
Applications of Mathematics

Liselott Flodén; Marianne Olsson
Homogenization of some parabolic operators with several time scales

Applications of Mathematics, Vol. 52 (2007), No. 5, 431–446

Persistent URL: http://dml.cz/dmlcz/134687

Terms of use:
© Institute of Mathematics AS CR, 2007

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/134687
http://dml.cz


52 (2007) APPLICATIONS OF MATHEMATICS No. 5, 431–446

HOMOGENIZATION OF SOME PARABOLIC OPERATORS

WITH SEVERAL TIME SCALES

Liselott Flodén, Marianne Olsson, Östersund

(Received June 28, 2006, in revised version October 24, 2006)

Abstract. The main focus in this paper is on homogenization of the parabolic problem
∂tu

ε − ∇ · (a(x/ε, t/ε, t/εr)∇uε) = f . Under certain assumptions on a, there exists a
G-limit b, which we characterize by means of multiscale techniques for r > 0, r 6= 1. Also,
an interpretation of asymptotic expansions in the context of two-scale convergence is made.
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1. Introduction

The main source of inspiration for the development of the modern theory of conver-

gence for sequences of differential operators, is to find methods to compute effective

properties of heterogenous materials. The most general strategies designed for this

purpose are the two closely related concepts of G-convergence and H-convergence.

The special case where the structure is built by small identical cubes is particu-

larly well studied. This kind of problems is usually named periodic homogenization

problems.

In this paper we study the homogenization of a parabolic problem with rapid

oscillations in one spatial scale and two time scales. More precisely, we homogenize
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the equation

∂tu
ε(x, t) −∇ ·

(

a
(x

ε
,
t

ε
,

t

εr

)

∇uε(x, t)

)

= f(x, t) in Ω × (0, T ),(1)

uε(x, 0) = u0(x) in Ω,

uε(x, t) = 0 on ∂Ω × (0, T ),

where Ω is an open bounded set in RN and r and T are positive constants. For {ε}

tending to zero we get a sequence of equations. The homogenization problem consists

in studying the asymptotic behavior of the corresponding sequence of solutions uε

and finding a limit equation which admits the limit u of {uε} as its unique solution.

This so-called homogenized problem is governed by a coefficient matrix without rapid

oscillations, which we characterize by means of multiscale convergence techniques for

different values on r. We distinguish the three different cases; 0 < r < 2 where r 6= 1,

r = 2 and r > 2.

In Section 2 we study some features of asymptotic expansion. We discuss in

which sense of convergence the expansion is valid, interpreting the significance of the

first terms. A generalization of these observations will turn out to be useful in the

homogenization procedure in Section 4.

N o t a t i o n 1. We define

ΩT = Ω × (0, T )

and

Yk,n = Y k × (0, 1)n,

where Y k = Y1 × . . . × Yk and Y1 = . . . = Yk = Y = (0, 1)N .

Let F (RkN+n ) be a space of real valued functions defined on RkN+n . By F♯(Yk,n)

we denote all functions in Floc(RkN+n ) which are the periodic repetition of some

function in F (Yk,n).

Furthermore, L2(0, T ; X) denotes all functions u : (0, T ) → X such that

‖u‖L2(0,T ;X) =

(
∫ T

0

‖u(·, t)‖2
X dt

)1/2

< ∞,

where X is a Banach space.

Finally, for the evolution triple H1
0 (Ω) ⊆ L2(Ω) ⊆ H−1(Ω), we introduce the space

H1(0, T ; H1
0 (Ω), H−1(Ω)) of all functions u which belong to L2(0, T ; H1

0(Ω)) with ∂tu

in L2(0, T ; H−1(Ω)). This space is equipped with the norm

‖u‖H1(0,T ;H1

0
(Ω),H−1(Ω)) = ‖u‖L2(0,T ;H1

0
(Ω)) + ‖∂tu‖L2(0,T ;H−1(Ω)).
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2. Two-scale convergence and asymptotic expansions

To enhance the comprehension of the two-scale convergence method and its rela-

tion to the multiple-scale expansion we first study a simple and illuminating homog-

enization example, namely the linear elliptic problem

−∇ ·

(

a
(x

ε

)

∇uε(x)
)

= f(x) in Ω,(2)

uε(x) = 0 on ∂Ω.

Here a(y) is periodic with period Y and Ω ⊂ RN is open and bounded. For ε → 0

we have

uε(x) ⇀ u(x) in H1
0 (Ω),

where u is the unique solution to the limit equation

−∇ ·
(

b∇u(x)
)

= f(x) in Ω,(3)

u(x) = 0 on ∂Ω.

The coefficient b is obtained from the local problem

(4) −∇y ·
(

a(y)(∇u(x) + ∇yu1(x, y))
)

= 0,

where u1 is Y -periodic in its second argument.

The exact solution uε together with the solution u to the homogenized problem

are found in Fig. 1 for a one dimensional example with Ω = (0, 1), f(x) = x2 and

(5) a(y) =
1

2 + sin(2πy)
.

To achieve the homogenization result above rigorously, one can use a method based

on two-scale convergence. An adaptation of this technique to certain evolution cases

is used to prove the homogenization result in Section 4. This concept was first

introduced by Nguetseng in 1989, see [11].

Definition 2. A sequence {uε} in L2(Ω) is said to two-scale converge to a limit

u0 ∈ L2(Ω × Y ) if

lim
ε→0

∫

Ω

uε(x)v
(

x,
x

ε

)

dx =

∫

Ω

∫

Y

u0(x, y)v(x, y) dy dx

for all v ∈ L2(Ω; C♯(Y )). We write

uε(x) ⇀⇀ u0(x, y).
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Figure 1. The solutions uε and u.

The definition is motivated by a compactness result which states that a se-

quence {uε} bounded in L2(Ω) possesses a two-scale convergent subsequence, see [11],

[1] and [10]. The following theorem characterizes limits for sequences of gradients.

This result allows us to pass to the limit in the weak form of (2) for certain choices

of test functions and obtain the local problem (4) and the homogenized problem (3).

Theorem 3. Let {uε} be a sequence bounded in H1(Ω). Then, up to a subse-

quence, it holds that

uε(x) → u(x) in L2(Ω)

and

∇uε(x) ⇀⇀ ∇u(x) + ∇yu1(x, y),

where u ∈ H1(Ω) and u1 ∈ L2(Ω; H1
♯ (Y )/R).

P r o o f. See [1] or [10]. �

An earlier method for the determination of the local and the homogenized problem

is the multiple-scale, or asymptotic expansion, method; see e.g. [4] and [5]. In this

approach, one assumes that the solution uε can be expanded in a power series in ε

of the form

(6) uε(x) = u(x) + εu1

(

x,
x

ε

)

+ ε2u2

(

x,
x

ε

)

+ . . . ,

where uk is Y -periodic in the second argument. Plugging (6) into equation (2) and

equating equal powers of ε, we formally obtain both the homogenized problem (3)
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and the local problem (4), solved by u and u1 respectively. Furthermore, u and

u1 are identical to the functions with the same names which appear in Theorem 3.

We know that

uε(x) → u(x) in L2(Ω)

but it remains to explore if also u1 has significance in the sense of some suitable kind

of limit. The truncated form

uε(x) ≈ u(x) + εu1

(

x,
x

ε

)

of (6) can be written

(7)
uε(x) − u(x)

ε
≈ u1

(

x,
x

ε

)

,

which indicates that {(uε − u)/ε} approaches u1 in some sense similar to the two-

scale convergence. According to Theorem 3.3 in [2] we can identify a class of smooth

functions v : Ω × Y → R such that
F ε(·) =

1

ε

∫

Ω

v
(

x,
x

ε

)

(·) dx

is bounded in (H1(Ω))′. The key properties of these functions are that they are

Y -periodic for any fixed x ∈ Ω and have integral mean value zero over Y in their

second argument. Hence, for any bounded sequence {αε} in H1(Ω) and

βε =
1

ε

∫

Ω

v
(

x,
x

ε

)

αε(x) dx,

{βε} converges up to a subsequence. This means that, still up to a subsequence, the

limit

lim
ε→0

∫

Ω

uε(x) − u(x)

ε
v
(

x,
x

ε

)

dx

exists for suitable test functions v.

It turns out that the choice of test functions is crucial. Fig. 2 shows the left-hand

side together with the right-hand side of (7), where uε and u are the solutions to (2)

and (3), respectively, for the coefficient a given by (5).

Apparently, they have similar patterns of oscillations but differ in the global ten-

dency. Fig. 3 displays the difference between these two functions, i.e.

gε(x) =
uε(x) − u(x)

ε
− u1

(

x,
x

ε

)

.
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Figure 2. (uε(x)− u(x))/ε together with u1(x, x/ε).
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Figure 3. The function gε(x).

For

v(x, y) = x2 cos(2πy)

the graph of gε(x)v(x, x/ε) is found in Fig. 4. The integral of gε(x)v(x, x/ε) over Ω

is close to zero for small ε. The high frequency variations of gε are negligible.

Furthermore, the function v has mean value zero in its second variable and replacing y

by x/ε with ε small the slower global tendency of gε is filtered away by the oscillations.
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Figure 4. The product gε(x)v(x, x/ε),
∫
Y v (x, y) dy = 0.

For this choice of v and ε = 0.05 we obtain

∫

Ω

uε(x) − u(x)

ε
v
(

x,
x

ε

)

dx ≈ 0.00224 ≈

∫

Ω

∫

Y

u1(x, y)v(x, y) dy dx ≈ 0.00221,

and hence a limit of two-scale type consistent with the approach of asymptotic expan-

sion seems to be at hand for this kind of test functions. If we omit the requirement

that v have integral mean value zero over Y and choose e.g.

v(x, y) = x2(3 + cos(2πy)),

we obtain the function illustrated in Fig. 5, whose integral over Ω does obviously not

vanish.

In this case

∫

Ω

uε(x) − u(x)

ε
v
(

x,
x

ε

)

dx ≈ −0.02441 6=

∫

Ω

∫

Y

u1(x, y)v(x, y) dy dx ≈ 0.00221

for ε = 0.05. This shows that the class of test functions must be more restricted than

for the usual two-scale convergence. Our investigation above reveals that {(uε−u)/ε}

is approaching u1 only in a certain weak sense, namely

lim
ε→0

∫

Ω

uε(x) − u(x)

ε
v
(

x,
x

ε

)

dx =

∫

Ω

∫

Y

u1(x, y)v(x, y) dy dx,

where the delicate question is to identify the appropriate class of test functions.
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Figure 5. The product gε(x)v(x, x/ε),
∫
Y v(x, y) dy 6= 0.

In [9] it is proven that for a bounded sequence {uε} in H1(Ω) and with u and u1

defined as in Theorem 3 it holds that, up to a subsequence,

lim
ε→0

∫

Ω

uε(x) − u(x)

ε
v1(x)v2

(x

ε

)

dx =

∫

Ω

∫

Y

u1(x, y)v1(x)v2(y) dy dx

for all v1 ∈ D(Ω) and v2 ∈ C∞
♯ (Y )/R. Thus u1 appears as a limit of two-scale type

to {(uε − u)/ε} which contributes to the interpretation of the asymptotic expan-

sion (6). A generalization of this result, see Theorem 9, will be used to prove the

homogenization result in Section 4.

3. Multiscale convergence

In [2], Allaire and Briane introduced so-called multiscale convergence. This gener-

alization of two-scale convergence is suitable when studying problems with multiple

scales of periodic oscillations. We give the following definition.

Definition 4. A sequence {uε} in L2(Ω) is said to (n + 1)-scale converge to

u0 ∈ L2(Ω × Y n) if

lim
ε→0

∫

Ω

uε(x)v
(

x,
x

ε1
, . . . ,

x

εn

)

dx(8)

=

∫

Ω

∫

Y n

u0(x, y1, . . . , yn)v(x, y1, . . . , yn) dyn . . . dy1 dx
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for all v ∈ L2(Ω; C♯(Y
n)), where εk(ε) → 0 when ε → 0. We write

uε(x)
n+1
⇀ u0(x, y1, . . . , yn).

In [2] it is proven that a bounded sequence {uε} in L2(Ω) has a subsequence

which (n + 1)-scale converges to some limit u0 ∈ L2(Ω × Y n) if the scales obey

certain separation requirements.

Adapting to our problem (1) we define 2, 3-scale convergence which includes two

spatial scales and three time scales.

Definition 5. A sequence {uε} in L2(ΩT ) is said to 2,3-scale converge to u0 ∈

L2(ΩT × Y1,2) if

lim
ε→0

∫

ΩT

uε
(

x, t
)

v
(

x, t,
x

ε1
,

t

ε′1
,

t

ε′2

)

dxdt

=

∫

ΩT

∫

Y1,2

u0(x, t, y, s1, s2)v(x, t, y, s1, s2) dy ds2 ds1 dxdt

for all v ∈ L2(ΩT ; C♯(Y1,2)). This is denoted by

uε(x, t)
2,3
⇀ u0(x, t, y, s1, s2).

The following compactness result holds true.

Theorem 6. Let {uε} be a bounded sequence in L2(ΩT ) and assume that

ε1 = ε, ε′1 = ε and ε′2 = εr, where r > 0 and r 6= 1. Then there exists a function

u0 ∈ L2(ΩT × Y1,2) such that, up to a subsequence, {u
ε} 2,3-scale converges to u0.

P r o o f. This is an immediate consequence of Theorem 2.4 in [2]. �

R em a r k 7. We omit the case r = 1 to obtain separation between the scales,

see [2] for details.

Theorem 8 deals with 2, 3-scale convergence of gradients. The proof follows directly

along the lines of the proof of Theorem 3.1 in [8].

Theorem 8. Let {uε} be a sequence bounded in H1(0, T ; H1
0 (Ω), H−1(Ω)) and

assume that ε1 = ε, ε′1 = ε and ε′2 = εr, where r > 0 and r 6= 1. Then it holds up to

a subsequence that

uε(x, t) → u(x, t) in L2(ΩT )

and

∇uε(x, t)
2,3
⇀ ∇u(x, t) + ∇yu1(x, t, y, s1, s2),

where u ∈ L2(0, T ; H1
0(Ω)) and u1 ∈ L2(ΩT × (0, 1)2; H1

♯ (Y )/R).
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The following theorem generalizes our observations in Section 2 to a certain evo-

lution case.

Theorem 9. Let {uε} be a bounded sequence in H1(0, T ; H1
0 (Ω), H−1(Ω)), and

let u and u1 be defined as in Theorem 8. Then, up to a subsequence,

lim
ε→0

∫

ΩT

uε(x, t) − u(x, t)

ε
v1(x)v2

(x

ε

)

c1(t)c2

( t

ε

)

c3

( t

εr

)

dxdt

=

∫

ΩT

∫

Y1,2

u1(x, t, y, s1, s2)v1(x)v2(y)c1(t)c2(s1)c3(s2) dy ds2 ds1 dxdt

for all v1 ∈ D(Ω), v2 ∈ L2
♯(Y )/R, c1 ∈ D(0, T ) and c2, c3 ∈ L2

♯ (0, 1) if r > 0, r 6= 1.

P r o o f. The proof is performed in exactly the same way as the proof of Corol-

lary 3.3 in [8]. �

The theorems above will be used while proving the homogenization result in The-

orem 10.

4. Homogenization

In this section we study the homogenization of the parabolic equation

∂tu
ε(x, t) −∇ ·

(

a
(x

ε
,
t

ε
,

t

εr

)

∇uε(x, t)

)

= f(x, t) in Ω × (0, T ),(9)

uε(x, 0) = u0(x) in Ω,

uε(x, t) = 0 on ∂Ω × (0, T ),

introduced in Section 1, where f ∈ L2(ΩT ) and u0 ∈ L2(Ω). This problem allows a

unique solution uε ∈ H1(0, T ; H1
0(Ω), H−1(Ω)) for any fixed ε > 0 if a is assumed to

belong to L∞
♯ (Y1,2) and to satisfy the coercivity condition

a(y, s1, s2)ξ · ξ > α|ξ|2, α > 0

for any (y, s1, s2) ∈ RN+2 and all ξ ∈ RN . Under these assumptions, a(x/ε, t/ε, t/εr)

satisfies the standard conditions for G-convergence for linear parabolic problems,

see [6] and [14]. This means that, at least for a suitable subsequence, there exists a

well posed limit problem of the same type as (9) governed by a coefficient matrix b.

Moreover,

(10) ‖uε‖L∞(0,T ;L2(Ω)) 6 C
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and

(11) ‖uε‖H1(0,T ;H1

0
(Ω),H−1(Ω)) 6 C

for some positive constant C. Our aim is to characterize the G-limit b further by

means of homogenization procedures.

Theorem 10. Let {uε} be a sequence of solutions in H1(0, T ; H1
0 (Ω), H−1(Ω))

to (9). Then

uε(x, t) → u(x, t) in L2(ΩT )

and

∇uε(x, t)
2,3
⇀ ∇u(x, t) + ∇yu1(x, t, y, s1, s2),

where u ∈ H1(0, T ; H1
0 (Ω), H−1(Ω)) and u1 ∈ L2(ΩT × (0, 1)2; H1

♯ (Y )/R).

Furthermore, u is the unique solution to the homogenized problem

∂tu(x, t) −∇ ·
(

b∇u(x, t)
)

= f(x, t) in ΩT ,(12)

u(x, 0) = u0(x) in Ω,

u(x, t) = 0 on ∂Ω × (0, T )

where

b∇u(x, t) =

∫

Y1,2

a(y, s1, s2)
(

∇u(x, t) + ∇yu1(x, t, y, s1, s2)
)

dy ds2 ds1.

For 0 < r < 2, r 6= 1, the function u1 is determined by the local problem

(13) −∇y · (a(y, s1, s2)
(

∇u(x, t) + ∇yu1(x, t, y, s1, s2))
)

= 0,

for r = 2 by

(14) ∂s2
u1 −∇y ·

(

a(y, s1, s2)(∇u(x, t) + ∇yu1(x, t, y, s1, s2))
)

= 0,

and for r > 2 by the system of local problems

−∇y ·

((
∫ 1

0

a(y, s1, s2) ds2

)

(

∇u(x, t) + ∇yu1(x, t, y, s1)
)

)

= 0,(15)

∂s2
u1(x, t, y, s1, s2) = 0.(16)
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P r o o f. Throughout the proof we use the Einstein tensor summation convention.

We study the weak form of (9), i.e. we require that

∫

ΩT

−uε(x, t)v(x)∂tc(t) + aij

(x

ε
,
t

ε
,

t

εr

)

∂xj
uε(x, t)∂xi

v(x)c(t) dxdt(17)

=

∫

ΩT

f(x, t)v(x)c(t) dxdt

for all v ∈ H1
0 (Ω) and c ∈ D(0, T ). The a priori estimates (10) and (11) allow us to

apply Theorem 8. Hence, up to a subsequence,

uε(x, t) → u(x, t) in L2(ΩT )

and

∇uε(x, t)
2,3
⇀ ∇u(x, t) + ∇yu1(x, t, y, s1, s2),

where u ∈ L2(0, T ; H1
0 (Ω)) and u1 ∈ L2(ΩT × (0, 1)2; H1

♯ (Y )/R). Choosing v ∈

H1
0 (Ω) and c ∈ D(0, T ) independent of ε in (17) and letting ε tend to zero we get,

according to Theorem 8,

∫

ΩT

−u(x, t)v(x)∂tc(t)(18)

+

(
∫

Y1,2

aij(y, s1, s2)
(

∂xj
u(x, t) + ∂yj

u1(x, t, y, s1, s2)
)

dy ds2 ds1

)

× ∂xi
v(x)c(t) dxdt

=

∫

ΩT

f(x, t)v(x)c(t) dxdt.

In order to find the local problems we study the difference between (17) and (18),

i.e.

∫

ΩT

(

uε(x, t) − u(x, t)
)

v(x)∂tc(t)(19)

+

((
∫

Y1,2

aij(y, s1, s2)
(

∂xj
u(x, t) + ∂yj

u1(x, t, y, s1, s2)
)

dy ds2 ds1

)

− aij

(x

ε
,
t

ε
,

t

εr

)

∂xj
uε(x, t)

)

∂xi
v(x)c(t) dxdt = 0.

We choose the test functions

v(x) = εv1(x)v2

(x

ε

)

, c(t) = c1(t)c2

( t

ε

)

c3

( t

εr

)

,
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where v1 ∈ D(Ω), v2 ∈ C∞
♯ (Y )/R, c1 ∈ D(0, T ) and c2, c3 ∈ C∞

♯ (0, 1) in (19), and

get
∫

ΩT

1

ε

(

uε(x, t) − u(x, t)
)

v1(x)v2

(x

ε

)

(

ε2∂tc1(t)c2

( t

ε

)

c3

( t

εr

)

(20)

+ εc1(t)∂s1
c2

( t

ε

)

c3

( t

εr

)

+ ε2−rc1(t)c2

( t

ε

)

∂s2
c3

( t

εr

)

)

+

((
∫

Y1,2

aij(y, s1, s2)
(

∂xj
u(x, t) + ∂yj

u1(x, t, y, s1, s2)
)

dy ds2 ds1

)

− aij

(x

ε
,
t

ε
,

t

εr

)

∂xj
uε(x, t)

)

×

(

ε∂xi
v1(x)v2

(x

ε

)

+ v1(x)∂yi
v2

(x

ε

)

)

c1(t)c2

( t

ε

)

c3

( t

εr

)

dxdt = 0.

Next we let ε pass to zero. For the case when 0 < r < 2 we have
∫

ΩT

∫

Y1,2

((
∫

Y1,2

aij(y, s1, s2)
(

∂xj
u(x, t) + ∂yj

u1(x, t, y, s1, s2)
)

dy ds2 ds1

)

− aij(y, s1, s2)
(

∂xj
u(x, t) + ∂yj

u1(x, t, y, s1, s2)
)

)

× v1(x)∂yi
v2(y)c1(t)c2(s1)c3(s2) dy ds2 ds1 dxdt = 0,

and due to the periodicity of v2 we obtain
∫

ΩT

∫

Y1,2

−aij(y, s1, s2)
(

∂xj
u(x, t) + ∂yj

u1(x, t, y, s1, s2)
)

× v1(x)∂yi
v2(y)c1(t)c2(s1)c3(s2) dy ds2 ds1 dxdt = 0.

By the variational lemma
∫

Y

−aij(y, s1, s2)
(

∂xj
u(x, t) + ∂yj

u1(x, t, y, s1, s2)
)

∂yi
v2(y) dy = 0

for all v2 ∈ C∞
♯ (Y )/R, and hence, by density, for all v2 ∈ H1

♯ (Y )/R, a.e. in
ΩT × (0, 1)2. This is the weak form of (13). For r = 2, according to Theorem 9,

(20) approaches
∫

ΩT

∫

Y1,2

u1(x, t, y, s1, s2)v1(x)v2(y)c1(t)c2(s1)∂s2
c3(s2) dy ds2 ds1 dxdt

+

∫

ΩT

∫

Y1,2

(
∫

Y1,2

aij(y, s1, s2)
(

∂xj
u(x, t) + ∂yj

u1(x, t, y, s1, s2)
)

dy ds2 ds1

)

× v1(x)∂yi
v2(y)c1(t)c2(s1)c3(s2)

− aij(y, s1, s2)
(

∂xj
u(x, t) + ∂yj

u1(x, t, y, s1, s2)
)

× v1(x)∂yi
v2(y)c1(t)c2(s1)c3(s2) dy ds2 ds1 dxdt = 0,
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when ε tends to zero. Since v2 is periodic the middle term vanishes and we have

∫

ΩT

∫

Y1,2

u1(x, t, y, s1, s2)v1(x)v2(y)c1(t)c2(s1)∂s2
c3(s2)

− aij(y, s1, s2)
(

∂xj
u(x, t) + ∂yj

u1(x, t, y, s1, s2)
)

× v1(x)∂yi
v2(y)c1(t)c2(s1)c3(s2) dy ds2 ds1 dxdt = 0.

Applying the variational lemma we arrive at

∫

Y1,1

u1(x, t, y, s1, s2)v2(y)∂s2
c3(s2)

− aij(y, s1, s2)
(

∂xj
u(x, t) + ∂yj

u1(x, t, y, s1, s2)
)

∂yi
v2(y)c3(s2) dy ds2 = 0,

for all v2 ∈ H1
♯ (Y )/R and all c3 ∈ C∞

♯ (0, 1), a.e. in ΩT × (0, 1). We have found the

weak form of (14).

For the case when r > 2 we choose the test functions

v(x) = εv1(x)v2

(x

ε

)

, c(t) = c1(t)c2

( t

ε

)

in (17), where v1 ∈ D(Ω), v2 ∈ C∞
♯ (Y ), c1 ∈ D(0, T ) and c2 ∈ C∞

♯ (0, 1). We obtain

∫

ΩT

− uε(x, t)v1(x)v2

(x

ε

)

(

ε∂tc1(t)c2

( t

ε

)

+ c1(t)∂s1
c2

( t

ε

)

)

+ aij

(x

ε
,
t

ε
,

t

ε2

)

∂xj
uε(x, t)

(

ε∂xi
v1(x)v2

(x

ε

)

+ v1(x)∂yi
v2

(x

ε

)

)

× c1(t)c2

( t

ε

)

dxdt

=

∫

ΩT

f(x, t)εv1(x)v2

(x

ε

)

c1(t)c2

( t

ε

)

dxdt

and when ε goes to zero we get

∫

ΩT

∫

Y1,2

− u(x, t)v1(x)v2(y)c1(t)∂s1
c2(s1)

+ aij(y, s1, s2)
(

∂xj
u(x, t) + ∂yj

u1(x, t, y, s1, s2)
)

× v1(x)∂yi
v2(y)c1(t)c2(s1) dy ds2 ds1 dxdt = 0.

The periodicity of c2 and the variational lemma imply that

∫

Y1,1

aij(y, s1, s2)
(

∂xj
u(x, t) + ∂yj

u1(x, t, y, s1, s2)
)

∂yi
v2(y) dy ds2 = 0

for all v2 ∈ H1
♯ (Y )/R a.e. in ΩT × (0, 1). This is the weak form of (15).
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Next we study the difference (19) for the test functions

v(x) = εr−1v1(x)v2

(x

ε

)

, c(t) = c1(t)c2

( t

ε

)

c3

( t

εr

)

,

where v1 ∈ D(Ω), v2 ∈ C∞
♯ (Y )/R, c1 ∈ D(0, T ) and c2, c3 ∈ C∞

♯ (0, 1), and we obtain

∫

ΩT

1

ε

(

uε(x, t) − u(x, t)
)

v1(x)v2

(x

ε

)

(

εr∂tc1(t)c2

( t

ε

)

c3

( t

εr

)

+ εr−1c1(t)∂s1
c2

( t

ε

)

c3

( t

εr

)

+ c1(t)c2

( t

ε

)

∂s2
c3

( t

εr

)

)

+

((
∫

Y1,2

aij(y, s1, s2)
(

∂xj
u(x, t) + ∂yj

u1(x, t, y, s1, s2)
)

dy ds2 ds1

)

− aij

(x

ε
,
t

ε
,

t

εr

)

∂xj
uε(x, t)

)

×

(

εr−1∂xi
v1(x)v2

(x

ε

)

+ εr−2v1(x)∂yi
v2

(x

ε

)

)

c1(t)c2

( t

ε

)

c3

( t

εr

)

dxdt = 0.

When ε passes to zero we get according to Theorem 9

∫

ΩT

∫

Y1,2

u1(x, t, y, s1, s2)v1(x)v2(y)c1(t)c2(s1)∂s2
c3(s2) dy ds2 ds1 dxdt = 0

and by the variational lemma

∫ 1

0

u1(x, t, y, s1, s2)∂s2
c3(s2) ds2 = 0

for all c3 ∈ C∞
♯ (0, 1), a.e. in ΩT × Y × (0, 1). This is the weak form of (16) and

means that u1 does not depend on s2. �

R em a r k 11. Homogenization of linear parabolic equations with oscillations in

both space and time was first investigated by means of asymptotic expansions in [4].

This is also studied in [13], where a different proof is provided. The homogenization

of monotone nonlinear problems with two scales in space and time, respectively, is

proven by means of G-convergence in [15]. Similar results can also be found in [12].

For corrector results for linear parabolic equations with oscillation only in space

we refer to [3]. Such results for problems with oscillations also in time have been

proven by means of two-scale convergence methods in [8], and with H-convergence

techniques in [7]. The corresponding results for nonlinear problems are obtained

in [16]. In [9] reiterated homogenization results for linear parabolic operators are

proven by means of multiscale convergence methods.
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