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The theorems of Stewart and Steiner

in the Poincaré disc model of hyperbolic geometry

Oğuzhan Demirel

Abstract. In [Comput. Math. Appl. 41 (2001), 135–147], A.A. Ungar employs
the Möbius gyrovector spaces for the introduction of the hyperbolic trigono-
metry. This Ungar’s work plays a major role in translating some theorems from
Euclidean geometry to corresponding theorems in hyperbolic geometry. In this
paper we explore the theorems of Stewart and Steiner in the Poincaré disc model
of hyperbolic geometry.

Keywords: Möbius transformation, hyperbolic geometry, gyrogroups, gyrovector
spaces and hyperbolic trigonometry

Classification: 51B10, 51M10, 30F45, 20N05

1. Introduction

Hyperbolic geometry is a subset of a large class of geometries called non-
Euclidean geometries, however hyperbolic geometry is similar to Euclidean ge-
ometry in many aspects. It has concepts of distance and angle, and there are
many theorems common to both.

There are finite and infinite models in hyperbolic geometry. Poincaré disc
model, Weierstrass model, Klein model, Gans model are well known in literature.
Moreover, there are some isomorphisms between these models of hyperbolic ge-
ometry. For instance, the Weierstrass model is isomorphic to the Klein, Poincaré,
and Gans models, see [10].

Throughout of this study, we only deal with Poincaré disc model of hyperbolic
geometry.

This paper is inspired by the beautiful paper [5] by A.A. Ungar on hyperbolic
trigonometry. A.A. Ungar showed that the hyperbolic sine and the hyperbolic
cosine rules are valid in the Poincaré ball model of hyperbolic geometry in a form
analogous to their Euclidean counterparts. In [11], Demirel and Soytürk proved
that the hyperbolic Carnot theorem and its reverse hold true in the Poincaré disc
model of hyperbolic geometry. In this paper we shall apply hyperbolic trigono-
metry to the study of the hyperbolic Stewart theorem and the hyperbolic Steiner’s
theorem in the Poincaré ball model of hyperbolic geometry.

2. Möbius transforms of the disc

In complex analysis Möbius transformations are well known. The most general
Möbius transformation of the complex open unit disc D = {z ∈ C : |z| < 1} in
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the complex z−plane

z → eiθ
z0 + z

1 + z0z
= eiθ (z0 ⊕ z)

defines the Möbius addition ⊕ in the disc, allowing the Möbius transformation of
the disc to be viewed as Möbius left gyrotranslation

z → z0 ⊕ z =
z0 + z

1 + z0z

followed by rotation. Here θ is a real number, z0 ∈ D, and z0 is the complex
conjugate of z0. Möbius subtraction “⊖” is given by a ⊖ z = a ⊕ (−z). Clearly
z ⊖ z = 0 and ⊖z = −z. Möbius addition ⊕ is a binary operation in the disc
D, however it is neither commutative nor associative. The Möbius addition ⊕
gives rise to the groupoid (D,⊕) studied by A.A. Ungar in several books and
articles including [1], [2], [3], [8]. Möbius addition is analogous to the common
vector addition + in the Euclidean plane geometry. Since the Möbius addition ⊕
is neither commutative nor associative, the groupoid (D,⊕) is not a group but it
has a group-like structure that we present below.

The breakdown of commutativity in Möbius addition is “repaired” by the in-
troduction of gyration,

gyr : D × D → Aut(D,⊕)

given by the equation

(1) gyr[a, b] =
a⊕ b

b⊕ a
=

1 + ab

1 + ab
,

where Aut(D,⊕) is the automorphism group of the groupoid (D,⊕). Therefore,
the gyrocommutative law of Möbius addition ⊕ follows from the definition of
gyration in (1),

(2) a⊕ b = gyr[a, b] (b⊕ a) .

Coincidentally, the gyration gyr[a, b] that repairs the breakdown of the commu-
tative law of ⊕ in (2), repairs the breakdown of the associative law of ⊕ as well,
giving rise to the respective left and right gyroassociative laws

a⊕ (b⊕ c) = (a⊕ b) ⊕ gyr[a, b]c
(a⊕ b) ⊕ c = a⊕ (b⊕ gyr[b, a]c)

for all a, b, c ∈ D.

Definition 1. A groupoid (G,⊕) is a gyrogroup if its binary operation satisfies
the following axioms

(G1) 0 ⊕ a = 0, left identity property
(G2) ⊖a⊕ a = 0, left inverse property
(G3) a⊕ (b ⊕ c) = (a⊕ b) ⊕ gyr[a, b]c, left gyroassociative law
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(G4) gyr[a, b] ∈ Aut(G,⊕), gyroautomorphism
(G5) gyr[a, b] = gyr[a⊕ b, b], left loop property

for all a, b, c ∈ G.
Additionally, if the binary operation “⊕” obeys the gyrocommutative law

(G6) a⊕ b = gyr[a, b](b⊕ a), gyrocommutative law

for all a, b, c ∈ G, then (G,⊕) is called a gyrocommutative gyrogroup.

Clearly, with these properties, one can now readily check that the Möbius
complex disc groupoid (D,⊕) is a gyrocommutative gyrogroup.

The axioms in Definition 1 imply the right identity property, the right inverse
property, the right gyyroassociative law and the right loop property. We refer
readers to [1] and [2] for more details about gyrogroups.

Now define the secondary binary operation ⊞ in G by

a⊞ b = a⊕ gyr[a,⊖b]b.

The primary and secondary operations of G are collectively called the dual oper-
ations of gyrogroups.

Let a, b be two elements of a gyrogroup (G,⊕). Then the unique solution of
the equation

a⊕ x = b

for the unknown x is

x = ⊖a⊕ b

and the unique solution of the equation

x⊕ a = b

for the unknown x is

x = b⊟ a.

For further details see [1], [2].

3. Möbius gyrogroups: from the disc to the ball

Let us identify complex numbers of the complex plane C with vectors of the
Euclidean plane R2 in the usual way:

C ∋ u = u1 + iu2 = (u1, u2) = u ∈R
2.

Then the equations

(3)
u · v = Re(uv)
‖u‖ = |u|
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give the inner product and the norm in R2, so that Möbius addition in the disc
D of C becomes Möbius addition in the disc R

2

1 = {v ∈ R
2 : ‖v‖ < 1} of R

2. In
fact we get from (3) that

(4)

u⊕ v =
u+ v

1 + ūv

=
(1 + uv̄) (u+ v)

(1 + ūv) (1 + uv̄)

=

(

1 + ūv+uv̄ + |v|2
)

u+
(

1 − |u|2
)

v

1 + ūv+uv̄ + |u|2|v|2

=

(

1 + 2u · v+ ‖v‖2

)

u+
(

1 − ‖u‖2

)

v

1 + 2u · v+ ‖u‖
2
‖v‖

2

= u⊕ v

for all u, v ∈ D and all u,v ∈ R2

1
.

4. Möbius addition in the ball

Let V be any inner-product space and

Vs = {v ∈ V : ‖v‖ < s}

be the open ball of V with radius s > 0. Möbius addition in Vs is motivated
by (4). It is given by the equation

(5) u ⊕ v =

(

1 +
(

2/s2
)

u · v +
(

1/s2
)

‖v‖
2
)

u +
(

1 −
(

1/s2
)

‖u‖
2
)

v

1 + (2/s2)u · v + (1/s4) ‖u‖2 ‖v‖2
,

where · and ‖ · ‖ are the inner product and norm that the ball Vs inherits from
its space V and where, ambiguously, + denotes both addition of real numbers on
the real line and addition of vectors in V.

Without loss of generality, we may assume that s = 1 in (5). However we prefer
to keep s as a free positive parameter in order to exhibit the results in the limit
as s→ ∞, when the ball Vs expands the whole of its real inner product space V,
and Möbius addition ⊕ reduces to vector addition + in V, i.e.,

lim
s→∞

u⊕ v = u + v

and

lim
s→∞

Vs = V.
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Möbius scalar multiplication is given by the equation

r ⊗ v = s
(1 + ‖v‖ /s)r − (1 − ‖v‖ /s)r

(1 + ‖v‖ /s)
r
+ (1 − ‖v‖ /s)

r

v

‖v‖

= s tanh
(

r tanh−1 ‖v‖ /s
) v

‖v‖
,

where r ∈ R, u,v ∈Vc, v 6= 0 and r ⊗ 0 = 0.
Möbius scalar multiplication possesses the following properties:

• n⊗ v = v ⊕ v ⊕ · · · ⊕ v, n-terms
• (r1 + r2) ⊗ v = r1 ⊗ v ⊕ r2 ⊗ v scalar distribute law
• (r1r2) ⊗ v = r1 ⊗ (r2 ⊗ v) scalar associative law
• r ⊗ (r1 ⊗ v ⊕ r2 ⊗ v) = r ⊗ (r1 ⊗ v) ⊕ r ⊗ (r2 ⊗ v) monodistribute law
• ‖r ⊗ v‖ = |r| ⊗ ‖v‖ homogeneity property

• ‖r|⊗v

‖r⊗v‖ = v

‖v‖ scaling property

• gyr[a,b](r ⊗ v) = r ⊗ gyr[a,b]v gyroautomorphism property
• 1 ⊗ v = v multiplicative unit property

Definition 2 (Möbius gyrovector spaces). Let (Vs,⊕) be a Möbius gyrogroup
equipped with scalar multiplication ⊗. The triple (Vs,⊕,⊗) is called a Möbius
gyrovector space.

5. Möbius geodesics and angles

As it is well known from Euclidean geometry, the straight line passing though
two given pointsA andB of a vector space R

n can be represented by the expression

A+ (−A+B) t,

t ∈ R. Obviously it passes through A when t = 0, and through B when t = 1.
In full analogy with Euclidean geometry, the unique Möbius geodesic passing

though two given points A and B of a Möbius gyrovector space (Vs,⊕,⊗) is
represented by the parametric gyrovector equation

LAB = A ⊕ (⊖A⊕ B) ⊗ t

with parameter t ∈ R. It passes through A when t = 0, and through B when
t = 1. The gyroline LAB turns out to be a circular arc that intersects the
boundary of the disc Vs orthogonally. The gyromidpoint MAB of the points A

and B corresponds to the parameter t = 1/2 of the gyroline LAB, see [4],

MAB = A ⊕ (⊖A⊕ B) ⊗
1

2
.

The measure of a Möbius angle between two intersecting geodesic rays equals the
measure of the Euclidean angle between corresponding intersecting tangent lines,
as shown in Figure 1 below.
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A

Α

Figure 1. The unique 2-dimensional geodesics that pass through
two given points and the hyperbolic angle between two intersect-
ing geodesics rays in a Möbius gyrovector plane (R2

s,⊕,⊗). For
the non-zero gyrovectors ⊖A ⊕ B and ⊖A ⊕ C or, equivalently,
⊖A⊕E and ⊖A⊕D, the measure of the gyroangle α is given by
the equation cosα = ⊖A⊕B

‖⊖A⊕B‖ · ⊖A⊕C

‖⊖A⊕C‖ or, equivalently, by the

equation cosα = ⊖A⊕E

‖⊖A⊕E‖ · ⊖A⊕D

‖⊖A⊕D‖ .

The hyperbolic angle is invariant under left gyrotranslations and rotations,
see [3].

Definition 3. The hyperbolic distance function in Rn
s is given by the equation

d(A,B) = ‖A ⊖ B‖ for A,B ∈ R
n

s
.

6. Gyrotriangles and gyrotrigonometry in Möbius gyrovector spaces

Definition 4 ([2]). A gyrotriangle ∆ABC in a gyrovector space (Vs,⊕,⊗) is
a gyrovector space object formed by the three points A,B,C ∈ Vs, called the
vertices of the gyrotriangle, and the gyrovectors ⊖A⊕B, ⊖B⊕C and ⊖C⊕A,
called the sides of the gyrotriangle. These are respectively the sides opposite to
the vertices C,A and B. The gyrotriangle sides generate the three gyrotriangle
gyroangles α, β and γ at the respective vertices A,B and C, as shown in Figure 2
below.

Definition 5 ([2]). In any gyrotriangle, gyroangle sum is always smaller than π.
The difference between this sum and π i.e. δ = π− (α+β+ γ) is called the defect
of the gyrotriangle.

In hyperbolic geometry, gyrotriangle gyroangles determine uniquely its side
gyrolenghts as follows:

Theorem 6 ([2]). Let ∆ABC be a gyrotriangle in a Möbius gyrovector space

(Vs,⊕,⊗) with vertices A,B and C, corresponding gyroangles α, β, γ with 0 <
α + β + γ < π, and side gyrolenghts ‖ ⊖ B ⊕ C‖, ‖ ⊖ C ⊕ A‖, ‖ ⊖ A ⊕ B‖.
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The side gyrolengths of the gyrotriangle ∆ABC are determined by its gyroangles

according to the AAA to SSS conversion equations

(

‖⊖B⊕ C‖

s

)2

=
cosα+ cos (β + γ)

cosα+ cos (β − γ)

(

‖⊖C⊕ A‖

s

)2

=
cosβ + cos (α+ γ)

cosβ + cos (α− γ)

(

‖⊖A⊕ B‖

s

)2

=
cos γ + cos (α+ β)

cos γ + cos (α− β)
.

A

Α

a

B

Β

b

C
Γ

c

Figure 2. A gyrotriangle in a Möbius gyrovector plane (R2
s,⊕,⊗).

The hyperbolic law of cosine and the hyperbolic law of sine can be recast in a
form fully analogous to the form of their Euclidean counterparts. Let us use the
notation

‖a‖M = γ2

a‖a‖

where γa is the gamma factor

γa =
1

√

1 − ‖a‖2

s2

,

so that, conversely

‖a‖

s
=

2 (‖a‖
M
/s)

1 +
√

1 + 4 (‖a‖
M
/s)

2

.

Theorem 7 ([5]). Let ∆ABC be a gyrotriangle in a Möbius gyrovector space

(Vs,⊕,⊗) with vertices A,B,C ∈ Vs and sides a = ⊖B⊕ C, b = ⊖C⊕ A and

c = ⊖A ⊕ B with hyperbolic angles α, β and γ at the vertices A,B and C. Then
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we have the hyperbolic law of sine,

(6)
‖a‖

M

sinα
=

‖b‖
M

sinβ
=

‖c‖
M

sinγ
.

Theorem 8 ([5]). Let ∆ABC be a gyrotriangle in a Möbius gyrovector space

(Vs,⊕,⊗) with vertices A,B,C ∈ Vs and sides a = ⊖B⊕ C, b = ⊖C⊕ A and

c = ⊖A ⊕ B with hyperbolic angles α, β and γ at the vertices A, B and C. Then

we have the hyperbolic law of cosine,

(7)
1

s
c2 =

1

s
a2 ⊕

1

s
b2 ⊖

1

s

2ab cosγ
(

1 + a2

s2

) (

1 + b2

s2

)

− 2

s2 ab cos γ
,

where a = ‖a‖, b = ‖b‖, c = ‖c‖.

Theorem 9 ([5]). Let ∆ABC be a gyrotriangle in a Möbius gyrovector space

(Vs,⊕,⊗) with vertices A,B,C ∈ Vs and sides a = ⊖B⊕ C, b = ⊖C⊕ A and

c = ⊖A⊕ B with hyperbolic angles α, β and γ at the vertices A, B and C. If

γ = π/2 then we have the hyperbolic Pythagorean identity,

1

s
c2 =

1

s
a2 ⊕

1

s
b2

where a = ‖a‖, b = ‖b‖, c = ‖c‖.

In Euclidean geometry, the Pythagorean theorem is well known and it has
many proofs in literature. For example, in [13], there are more than 75 different
proofs and all of them are intelligible. Some of them are concerned with squares,
i.e., in the proof some squares are used. In [4], A.A. Ungar gave the notion of
gyrosquares and proved that the hyperbolic square is richer in structure than its
Euclidean counterpart.

Problem 10. Is it possible to prove hyperbolic Pythagorean theorem by using a

gyrosquare?

In the Euclidean geometry, the converse of the Pythagorean theorem does exist.
Naturally, one may wonder whether the converse of the Pythagorean theorem in
hyperbolic geometry exists. Indeed, the converse of the theorem does exist as we
show in the following theorem.

Theorem 11. Let ∆ABC be a gyrotriangle in a Möbius gyrovector space

(Vs,⊕,⊗) with vertices A,B,C ∈ Vs and sides a = ⊖B⊕ C, b = ⊖C⊕ A

and c = ⊖A⊕ B with hyperbolic angles α, β and γ at the vertices A, B and C.

If the (nonzero) three side lengths of a triangle A, B and C satisfy the relation

1

s
c2 =

1

s
a2 ⊕

1

s
b2

where a = ‖a‖, b = ‖b‖, c = ‖c‖, then the gyrotriangle ∆ABC is a right

gyrotriangle.
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Proof: The proof of this theorem is not different from its Euclidean counterpart,
see [12]. �

In Euclidean geometry, the Carnot theorem is an direct application of Pythago-
ras. In [11], Demirel and Soytürk proved that the Carnot theorem and its (partial)
reverse holds true in the Poincaré disc model of hyperbolic geometry. These the-
orems are presented below.

Theorem 12 ([11]). Let ∆ABC be a hyperbolic triangle in the Poincaré disc,

whose vertices are the points A, B and C of the disc and whose sides (directed

counterclockwise) are a = ⊖B⊕ C, b = ⊖C⊕ A and c = ⊖A ⊕ B. Let points

A′, B′ and C′ be located on the sides a, b and c of hyperbolic triangle ∆ABC

respectively. If the perpendiculars to the sides of the hyperbolic triangle at points

A′, B′ and C′ are concurrent, then the following holds:

(8)
∣

∣⊖A⊕ C′
∣

∣

2
⊖

∣

∣⊖B⊕ C′
∣

∣

2
⊕

∣

∣⊖B⊕ A′
∣

∣

2
⊖

∣

∣⊖C⊕ A′
∣

∣

2

⊕
∣

∣⊖C⊕ B′
∣

∣

2
⊖

∣

∣⊖A⊕ B′
∣

∣

2
= 0.

Theorem 13 ([11]). Let ∆ABC be a hyperbolic triangle in the Poincaré disc,

whose vertices are the points A, B and C of the disc and whose sides (directed

counterclockwise) are a = ⊖B⊕ C, b = ⊖C⊕ A and c = ⊖A⊕ B. Let points

A′, B′ and C′ be located on the sides a, b and c of hyperbolic triangle ∆ABC

respectively. If (8) holds and two of the three perpendiculars to the sides of

the hyperbolic triangle at points A′, B′ and C′ are concurrent, then the three

perpendiculars are concurrent.

7. The theorems of Stewart and Steiner in the Poincaré disc model of

hyperbolic geometry

In Euclidean geometry, Stewart’s theorem yields a relation between the lengths
of the sides of a triangle and the length of segment from a vertex to a point on
the opposite side.

Theorem 14 (Stewart’s theorem). Let ∆ABC be a triangle and a, b, c be the

sides of ∆ABC. Let p be a segment from A to a point on a dividing a itself in m
and n. Then

p2 =
b2m+ c2n

a
−mn.

Theorem 15 (Steiner’s theorem). Let ∆ABC be a triangle and a, b, c be the

sides of ∆ABC, and let M and N be points on a such that ∠BAM = ∠NAC.

Then

BM

MC

BN

NC
=
c2

b2
.

The theorems of Stewart and Steiner are well known and fundamental in Eu-
clidean geometry and these are just direct applications of cosine law and sine law,
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respectively. Since the laws of sine and cosine are valid in the Poincaré disc model
of hyperbolic geometry (6) and (7), we present and prove their counterparts in
hyperbolic geometry below:

Theorem 16. Let ∆ABC be a gyrotriangle in a Möbius gyrovector space

(R2
1,⊕,⊗) with vertices A,B,C ∈ R2

1 and sides a = ⊖B ⊕ C, b = ⊖C⊕ A

and c = ⊖A⊕B. Let X be a point on a such that m := ⊖X⊕B, n := ⊖C⊕X

and p := ⊖X ⊕ A, as shown in Figure 3. Then

a
(

p2 +
(

mn⊕ c2b2
))

= p2
(

b2n⊕mc2
)

+
(

nc2 ⊕mb2
)

,

or equivalently

p2 =

(

c2n⊕mb2
)

− a
(

mn⊕ c2b2
)

a− (b2n⊕mc2)
,

where a = ‖a‖, b = ‖b‖, c = ‖c‖, p = ‖p‖, m = ‖m‖, and n = ‖n‖.

Proof: Let us take ∠AXB := θ and ∠AXC := ψ. Cosine law on ∆AXB and
∆AXC yields

cos θ =

(

p2 ⊕m2 ⊖ c2
) (

1 + p2
) (

1 +m2
)

(1 + (p2 ⊕m2 ⊖ c2)) 2pm

and

cosψ =

(

p2 ⊕ n2 ⊖ b2
) (

1 + p2
) (

1 + n2
)

(1 + (p2 ⊕ n2 ⊖ b2)) 2pn

respectively, see [5]. Since θ + ψ = π, we get

(

p2 ⊕m2 ⊖ c2
) (

1 +m2
)

(1 + (p2 ⊕m2 ⊖ c2))m
= −

(

p2 ⊕ n2 ⊖ b2
) (

1 + n2
)

(1 + (p2 ⊕ n2 ⊖ b2))n
.

A simple calculation shows that

(m⊕ n)

(

1 +
1

p2

(

mn⊕ c2b2
)

)

=

(

(

b2n⊕mc2
)

+
1

p2

(

c2n⊕mb2
)

)

i.e.,

a
(

p2 +
(

mn⊕ c2b2
))

= p2
(

b2n⊕mc2
)

+
(

c2n⊕mb2
)

holds and this implies that

p2 =

(

c2n⊕mb2
)

− a
(

mn⊕ c2b2
)

a− (b2n⊕mc2)

is valid.
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A

n

m

B

b

C

c

X

p

Ψ

Θ

Figure 3. The theorem of Stewart in the Poincaré disc model
of hyperbolic geometry. The gyrovectors m and n, defined in
Theorem 16, are illustrated, satisfying the gyrotriangle equality
‖m‖ ⊕ ‖n‖ = ‖a‖.

�

Theorem 17. Let ∆ABC be a gyrotriangle in a Möbius gyrovector space

(R2

1
,⊕,⊗) with vertices A,B,C ∈ R2

1
and sides a = ⊖B⊕ C, b = ⊖C⊕ A

and c = ⊖A⊕ B. Let M, N be points on a such that ∠BAM = ∠NAC. Then

‖⊖B⊕ M‖
M

‖⊖M⊕ C‖
M

‖⊖B⊕ N‖
M

‖⊖N⊕ C‖
M

=
‖ ⊖ A ⊕ B‖2

M

‖ ⊖ C⊕ A‖2

M

.

Proof: Let us take ∠BAM = ∠NAC = α, ∠MAN = δ, ∠ACB = γ and
∠ABC = β. From hyperbolic sine law, we get

‖⊖A⊕ B‖
M

sin γ
=

‖⊖A⊕ C‖
M

sinβ
,(9)

‖⊖N⊕ B‖
M

sin (α+ δ)
=

‖⊖N⊕ A‖
M

sinβ
,(10)

‖⊖M⊕ C‖
M

sin (α+ δ)
=

‖⊖M⊕ A‖
M

sin γ
,(11)

‖⊖M⊕ B‖
M

sinα
=

‖⊖M⊕ A‖
M

sinβ
,(12)

‖⊖N⊕ C‖
M

sinα
=

‖⊖N⊕ A‖
M

sin γ
.(13)
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Dividing (10) by (11), and dividing (12) by (13), we get

(14)
‖⊖M⊕ A‖

M

‖⊖N⊕ A‖
M

‖⊖N⊕ B‖
M

‖⊖M ⊕ C‖
M

=
sin γ

sinβ

and

(15)
‖⊖N⊕ A‖

M

‖⊖M⊕ A‖
M

‖⊖M ⊕ B‖
M

‖⊖N⊕ C‖
M

=
sin γ

sinβ
,

respectively. Multiplying (14) by (15), we have

(16)
‖⊖N⊕ B‖

M

‖⊖M⊕ C‖
M

‖⊖M ⊕ B‖
M

‖⊖N⊕ C‖
M

=
sin2 γ

sin2 β
,

and from (9), we get

(17)
sin2 γ

sin2 β
=

‖⊖A⊕ B‖2

M

‖⊖C⊕ A‖
2

M

.

Thus, the left-hand side of (16) and the right-hand side of (17) are equal.

A

Α
∆
Α

B

Β

C
Γ

N

M

Figure 4. The theorem of Steiner in the Poincaré disc model of
hyperbolic geometry.

�
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