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Abstract. This paper is concerned with periodic solutions of first-order nonlinear func-
tional differential equations with deviating arguments. Some new sufficient conditions for
the existence of periodic solutions are obtained. The paper extends and improves some
well-known results.
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1. Introduction

Recently, periodic solutions of functional differential equations have been exten-

sively studied (see, e.g., [1]–[6]). In [1], the functional differential equation

(1) ẋ(t) = b(t, x(t + ·)) + G(t, x(t + ·))

is considered where x(t) ∈ Rn , x(t+·) ∈ BC(R,Rn ) is given by x(t+·)(s) = x(t+s), b

andG are continuous and boundary operators from R×BC(R,Rn ) to Rn for any fixed

t ∈ R, b(t, ϕ) is linear with respect to ϕ ∈ BC(R,Rn ), there exists a constant T > 0

such that b(t + T, ϕ) = b(t, ϕ), G(t + T, ϕ) = G(t, ϕ) for any (t, ϕ) ∈ R×BC(R,Rn ).

Moreover,

lim
‖ϕ‖→∞

|G(t, ϕ)|

‖ϕ‖
= 0

*This work was supported by the Hunan Provincial Natural Science Foundation of China
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uniformly for t ∈ R, where | · | and ‖ · ‖ denote the norms in Rn and BC(R,Rn ),

respectively. In the theory of coincidence degree it is proved that if the linear equation

ẋ(t) = b(t, x(t + ·)) has only the trivial T -periodic solution, then equation (1) has at

least one T -periodic solution. Particularly, if G(t, ϕ) = G(t), it is easy to show that

equation (1) has a unique T -periodic solution. A specific example is given in [2] on

how periodic solutions can be obtained for the functional differential equation

(2) u̇(t) = l(u(t)) + g(t)

where l : Cω(R) → L(R) is a linear bounded operator and g ∈ Lω(R), and an

important particular case

(3) u̇(t) =
n

∑

k=1

pk(t)u(τk(t)) + g(t)

is also studied.

In the present paper, we first consider the nonlinear equation with deviating ar-

gument

(4) ẋ(t) = p(t)f
(

x(t − τ(t))
)

.

Some new optimal sufficient conditions are established for the existence of the trivial

T -periodic solution of equation (4). Next, we consider the functional differential

equation

(5) ẋ(t) = p(t)f
(

x(t − τ(t))
)

+ g(t).

By the theory of coincidence degree, we obtain sufficient conditions that equation (5)

has at least one T -periodic solution.

2. Main results and proofs

Theorem 1. Assume that

(a) p, τ ∈ C(R,R), p(t) > 0, p(t) is not identically equal to zero for t ∈ R,
(b) there exists a constant T > 0 such that p(t + T ) = p(t), τ(t + T ) = τ(t) for

t ∈ R,
(c) f is continuous and x(t)f(x(t)) > 0, (x(t) 6= 0). If f(x(t))/x(t) 6 1 (x(t) 6= 0)

and

(6) 0 <

∫ T

0

p(t) < 4

then equation (4) has only the trivial T -periodic solution.
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P r o o f. Assume the contrary. Let there exist a nontrivial T -periodic solution x

of equation (4); then max
06t6T

|x(t)| > 0. There are two cases:

Case 1. M = max
06t6T

x(t) 6 0, then x(t) 6 0, f(x) 6 0 since p(t) > 0, so ẋ(t) 6 0,

which is a contradiction with the assumption.

Case 2. M = max
06t6T

x(t) > 0, then there are two cases:

(i) min
06t6T

x(t) > 0, then x(t) > 0, f(x) > 0 since p(t) > 0, so ẋ(t) > 0, which is a

contradiction with the assumption.

(ii) min
06t6T

x(t) = −m < 0; choose t⋆ ∈ [0, T ], t⋆ ∈ [t⋆, t⋆ + T ] such that x(t⋆) = −m,

x(t⋆) = M , then −m 6 f
(

x(t − τ(t))
)

6 M .

Integrating equation (4) from t⋆ to t⋆ and from t⋆ to t⋆ + T, respectively, we have

(7) M + m =

∫ t⋆

t⋆

p(t)f
(

x(t − τ(t))
)

dt 6 M

∫ t⋆

t⋆

p(t) dt

and

(8) m + M = −

∫ t⋆+T

t⋆

p(t)f
(

x(t − τ(t))
)

dt 6 m

∫ t⋆+T

t⋆

p(t) dt.

Therefore, summing the last two inequalities,

4 6 2 +
M

m
+

m

M
6

∫ t⋆+T

t⋆

p(t) dt =

∫ T

0

p(t) dt,

which is a contradiction with the condition (6). The proof is complete. �

R em a r k. If equation (4) has only the trivial T -periodic solution, we cannot

conclude that equation (5) has at least one T -periodic solution.

Theorem 2. Assume that p, τ, g ∈ C(R,R), p(t) > 0 and p(t) is not identically

equal to zero for t ∈ R, there exists a constant T > 0 such that p(t + T ) = p(t),

τ(t + T ) = τ(t), g(t + T ) = g(t) for t ∈ R, f is continuous and x(t)f(x(t)) > 0

(x(t) 6= 0), f(0) = 0. Let the following conditions hold:

(i) |f(x(t))| 6 |x(t)| for all x(t) ∈ R;
(ii) 0 <

∫ T

0
p(t) dt < 4;

(iii)
∫ T

0
g(t) dt = 0.

Then equation (5) has at least one T -periodic solution.

To prove the theorem, we first consider the auxiliary equation

(9) ẋ(t) = λp(t)f
(

x(t − τ(t))
)

+ λg(t), λ ∈ (0, 1).
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Lemma 1. For each possible T -periodic solution xλ of equation (9), if the condi-

tions of Theorem 2 hold, then there exists a constant D which is independent of λ

such that

(10) |xλ(t)| 6 D, t ∈ R.

P r o o f. Let x denote xλ. There are two possible cases:

Case 1. x(t) is of a constant sign, i.e., either x(t) > 0 or x(t) 6 0 for t ∈ R.
Integrating both sides of equation (9) from 0 to T , note that x is T -periodic and

(iii) yields

(11)

∫ T

0

p(t)f
(

x(t − τ(t))
)

= dt = 0.

From (11), in view of the fact that p(t) is not identically equal to zero, we obtain

that there exists t0 ∈ [0, T ] such that x(t0) = 0. Moreover, there exists t1 < t0 such

that |x(t1)| = ‖x‖C with ‖x‖C = max
06t6T

x(t). Now integration of (9) on [t1, t0] yields

(12) ‖x‖C 6 ‖g‖L

where ‖g‖L =
∫ τ

0
|g(t)| dt.

Case 2. The function x assumes both positive and negative values. Let I = [t2, t3],

J = [t3, t2 + T ], where t2 and t3 are such that t2 < t3 < t2 + T and x(t2) =

− min
06t6T

x(t) and x(t3) = max
06t6T

x(t). Then integration of (9) on I and J , in view of

−m 6 f
(

x(t − τ(t))
)

6 M and λ ∈ (0, 1), yields

(13) m 6 M

(
∫

I

p(t) dt − 1

)

+ ‖g‖L

and

(14) M 6 m

(
∫

J

p(t) dt − 1

)

+ ‖g‖L

where M = max
06t6T

x(t) > 0, m = − min
06t6T

x(t) > 0.

There are four cases:

Case a)
∫

I
p(t) dt 6 1 and

∫

J
p(t) dt 6 1. Then from (13) and (14) we get ‖x‖C 6

‖g‖L.

Case b)
∫

I
p(t) dt 6 1 and

∫

J
p(t) dt > 1. Then from (13) we have m 6 ‖g‖L,

which together with (14) implies M 6 ‖p‖L ‖g‖L, i.e., ‖x‖C 6 (‖p‖L + 1)‖g‖L.
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Case c)
∫

I
p(t) dt > 1 and

∫

J
p(t) dt 6 1. Analogously to Case b, we obtain

‖x‖C 6 (‖p‖L + 1)‖g‖L.

Case d)
∫

I
p(t) dt > 1 and

∫

J
p(t) dt > 1. Then using (14) in (13) or (13) in (14)

we have respectively

(15) m 6 m

(
∫

I

p(t) dt − 1

)(
∫

J

p(t) dt − 1

)

+

(
∫

I

p(t) dt − 1

)

‖g‖L + ‖g‖L

and

(16) M 6 M

(
∫

I

p(t) dt − 1

)(
∫

J

p(t) dt − 1

)

+

(
∫

J

p(t) dt − 1

)

‖g‖L + ‖g‖L.

Now, in view of the inequality AB 6 (A + B)2/4 we have

(17)

(
∫

I

p(t) dt − 1

)(
∫

J

p(t) dt − 1

)

6
1

4

(
∫

I∪J

p(t) dt − 2

)2

.

Consequently, from (15) and (16) we obtain

(18) ‖x‖C 6
1

4

(
∫ T

0

p(t) dt − 2

)2

‖x‖C + ‖p‖L‖g‖L.

Then, in view of condition (ii), we have

(19) ‖x‖C 6

(

1 −
1

4
(‖p‖L − 2)2

)−1

‖p‖L‖g‖L.

When m > M, we can obtain the inequality (19) similarly according to (14).

Thus, in both cases, the estimate (10) holds with

D =

(

1 + (‖p‖L + 1)
(

1 −
1

4
(‖p‖L − 2)2

)−1
)

‖g‖L.

In order to prove Theorem 2, we also need the continuation theory of coincidence

degree developed by Gains and Mawhin in [7]. �

Lemma 2 (Continuation theorem). Let X , Z be real Banach spaces, L : domL ⊂

X → Z a Fredholm operator with index zero and let N : Ω̄ → Z be L-compact on Ω̄

where Ω is an open subset of X , let Q : Z → Z be a continuous projector with

Im L = kerQ and let J : Im Q → kerL be an isomorphism. Let

(1) Lx 6= λNx for any λ ∈ (0, 1), x ∈ domL ∩ ∂Ω;

(2) QNx 6= 0 for x ∈ kerL ∩ ∂Ω and degB(JQN, kerL ∩ Q, 0) 6= 0.

Then the operator equation Lx = Nx has at least one solution in domL ∩ Ω̄ .
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P r o o f of Theorem 2. Let X = Z = {x ∈ C(R,R) : x(t + T ) = x(t)} with the

norm ‖x‖C = max
06t6T

|x(t)|; domL = X ∩C1(R,R); Ω = {x ∈ X : |x(t)| < D}, where

D is greater than D; let L : domL ⊂ X → X be the differential operator defined by

(Lx)(t) = ẋ(t), let N : Ω̄ → Z be defined by (Nx)(t) = p(t)f
(

x(t− τ(t))
)

+ g(t) and

J = id. Clearly, kerL = R. Defining the projectors P = Q as follows:

(20) Px(t) =
1

T

∫ T

0

x(s) ds.

Obviously, Im P = kerL, Im L = kerQ, L is a Fredholm operator with index zero

and N is L-compact on Ω̄. According to the estimation of the periodic solution of

equation (9), we have Lx 6= λNx, for all x ∈ domL∩∂Ω, λ ∈ (0, 1). If x ∈ kerL∩∂Ω,

then x = ±D, so

QNx =
1

T

∫ T

0

[

p(t)f
(

x(t − τ(t))
)

+ g(t)
]

dt

=
1

T

∫ T

0

p(t)f(±D) dt = f(±D)
1

T

∫ T

0

p(t) dt 6= 0.

Finally, consider the mapping

H(x, s) = sx + (1 − s)f(x), 0 6 s 6 1.

Since for every s ∈ [0, 1] and x ∈ kerL ∩ ∂Ω, we have

xH(x, s) = sx2 + (1 − s)xf(x) > 0,

H(x, s) is a homotopy. This shows that

degB(JQN, kerL ∩ Ω, 0) = degB(f, kerL ∩ Ω, 0)

= degB(id, kerL ∩ Ω, 0) 6= 0.

We have thus verified all the assumptions of the continuation theorem. Thus under

the conditions of Theorem 2, Lx = Nx has at least one solution in domL ∩ Ω̄.

i.e., equation (5) has at least one T -periodic solution. The proof is complete. �
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