high gradient of

the solution. The function α characterizing the height of the contraction is discretized

using Bézier function with 30 control points. The parameters defining the set Uad
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are:

α̂(x1) = 0.1 − 0.33x1 + 0.345x2
1 − 0.105x3

1,

ˆ̂α(x1) = 0.1(1 − x1) + 0.01x1,

L1 = 10, L2 = 100.

The target distribution is ψopt(ϕ) = π
−1. We started the computation with the

initial guess equal to traditional linearly tapered design ( ˆ̂α).

In the first computation the rotational dispersion coefficient was set to DR = 5.

After 107 iterations the value of the cost function decreased from 5.379 × 10−1 to

1.918 × 10−3 as the optimality error (specified in the user’s manual of KNITRO)

reached 10−5. The initial and final geometry of the contraction is shown on Fig. 2,

the initial and final orientation distributions at the outlet are shown on Fig. 3.

Contour plots of the initial and final orientation distribution in the computational

domain are shown on Fig. 4.

0

0.1

1

bounds
final

Figure 2. The final geometry of the contraction.

In the second computation we set DR = 0.05. After 9 iterations the value of

the cost function decreased from 7.452 to 6.315 × 10−1 as the optimality error

reached 10−6. The initial and final geometry of the contraction is shown on Fig. 5, the

initial and final orientation distributions at the outlet are shown on Fig. 6. Contour

plots of the initial and final orientation distribution in the computational domain are

shown on Fig. 7.

There is no reason to assume that the cost function is convex, therefore the found

minima are possibly only local. However our first result is very similar to the one

from [11], where the authors used different methods and initial guesses. Thus, there

is a chance that the final design is close to the global minimum.

402



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

−1.5 −1 −0.5 0 0.5 1 1.5
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Figure 3. The initial and final orientation distribution at the outlet.

Figure 4. Contour plots of the initial and final solution ψh (in the computational domain
(0, 1)× (0, 1

2
p)).

It is easy to verify that the parameters used in these numerical examples do not

satisfy (12). However the computational problem does not seem to be ill posed—

the resulting stiffness matrix is always regular also without using upwind. The

obtained solution of (Ph(α)) is independent of the mesh structure, provided that

the mesh is fine enough. Then there are several questions arising: Is the continuous
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0

0.1

1

bounds
final

Figure 5. The final geometry of the contraction.

0

2

4

6
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10

12

14
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Figure 6. The initial and final orientation distribution at the outlet.

problem (P(α)) still uniquely solvable if (12) is not satisfied? If not, is it solvable?

Are the solutions of (Ph(α)) bounded as h→ 0+? These questions will be studied in

future projects. Replacing the simple one-dimensional flow by a more realistic model

will be also considered.
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